整流滤波电路详解
- 格式:docx
- 大小:92.23 KB
- 文档页数:4
桥式整流滤波原理
桥式整流滤波是一种常用的电子电路,用于将交流电转化为直流电。
它的工作原理基于桥式整流和滤波两个步骤的组合。
首先,桥式整流是将输入的交流电信号转化为单向的脉动直流信号。
桥式整流电路中通常用四个二极管组成一个桥形结构,通过控制二极管的导通状态,能够将输入的交流信号的负半周和正半周分别独立地变成一个相同方向的脉动直流信号输出。
然后,滤波是为了去除桥式整流输出的脉动直流信号中的纹波部分,使其更接近理想的直流信号。
常见的滤波电路一般采用电容器进行滤波,将电容器与负载电阻串联连接,通过电容器的充放电过程,可以平滑输出电压或电流的脉动。
整个桥式整流滤波电路的工作过程是这样的:当交流电信号输入时,桥式整流电路根据交流信号的正负半周分别进行整流,经过整流后得到脉动直流信号。
然后脉动直流信号经过滤波电路的处理,被电容器平滑后输出为近似稳定的直流信号。
总结来说,桥式整流滤波电路通过桥式整流将交流信号转为脉动直流信号,再通过滤波电路将脉动直流信号平滑输出,从而实现了从交流电到直流电的转换。
这种电路在许多电子设备中广泛应用,如电源适配器、电动机驱动器等。
变频器电路图-整流、滤波、电源及电压检测电路以下仅仅对变频器电路图-整流、滤波、电源及电压检测电路的分析,好象论坛上发不了图纸.1. 整流滤波部分电路三相220V电压由端子J3的T、S、R引入,加至整流模块D55(SKD25-08)的交流输入端,在输出端得到直流电压,RV1是压敏电阻,当整流电压超过额定电压385V时,压敏电阻呈短路状态,短路的大电流会引起前级空开跳闸,从而保护后级电路不受高压损坏。
整流后的电压通过负温度系数热敏电阻RT5、RT6给滤波电容C133、C163充电。
负温度系数热敏电阻的特点是:自身温度超高,阻值赿低,因为这个特点,变频器刚上电瞬间,RT5、RT6处于冷态,阻值相对较大,限制了初始充电电流大小,从而避免了大电流对电路的冲击。
2. 直流电压检测部分电路电阻R81、R65、R51、R77、R71、R52、R62、R39、R40组成串联分压电路,从电阻上分得的电压分别加到U15(TL084)的三个运放组成的射极跟随器的同向输入端,在各自的输出端得到跟输入端相同的电压(输出电压的驱动能力得到加强)。
U13(LM339)是4个比较器芯片,因为是集电集开路输出形式,所以输出端都接有上接电阻,这几组比较器的比较参考电压由Q1(TL431)组成的高精度稳压电路提供,调整电位器R9可以调节参考电压的大小,此电路中参考电压是6.74V。
如果直流母线上的电压变化,势必使比较器的输入电压变化,当其变化到超过6.74V的比较值时,则各比较器输出电平翻转,母线电压过低则驱动光耦U1(TLP181)输出低电平,CPU接收这个信号后报电压低故障。
母线电压过高则U10(TL082)的第7脚输出高电平,通过模拟开关U73(DG418)从其第8脚输出高电平,从而驱动刹车电路,同时LED DS7点亮指示刹车电路动作。
由整流二极管D5、D6、D7、D18、D19、D20组成的整流电路输出脉动直流电,其后级的检测电路可对交流电压过低的情况进行实时检测,检测报警信号也通过光耦U1输出。
物理实验中心实验指导书整流、滤波与稳压电路ﻬ整流、滤波与稳压电路整流电路是将工频交流电转为具有直流电成分的脉动直流电.整流电路由整流器件组成。
滤波电路是将脉动直流中的交流成分滤除,减少交流成分,增加直流成分。
滤波电路直接接在整流电路后面,通常由电容器,电感器和电阻器按照一定的方式组合而成.作用是把脉动的直流电变为平滑的直流电供给负载.稳压电路对整流后的直流电压采用负反馈技术进一步稳定直流电压。
直流电源的方框图如图1所示。
滤波电路利用电抗性元件对交、直流阻抗的不同,实现滤波。
电容器C对直流开路,对交流阻抗小,所以CL对直流阻抗小,对交流阻抗大,因此L 应与负载串联.经过滤波电路后,既可保留直流分量、又可滤掉一部分交流分量,改变了交直流成分的比例,减小了电路的脉动系数,改善了直流电压的质量。
一、实验目的1。
了解整流、滤波电路的作用.2。
进一步熟悉示波器的使用.3。
观察单相半波、单相桥式及单相桥式整流电容滤波电路的输入、输出电压波形。
二、实验原理为方便分析,把二极管当作理想器件,即认为它加上正向电压导通时电阻为零,加上反向电压截止时电阻为无穷大.电容器在电路中有储存和释放能量的作用,电源供给的电压升高时,它把部分能量储存起来,而当电源电压降低时,就把能量释放出来,从而减少脉动成分,使负载电压比较平滑。
1。
单相半波整流电路电路如图2所示。
设在输入交流电压正半周:A端为正、B端为负,二极管因承受正向电压而导通,电流I L通路是A-V1—RL-B。
忽略二极管正向压降时,输入电压全部加在负载R L上。
在输入交流电压负半周:B端为正、A端为负,二极管因承受反向电压而截止。
输入电压几乎全部降落在二极管V上,负载RL上电压基本为零。
图1 直流稳压电路方框图由图5可见,在交流电一个周期内,二极管半个周期导通半个周期截止,以后周期重复上述过程.2.单相桥式整流电路电路如图3所示。
设在输入交流电压正半周:A端为正、B端为负,即A点电位高于B点电位。
整流滤波的工作原理
整流滤波是一种常用的电源滤波技术,其主要用于将交流电信号转换为直流电信号。
整流滤波的工作原理是通过使用二极管将交流信号的负半周去除,从而得到一个纯直流信号。
当交流电信号输入到整流滤波电路时,通过使用二极管,只有正半周的信号能够正确地通过,而负半周的信号则被二极管屏蔽掉。
这样,输出信号中只剩下了正半周的波形,形成了一个纯直流信号。
在整流滤波电路中,为了进一步减小输出信号中的纹波(即波动),可以添加滤波电容。
滤波电容的作用是在输出电压中平滑电压峰值,使其更接近于稳定的直流电压。
通过选择合适的滤波电容值,可以达到较好的滤波效果。
整流滤波电路的输出信号即为所需的直流电信号,可以用于供电给需要稳定直流电源的设备。
整流滤波技术广泛应用于电源供应、电子设备、通信设备等领域。
整流滤波电路桥式整流滤波电路一:[整流滤波电路]几种滤波整流电路的介绍总结(一)一、有源滤波电路为了提高滤波效果,解决π型RC滤波电路中交、直流分量对R的要求相互矛盾的问题,在RC电路中增加了有源器件-晶体管,形成了RC有源滤波电路。
常见的RC有源滤波电路如图Z0716所示,它实质上是由C1、Rb、C2组成的π型RC滤波电路与晶体管T组成的射极输出器联接而成的电路。
该电路的优点是:1.滤波电阻Rb 接于晶体管的基极回路,兼作偏置电阻,由于流过Rb 的电流入很小,为输出电流Ie的1/(1+β),故Rb可取较大的值(一般为几十k Ω),既使纹波得以较大的降落,又不使直流损失太大。
2.滤波电容C2接于晶体管的基极回路,便可以选取较小的电容,达到较大电容的滤波效果,也减小了电容的体积,便于小型化。
如图中接于基极的电容C2 折合到发射极回路就相当于(1+β)C2的电容的滤波效果(因ie = (1+ β )ib之故)。
3.由于负载凡接于晶体管的射极,故RL上的直流输出电压UE≈UB,即基本上同RC无源滤波输出直流电压相等。
这种滤波电路滤波特性较好,广泛地用于一些小型电子设备之中。
二、复式滤波电路复式滤波电路常用的有LCГ型、LCπ型和RCπ 型3种形式,如图Z0715所示。
它们的电路组成原则是,把对交流阻抗大的元件(如电感、电阻)与负载串联,以降落较大的纹波电压,而把对交流阻抗小的元件(如电容)与负载并联,以旁路较大的纹波电流。
其滤波原理与电容、电感滤波类似,这里仅介绍RCπ型滤波。
图Z0715(c)为RCπ型滤波电路,它实质上是在电容滤波的基础上再加一级RC滤波电路组成的。
其滤波原理可以这样解释:经过电容C1滤波之后,C1两端的电压包含一个直流分量与交流分量,作为RC2滤波的输入电压。
对直流分量而言,C2 可视为开路,RL上的输出直流电压为:对于交流分量而言,其输出交流电压为:若满足条件则有由式可见,R愈小,输出的直流分量愈大;由式可见,RC2愈大,输出的交流分量愈小。
一、整流电路的工作原理整流电路是将交流电信号转换成直流电信号的电路。
其工作原理主要通过二极管的导通和截止来实现。
在正半周的电压周期内,二极管处于导通状态,电流可以顺利通过;而在负半周的电压周期内,二极管处于截止状态,电流无法通过。
这样,交流电信号经过整流电路后,就可以转化为直流电信号输出。
二、滤波电路的工作原理滤波电路是用来去除整流后直流电信号中的脉动成分,使得输出的电压更加平稳。
其主要原理是通过电容器的充放电来吸收和释放交流电信号中的高频脉动成分。
在充电时,电容器可以吸收一部分脉动成分;在放电时,电容器则会释放出积累的电荷,从而使输出的电压更加稳定。
三、稳流电路的工作原理稳流电路是为了在负载变化时,仍然能够保持输出电流恒定的电路。
其原理是通过负反馈控制电路的工作点,使得在负载变化时,电路可以自动调整输出电流,从而避免因负载变化而导致的输出电流波动。
四、稳压电路的工作原理稳压电路是为了在输入电压波动时,能够保持输出电压恒定的电路。
其工作原理主要包括串联稳压和并联稳压两种方式。
串联稳压是通过调整输出电压与输入电压之间的电压差,以维持输出电压稳定;而并联稳压则是通过电容器和电感器等元件来减小输入电压的波动,从而实现输出电压的稳定。
五、结论整流、滤波、稳流、稳压电路是电子电路中常见的几种基本电路,它们通过不同的原理和组合方式,可以实现对交流电信号的转换和处理,从而得到稳定的直流电信号输出。
在实际应用中,这些电路通常会被应用于各种电子设备和电源系统中,起到了至关重要的作用。
对这些电路的工作原理有深入的了解,对于电子工程领域的从业者来说,是非常重要的。
六、整流、滤波、稳流、稳压电路在电子设备中的应用上文我们已经介绍了整流、滤波、稳流、稳压电路的工作原理,接下来我们将重点谈谈这些电路在电子设备中的应用。
1. 整流电路的应用整流电路是将交流电信号转换成直流电信号的关键电路之一,广泛应用于各种电源设备和电子设备中。
整流与滤波电路实验报告整流与滤波电路实验报告一、引言整流与滤波电路是电子电路领域中常见的实验内容。
整流电路用于将交流信号转换为直流信号,而滤波电路则用于去除直流信号中的纹波成分,使得输出信号更加稳定。
本次实验旨在通过搭建整流与滤波电路,探究其原理与性能。
二、实验器材与原理本次实验所需器材包括变压器、二极管、电容器、电阻器等。
变压器用于将交流电源转换为适合实验的低电压电源。
二极管作为整流电路的关键元件,能够将交流信号转换为单向的直流信号。
电容器则用于滤除直流信号中的纹波成分,使得输出信号更加平滑。
电阻器则起到限流的作用,保护电路和实验设备。
三、实验步骤与结果1. 搭建半波整流电路首先,将变压器的输入端接入交流电源,输出端接入整流电路。
整流电路由二极管和负载电阻组成。
通过示波器测量负载电阻两端的电压,得到输出波形。
实验结果显示,半波整流电路能够将输入的交流信号转换为单向的直流信号。
然而,由于只有正半周期的信号被保留,输出信号仍然存在纹波成分。
2. 搭建全波整流电路在半波整流电路的基础上,引入一个中心引线,将二极管的另一端接入负载电阻。
通过示波器测量负载电阻两端的电压,得到输出波形。
实验结果显示,全波整流电路能够将输入的交流信号的正负半周期都转换为直流信号,输出信号的纹波成分较半波整流电路明显减少。
3. 搭建RC滤波电路在全波整流电路的基础上,引入一个电容器,将其与负载电阻并联。
通过示波器测量负载电阻两端的电压,得到输出波形。
实验结果显示,RC滤波电路能够进一步减小输出信号的纹波成分。
电容器能够储存电荷,在正半周期时释放电荷,而在负半周期时吸收电荷,从而平滑输出信号。
四、实验分析与讨论通过本次实验,我们验证了整流与滤波电路的基本原理,并观察到了不同电路对输出信号的影响。
半波整流电路只保留了正半周期的信号,输出信号中的纹波成分较大。
全波整流电路则能够将正负半周期都转换为直流信号,纹波成分相对减小。
而加入RC滤波电路后,输出信号的纹波成分进一步减小,信号更加稳定。
(C)L-C电感滤波(D)π型滤波或叫C-L-C滤波图1 无源滤波电路的基本形式
为电感对直流的阻抗小,交流的阻抗大,因此能够得到较好的滤波效果而直流损失小。
电感滤波缺点是体积大,成本高. 桥式整流电感滤波电路如图2所示。
电感滤波的波形图如图2所示。
根据电感的特点,当输出电流发生变化时,L中将感应出一个反电势,使整流管的导电角增大,其方向将阻止电流发生变化。
图2电感滤波电路
在桥式整流电路中,当u2正半周时,D1、D3导电,电感中的电流将滞后u2不到90°。
当u2超过90°后开始下降,电感上的反电势有助于D1、D3继续导电。
当u2处于负半周时,D2、D4导电,变压器副边电压全部加到D1、D3两端,致使D1、D3反偏而截止,此时,电感中的电流将经由D2、D4提供。
由于桥式电路的对称性和电感中电流的连续性,四个二极管D1、D3;D2、D4的导电角θ都是180°,这一点与电容滤波电路不同。
图3电感滤波电路波形图
已知桥式整流电路二极管的导通角是180°,整流输出电压是半个半个正弦波,其平均值约为。
电感滤波电路,二极管的导通角也是180°,当忽略电感器L的电阻时,负载上输出的电压平均值也是。
如果考虑滤波电感的直流电阻R,则电感滤波电路输出的电压平均值为
要注意电感滤波电路的电流必须要足够大,即RL不能太大,应满足wL>>RL,此时IO(AV)可用下式计算
由于电感的直流电阻小,交流阻抗很大,因此直流分量经过电感后的损失很小,但是对于交流分量,在wL和上分压后,很大一部分交流分量降落在电感上,因而降低了输出电压中的脉动成分。
电感L愈大,RL愈小,则滤波效果愈好,所以电感滤波适用于负载电流比较大且变化比较大的场合。
采用电感滤波以后,延长了整流管的导电角,从而避免了过大的冲击电流。
电容滤波原理详解
1.空载时的情况
当电路采用电容滤波,输出端空载,如图4(a)所示,设初始时电容电压uC为零。
接入电源后,当u2在正半周时,通过D1、D3向电容器C充电;当在u2的负半周时,通过D2、D4向电容器C充电,充电时间常数为
(a)电路图(b)波形图
图4 空载时桥式整流电容滤波电路
式中包括变压器副边绕组的直流电阻和二极管的正向导通电阻。
由于一般很小,电容器很快就充到交流电压u2的最大值,如波形图2(b)的时刻。
此后,u2开始下降,由于电路输出端没接负载,电容器没有放电回路,所以电容电压
值uC不变,此时,uC>u2,二极管两端承受反向电压,处于截止状态,电路的输出电压,电路输出维
持一个恒定值。
实际上电路总要带一定的负载,有负载的情况如下。
2.带载时的情况
图5给出了电容滤波电路在带电阻负载后的工作情况。
接通交流电源后,二极管导通,整流电源同时向电容充电和向负载提供电流,输出电压的波形是正弦形。
在时刻,即达到u2 90°峰值时,u2开始以正弦规律下降,此时二极管是否关断,取决于二极管承受的是正向电压还是反向电压。
先设达到90°后,二极管关断,那么只有滤波电容以指数规律向负载放电,从而维持一定的负载电流。
但是90°后指数规律下降的速率快,而正弦波下降的速率小,所以超过90°以后有一段时间二极管仍然承受正向电压,二极管导通。
随着u2的下降,正弦波的下降速率越来越快,uC 的下降速率越来越慢。
所以在超过90°后的某一点,例如图5(b)中的t2时刻,二极管开始承受反向电压,二极管关断。
此后只有电容器C向负载以指数规律放电的形式提供电流,直至下一个半周的正弦波来到,u2再次超过uC,如图5(b)中的t3时刻,二极管重又导电。
以上过程电容器的放电时间常数为
电容滤波一般负载电流较小,可以满足td较大的条件,所以输出电压波形的放电段比较平缓,纹波较小,输出脉动系数S小,输出平均电压UO(AV)大,具有较好的滤波特性。
(a)电路图(b)波形图
图5带载时桥式整流滤波电路
以上滤波电路都有一个共性,那就是需要很大的电容容量才能满足要求,这样一来大容量电容在加电瞬间很有很大的短路电流,这个电流对整流二极管,变压器冲击很大,所以现在一般的做法是在整流前加一的功率型NTC热敏电阻来维持平衡,因NTC热敏电阻在常温下电阻很大,加电后随着温度升高,电阻阻值迅速减小,这个电路叫软起动电路。
这种电路缺点是:断电后,在热时间常数内,NTC热敏电阻没有恢复到零功率电阻值,所以不宜频繁的开启。
为什么整流后加上滤波电容在不带负载时电压为何升高?这是因为加上滤波测得的电压是含有脉动成分的峰值电压,加上负载后就是平均值,计算:峰值电压=1.414×理论输出电压
有源滤波-电子电路滤波
电阻滤波本身有很多矛盾,电感滤波成本又高,故一般线路常采用有源滤波电路,电路如图6。
它是由C1、R、C2组成的π
型RC滤波电路与有源器件晶体管T组成的射极输出器连接而成的电路。
由图6可知,流过R的电流IR=IE/(1+β)=IRL/(1+β)。
流过电阻R的电流仅为负载电流的1/(1+β).所以可以采用较大的R,与C2配合以获得较好的滤波效果,以使C2两端的电压的脉动成分减小,输出电压和C2两端的电压基本相等,因此输出电压的脉动成分也得到了削减。
从RL负载电阻两端看,基极回路的滤波元件R、C2折合到射极回路,相当于R减小了(1+β)倍,而C2增大了(1+β)倍。
这样所需的电容C2只是一般RCπ型滤波器所需电容的1/β,比如晶体管的直流放大系数β=50,如果用一般RCπ型滤波器所需电容容量为1000μF,如采用电子滤波器,那么电容只需要20μF就满足要求了。
采用此电路可以选择较大的电阻和较小的电容而达到同样的滤波效果,因此被广泛地用于一些小型电子设备的电源之中。
电容自谐振频率表2009-02-02 16:13
根据LC电路串联谐振的原理,谐振点不仅与电感有关,还与电容值有关,电容越大,谐振点越低。
许多人认为电容器的容值越大,滤波效果越好,这是一种误解。
电容越大对低频干扰的旁路效果虽然好,但是由于电容在较低的频率发生了谐振,阻抗开始随频率的升高而增加,因此对高频噪声的旁路效果变差。
表1是不同容量瓷片电容器的自谐振频率,电容的引线长度是1.6mm(你使用的电容的引线有这么短吗?)。
表1。