全波整流滤波电路
- 格式:doc
- 大小:1.76 MB
- 文档页数:3
二极管全波整流滤波电路①下面分两部分介绍其工作原理,即桥式整流电路与滤波电路两部分。
首先,介绍桥式整流电路,其工作原理为如下:电路图图10.02(a)在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。
根据图10.02(a)的电路图可知:当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。
当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。
在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。
单相桥式整流电路的波形图见图10.02(b)。
下面介绍滤波电路的工作原理:(1)滤波的基本概念滤波电路利用电抗性元件对交、直流阻抗的不同,实现滤波。
电容器C对直流开路,对交流阻抗小,所以C应该并联在负载两端。
电感器L对直流阻抗小,对交流阻抗大,因此L 应与负载串联。
经过滤波电路后,既可保留直流分量、又可滤掉一部分交流分量,改变了交直流成分的比例,减小了电路的脉动系数,改善了直流电压的质量。
(2)电容滤波电路现以单相桥式电容滤波整流电路为例来说明。
电容滤波电路如图10.06所示,在负载电阻上并联了一个滤波电容C。
若电路处于正半周,二极管D1、D3导通,变压器次端电压v2给电容器C充电。
此时C相当于并联在v2上,所以输出波形同v2,是正弦形。
当v2到达90°时,v2开始下降。
先假设二极管关断,电容C就要以指数规律向负载RL放电。
指数放电起始点的放电速率很大。
在刚过90°时,正弦曲线下降的速率很慢。
所以刚过90°时二极管仍然导通。
在超过90°后的某个点,正弦曲线下降的速率越来越快,当刚超过指数曲线起始放电速率时,二极管关断。
所以,在t1到t2时刻,二极管导电,C充电,v C=v L按正弦规律变化;t2到t3时刻二极管关断,v C=v L按指数曲线下降,放电时间常数为R L C。
通过以上分析画出波形图如下:②讨论C和RL的大小对输出电压的影响。
整流滤波电路工作原理
整流滤波电路是一种常见的电力电子结构,用于将交流电转换为直流电。
其工作原理是通过使用二极管进行整流,去除交流电信号的负半周,然后通过电容器进行滤波,去除残留的交流波动,最终得到稳定的直流电。
整流器的核心部件是二极管。
当输入为正半周时,二极管导通,电流通过,产生正向偏置电压。
这样,整流器将正半周的交流信号转换为正向的直流信号;当输入为负半周时,二极管截止,不导通,电流不通过。
因此,整流电路去除了负半周的交流信号。
在整流器输出后,接入电容器进行滤波。
电容器具有存储电荷和释放电流的特性。
当输入为正半周时,电容器充电并储存电荷;当输入为负半周时,电容器通过释放储存的电荷继续提供电流。
这样,电容器平滑输出,并去除了电流的纹波。
整流滤波电路可广泛应用于电源供应器等领域,用于将交流电转换为直流电并提供给电子元器件使用。
它的工作原理简单、高效,能够实现稳定的直流电输出。
整流滤波电路实验报告姓名:XXX 学号:5702112116 座号:11 时间:第六周星期4一、实验目的1、研究半波整流电路、全波桥式整流电路。
2、电容滤波电路,观察滤波器在半波和全波整流电路中的滤波效果。
3、整流滤波电路输出脉动电压的峰值。
4、初步掌握示波器显示与测量的技能。
二、实验仪器示波器、6v交流电源、面包板、电容(10μF*1,470μF*1)、变阻箱、二极管*4、导线若干。
三、实验原理1、利用二极管的单向导电作用,可将交流电变为直流电。
常用的二极管整流电路有单相半波整流电路和桥式整流电路等。
2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤波电路。
整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。
四、实验步骤1、连接好示波器,将信号输入线与6V交流电源连接,校准图形基准线。
2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。
3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。
4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。
5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻并联。
改变电阻大小(200Ω、100Ω、50Ω、25Ω)200Ω100Ω50Ω25Ω6、更换10μF的电容,改变电阻(200Ω、100Ω、50Ω、25Ω)200Ω100Ω50Ω 25Ω 五、数据处理1、当C 不变时,输出电压与电阻的关系。
输出电压与输入交流电压、纹波电压的关系如下:avg)r m V V V (输+=又有i avg R C V ••=输89.2V )(r 所以当C 一定时,R 越大就越小)(r V avg越大输V2、当R 不变时,输出电压与电容的关系。
由上面的公式可知当R 一定时,C 越大就越小)(r V avg 就越大输V 3、桥式整流的优越性。
1、输出电压波动小。
2、电源利用率高,每个半周期内都有电流经过。
4种整流5种滤波电路总结写在前⾯: 本⽂包含内容: 1、变压电路 2、整流电路 2-1:半波整流电路 2-2:全波整流电路 2-3:桥式整流电路 2-4:倍压整流电路 3、滤波电路 3-1:电容滤波电路 3-2:电感滤波电路 3-3:RC滤波电路 3-4:LC滤波电路 3-5:有源滤波电路 4、整流滤波电路总结 4-1:常⽤整流电路性能对照 4-2:常⽤⽆源滤波电路性能对照 4-3:电容滤波电路输出电流⼤⼩与滤波电容量的关系 4-4:常⽤整流滤波电路计算表基本电路: ⼀般直流稳压电源都使⽤220伏市电作为电源,经过变压、整流、滤波后输送给稳压电路进⾏稳压,最终成为稳定的直流电源。
这个过程中的变压、整流、滤波等电路可以看作直流稳压电源的基础电路,没有这些电路对市电的前期处理,稳压电路将⽆法正常⼯作。
1、变压电路 通常直流稳压电源使⽤电源变压器来改变输⼊到后级电路的电压。
电源变压器由初级绕组、次级绕组和铁芯组成。
初级绕组⽤来输⼊电源交流电压,次级绕组输出所需要的交流电压。
通俗的说,电源变压器是⼀种电→磁→电转换器件。
即初级的交流电转化成铁芯的闭合交变磁场,磁场的磁⼒线切割次级线圈产⽣交变电动势。
次级接上负载时,电路闭合,次级电路有交变电流通过。
变压器的电路图符号见图2-3-1。
2、整流电路 经过变压器变压后的仍然是交流电,需要转换为直流电才能提供给后级电路,这个转换电路就是整流电路。
在直流稳压电源中利⽤⼆极管的单项导电特性,将⽅向变化的交流电整流为直流电。
(1)半波整流电路 半波整流电路见图2-3-2。
其中B1是电源变压器,D1是整流⼆极管,R1是负载。
B1次级是⼀个⽅向和⼤⼩随时间变化的正弦波电压,波形如图 2-3-3(a)所⽰。
0~π期间是这个电压的正半周,这时B1次级上端为正下端为负,⼆极管D1正向导通,电源电压加到负载R1上,负载R1中有电流通过; π~2π期间是这个电压的负半周,这时B1次级上端为负下端为正,⼆极管D1反向截⽌,没有电压加到负载R1上,负载R1中没有电流通过。
实验六整流、滤波、稳压电路一、实验目的1.掌握桥式整流的特点。
2.了解稳压电路的组成和稳压作用。
3.熟悉集成三端可调稳压器的使用。
二、实验属性验证性实验三、实验仪器设备及器材1.试验台2.示波器3.数字万用表四、预习要求1.二极管全波整流的工作原理及整流输出波形。
2.整流电路分别接电容、稳压管时的工作原理及输出波形。
3.熟悉集成三端可调稳压器的工作原理。
五、实验内容与步骤首先校准示波器1.桥式整流:按图 8-1 接线,在输入端接入交流 14V 电压,调节 W2 使 I0= 50mA时,测出 Vo,同时用示波器的 DC 档观察输出波形并记入表 8-1 中。
表8-1图8-1 仿真参考电路2.加电容滤波:上述实验电路不动,在桥式整流后面加电容滤波,如图8-2 接线,测量接电容的情况下输入电压V0 及输出电流I0 ,同时用示波器的DC 档观察输出波形并记入表8-2 中。
表8-2图8-2 仿真参考电路3.加稳压二极管上述电路不动,在电容后面加稳压二极管电路,如图8-3 接线,在接通交流14V 电源后,调整W2 使I0 分别为10mA、15mA、20 mA 时,测出V AO 和V0,并用示波器的DC 档观测波形,记入表8-3 中。
、表8-3图8-3仿真参考电路当I0=10mA时当I0=15mA时当I0=20mA时六、实验报告1.总结桥式整流的特点。
答:脉动较小,使用的整流器件较全波整流时多一倍,整流电压脉动与全波整流相同,每个器件所承受的反向电压为电源电压峰复值。
2.说明滤波电容 C 的作用。
C有关答:滤波。
输出电压的脉动程度与平均值与放电时间常数RL3.总结稳压二极管的稳压作用和可调三端稳压器的稳压作用。
答:稳压二极管:稳定电压,稳压值是固定的,并联在电路上,功率较小,主要用在电路中稳定某一点的工作电压,多应用在控制电路,在击穿情况下才起控制作用的。
可调三端稳压器:稳定电压,稳压值是可调,串联在电路上,功率较大,主要用在为整个或部分电路提供稳定或可调的供电电源,多用在供电电路,不能击穿。
整流滤波电路实验报告整流滤波电路实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT整流滤波电路实验报告姓名:XXX 学号:座号:11 时间:第六周星期4一、实验目的1、研究半波整流电路、全波桥式整流电路。
2、电容滤波电路,观察滤波器在半波和全波整流电路中的滤波效果。
3、整流滤波电路输出脉动电压的峰值。
4、初步掌握示波器显示与测量的技能。
二、实验仪器示波器、6v交流电源、面包板、电容(10μF*1,470μF*1)、变阻箱、二极管*4、导线若干。
三、实验原理1、利用二极管的单向导电作用,可将交流电变为直流电。
常用的二极管整流电路有单相半波整流电路和桥式整流电路等。
2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤波电路。
整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显着成小,同时输出电压的平均值也增大了。
四、实验步骤1、连接好示波器,将信号输入线与6V交流电源连接,校准图形基准线。
2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。
3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。
4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。
5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻并联。
改变电阻大小(200Ω、100Ω、50Ω、25Ω)200Ω100Ω50Ω25Ω6、更换10μF的电容,改变电阻(200Ω、100Ω、50Ω、25Ω)200Ω100Ω50Ω25Ω五、数据处理1、当C 不变时,输出电压与电阻的关系。
输出电压与输入交流电压、纹波电压的关系如下:又有i avg R C V ??=输89.2V )(r所以当C 一定时,R 越大2、当R 不变时,输出电压与电容的关系。
由上面的公式可知当R一定时,C越大3、桥式整流的优越性。
1、输出电压波动小。
整流与滤波电路实验报告整流与滤波电路实验报告一、引言整流与滤波电路是电子电路领域中常见的实验内容。
整流电路用于将交流信号转换为直流信号,而滤波电路则用于去除直流信号中的纹波成分,使得输出信号更加稳定。
本次实验旨在通过搭建整流与滤波电路,探究其原理与性能。
二、实验器材与原理本次实验所需器材包括变压器、二极管、电容器、电阻器等。
变压器用于将交流电源转换为适合实验的低电压电源。
二极管作为整流电路的关键元件,能够将交流信号转换为单向的直流信号。
电容器则用于滤除直流信号中的纹波成分,使得输出信号更加平滑。
电阻器则起到限流的作用,保护电路和实验设备。
三、实验步骤与结果1. 搭建半波整流电路首先,将变压器的输入端接入交流电源,输出端接入整流电路。
整流电路由二极管和负载电阻组成。
通过示波器测量负载电阻两端的电压,得到输出波形。
实验结果显示,半波整流电路能够将输入的交流信号转换为单向的直流信号。
然而,由于只有正半周期的信号被保留,输出信号仍然存在纹波成分。
2. 搭建全波整流电路在半波整流电路的基础上,引入一个中心引线,将二极管的另一端接入负载电阻。
通过示波器测量负载电阻两端的电压,得到输出波形。
实验结果显示,全波整流电路能够将输入的交流信号的正负半周期都转换为直流信号,输出信号的纹波成分较半波整流电路明显减少。
3. 搭建RC滤波电路在全波整流电路的基础上,引入一个电容器,将其与负载电阻并联。
通过示波器测量负载电阻两端的电压,得到输出波形。
实验结果显示,RC滤波电路能够进一步减小输出信号的纹波成分。
电容器能够储存电荷,在正半周期时释放电荷,而在负半周期时吸收电荷,从而平滑输出信号。
四、实验分析与讨论通过本次实验,我们验证了整流与滤波电路的基本原理,并观察到了不同电路对输出信号的影响。
半波整流电路只保留了正半周期的信号,输出信号中的纹波成分较大。
全波整流电路则能够将正负半周期都转换为直流信号,纹波成分相对减小。
而加入RC滤波电路后,输出信号的纹波成分进一步减小,信号更加稳定。
电源电路单元(全波整流、滤波、稳压)要点和举例前面介绍了电路图中的元器件的作用和符号。
一张电路图通常有几十乃至几百个元器件,它们的连线纵横交叉,形式变化多端,初学者往往不知道该从什么地方开始,怎样才能读懂它。
其实电子电路本身有很强的规律性,不管多复杂的电路,经过分析可以发现,它是由少数几个单元电路组成的。
好象孩子们玩的积木,虽然只有十来种或二三十种块块,可是在孩子们手中却可以搭成几十乃至几百种平面图形或立体模型。
同样道理,再复杂的电路,经过分析就可发现,它也是由少数几个单元电路组成的。
因此初学者只要先熟悉常用的基本单元电路,再学会分析和分解电路的本领,看懂一般的电路图应该是不难的。
按单元电路的功能可以把它们分成若干类,每一类又有好多种,全部单元电路大概总有几百种。
下面我们选最常用的基本单元电路来介绍。
让我们从电源电路开始。
一、电源电路的功能和组成每个电子设备都有一个供给能量的电源电路。
电源电路有整流电源、逆变电源和变频器三种。
常见的家用电器中多数要用到直流电源。
直流电源的最简单的供电方法是用电池。
但电池有成本高、体积大、需要不时更换(蓄电池则要经常充电)的缺点,因此最经济可靠而又方便的是使用整流电源。
电子电路中的电源一般是低压直流电,所以要想从 220 伏市电变换成直流电,应该先把220 伏交流变成低压交流电,再用整流电路变成脉动的直流电,最后用滤波电路滤除脉动直流电中的交流成分后才能得到直流电。
有的电子设备对电源的质量要求很高,所以有时还需要再增加一个稳压电路。
因此整流电源的组成一般有四大部分,见图 1 。
其中变压电路其实就是一个铁芯变压器,需要介绍的只是后面三种单元电路。
二、整流电路整流电路是利用半导体二极管的单向导电性能把交流电变成单向脉动直流电的电路。
( 1 )半波整流半波整流电路只需一个二极管,见图 2 ( a )。
在交流电正半周时 VD 导通,负半周时 VD 截止,负载 R 上得到的是脉动的直流电( 2 )全波整流全波整流要用两个二极管,而且要求变压器有带中心抽头的两个圈数相同的次级线圈,见图2 ( b )。
全波整流电路的工作原理
全波整流电路是一种将交流电转换为直流电的电路。
全波整流电路的工作原理如下:
1. 全波整流电路通常是由一个变压器、四个二极管和一个负载组成的。
变压器用来将输入的交流电压调整到所需的电压范围内。
2. 在正半周,二极管D1和D2导通,电流从输入端通过二极管D1流入负载,在负载上形成一个正半周的脉冲电压。
3. 在负半周,二极管D3和D4导通,电流从输入端通过二极管D4流入负载,在负载上形成一个负半周的脉冲电压。
4. 因此,完全整流电路中的负载端将得到一个由两个正半周期和两个负半周期组成的脉冲电压。
5. 使用滤波器(如电容器)将这个脉冲电压转换为平滑的直流电压。
6. 最后,负载上得到的电压是输入交流电压的有效值的2倍。
综上所述,全波整流电路的工作原理是利用二极管的导通特性将输入的交流电转换为只有正半周或负半周的脉冲电压,然后通过滤波器将脉冲电压转换为直流电压。
整流滤波电路实验报告一、实验目的。
本实验旨在通过搭建整流滤波电路,了解其工作原理,掌握整流电路和滤波电路的基本知识,以及学习使用示波器测量电路波形。
二、实验仪器与设备。
1. 电压源。
2. 二极管。
3. 电容。
4. 示波器。
5. 万用表。
6. 电阻。
7. 电路连接线。
8. 面包板。
三、实验原理。
整流电路的作用是将交流信号转换为直流信号。
在实际电路中,整流电路通常与滤波电路结合使用,滤波电路的作用是去除整流后产生的脉动,使输出电压更加稳定。
本实验中,我们将搭建一个半波整流滤波电路,通过二极管将输入的交流信号转换为直流信号,然后使用电容进行滤波处理,最终得到稳定的直流输出信号。
四、实验步骤。
1. 将电路连接线、二极管、电容、电阻等元器件按照电路图连接在面包板上。
2. 将电压源的正负极分别连接到整流滤波电路的输入端。
3. 使用示波器测量输入和输出信号的波形,并记录数据。
4. 调节电压源的输出电压,观察输出信号的变化。
5. 分析实验数据,总结整流滤波电路的特点和工作原理。
五、实验数据与分析。
通过实验测量和观察,我们得到了输入和输出信号的波形数据。
在输入交流信号经过整流电路后,我们观察到输出信号的直流成分增大,脉动成分减小。
经过滤波电路处理后,输出信号的脉动进一步减小,最终得到了稳定的直流输出信号。
这验证了整流滤波电路的工作原理,也说明了滤波电路对于去除脉动的有效性。
六、实验总结。
通过本次实验,我们深入了解了整流滤波电路的工作原理和特点,掌握了使用示波器测量电路波形的方法。
同时,我们也发现了实际电路中存在的一些问题,例如电容和电阻的选取对于滤波效果的影响,以及电路连接的稳定性等,这些都需要我们在实际应用中加以注意和改进。
七、实验感想。
通过本次实验,我们不仅学到了理论知识,还锻炼了动手能力和实验技能,加深了对电路原理的理解。
在今后的学习和工作中,我们将继续努力,不断提升自己的实验能力和创新意识,为将来的科研和工程实践打下坚实的基础。
二极管全波整流滤波电路
①下面分两部分介绍其工作原理,即桥式整流电路与滤波电路两部分。
首先,介绍桥式整流电路,其工作原理为如下:
电路图
图10.02(a)
在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。
根据图10.02(a)的电路图可知:当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。
当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。
在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。
单相桥式整流电路的波形图见图10.02(b)。
下面介绍滤波电路的工作原理:
(1)滤波的基本概念
滤波电路利用电抗性元件对交、直流阻抗的不同,实现滤波。
电容器C对直流开路,对交流阻抗小,所以C应该并联在负载两端。
电感器L对直流阻抗小,对交流阻抗大,因此L 应与负载串联。
经过滤波电路后,既可保留直流分量、又可滤掉一部分交流分量,改变了交直流成分的比例,减小了电路的脉动系数,改善了直流电压的质量。
(2)电容滤波电路
现以单相桥式电容滤波整流电路为例来说明。
电容滤波电路如图10.06所示,在负载电阻上并联了一个滤波电容C。
若电路处于正半周,二极管D1、D3导通,变压器次端电压v2给电容器C充电。
此时C相当于并联在v2上,所以输出波形同v2,是正弦形。
当v2到达90°时,v2开始下降。
先假设二极管关断,电容C就要以指数规律向负载RL放电。
指数放电起始点的放电速率很大。
在刚过90°时,正弦曲线下降的速率很慢。
所以刚过90°时二极管仍然导通。
在超过90°后的某个点,正弦曲线下降的速率越来越快,当刚超过指数曲线起始放电速率时,二极管关断。
所以,在t1到t2时刻,二极管导电,C充电,v C=v L按正弦规律变化;t2到t3时刻二极管关断,v C=v L按指数曲线下降,放电时间常数为R L C。
通过以上分析画出波形图如下:
②讨论C 和RL 的大小对输出电压的影响。
决定输出电压的因素比较多,工程上一般采用以下计算方法:22
(1)4o L L T V V V R C
==-,另一种是在R L C =(3~5)T/ 2的条件下,近似认为21.2O L V V V ==。
(或者,电容滤波要获得较好的效果,工程上也通常应满足wR L C ≥6~10。
)
由以上可知,L R 与C 对输出电压的影响是同一级别的,只不过一般为了得到更好的滤波效果,C 通常较高,一般达到几千,甚至几万微法。
当输出正弦波信号时,整流后与滤波后的电压波形如下:
蓝色线为整流后波形,绿色线为滤波后波形。
③负载的平均电压V L=1.2V2;平均电流为I=V L/R;
单个二极管的平均电流为0.45V2/RL;2U2(为全波整流的一半)。
④若其中一支二极管开路时,则变成半波整流电路。
若其中一支二极管短路时,当此管在上桥臂,则相邻下桥臂二极管会短路损坏;当此管在下桥臂,则相邻的上桥臂二极管会短路损坏。
当然,因短路电流通过PN 结,也可能会使其变为开路。
若其中一支二极管反接时,则电源会通过与其相邻的另一支二极管形成短路,此两管都因通过短路电流后而损坏。
如有侵权请联系告知删除,感谢你们的配合!。