物理数学物理法练习题20含解析
- 格式:doc
- 大小:931.00 KB
- 文档页数:21
(物理)物理数学物理法题20套(带答案)含解析一、数学物理法1.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】 【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。
【详解】(1)设管道与水平面的夹角为α,由几何关系得:/21sin 2L L L α-== 解得:30︒=α由题意,小球在边界1受力分析如下图所示,有:1tan mg qE α=因小球进入边界2右侧区域后的轨迹为圆弧,则有:mg =qE 2解得比值:E 1 :E 2=3:1(2)设小球刚进入边界2时速度大小为v ,由动能定理有:2113sin302cos302mg L E q L mv ︒︒⋅+⋅=联立上式解得:3v gL =设小球进入E 2后,圆弧轨迹恰好与地面相切时的轨道半径为R ,如下图,由几何关系得:cos30+2L R R ︒= 代入数据解得:(23)R L =+洛伦兹力提供向心力,由牛顿第二定律得:20v qvB m R=代入数据解得:03(23)m gLB -=(3)如下图,设此时圆周运动的半径为r ,小球在磁场中运动到最高点时的位移为:2cos15S r ︒=⋅圆周运动周期为:2rT vπ=则小球运动时间为:712t T =解得比值:362cos15cos15712gLS rt T︒==︒【点睛】考察粒子在复合场中的运动。
【物理】物理数学物理法题20套(带答案)含解析一、数学物理法1. 两块平行正对的水平金属板AB, 极板长 , 板间距离 , 在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场, 磁感应强度 , 方向垂直纸面向里。
两极板间电势差UAB 随时间变化规律如右图所示。
现有带正电的粒子流以 的速度沿水平中线 连续射入电场中, 粒子的比荷 , 重力忽略不计, 在每个粒子通过电场的极短时间内, 电场视为匀强电场(两板外无电场)。
求:(1)要使带电粒子射出水平金属板, 两金属板间电势差UAB 取值范围;(2)若粒子在距 点下方0.05m 处射入磁场, 从MN 上某点射出磁场, 此过程出射点与入射点间的距离 ;(3)所有粒子在磁场中运动的最长时间t 。
【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为 , 此时粒子在电场中做类平抛运动, 加速大小为a,时间为t1。
水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知, 要使带电粒子射出水平金属板, 两板间电势差100V 100V AB U -≤≤(2)如图所示从 点下方0.05m 处射入磁场的粒子速度大小为v, 速度水平分量大小为 , 竖直分量大小为 , 速度偏向角为θ。
粒子在磁场中圆周运动的轨道半径为R, 则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。
如图所示粒子进入磁场速度大小为v1, 速度水平分量大小为 , 竖直分量大小为vy1, 速度偏向角为α, 则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为 , 则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2. 如图, 在长方体玻璃砖内部有一半球形气泡, 球心为O, 半径为R, 其平面部分与玻璃砖表面平行, 球面部分与玻璃砖相切于O'点。
物理数学物理法练习题含答案及解析物理和数学是自然界的两个重要学科,它们之间有着紧密的联系。
物理数学是一门研究物理学中的数学方法和应用的学科,对于学习物理学和数学学科的学生来说,理解物理数学的基本概念和方法非常重要。
本文将为大家提供一些物理数学物理法的练习题,并附带答案及解析,希望能帮助大家加深对物理数学物理法的理解。
物理数学物理法练习题一:1. 对于一维的匀强磁场,其磁感应强度与位置关系为B(x)=B0(1-αx),求出在此磁场中的磁场力。
答案:由洛伦兹力公式F=q(v×B),其中q为电荷量,v为速度,B为磁感应强度。
在一维情况下,速度的方向与磁场垂直,即v⊥B。
则磁场力可表示为F=qvB=qvB0(1-αx)。
解析:根据洛伦兹力公式,磁场力的大小与电荷量、速度以及磁感应强度的乘积有关。
在一维匀强磁场中,磁感应强度与位置存在线性关系,根据此关系可以得到磁场力的表达式。
物理数学物理法练习题二:2. 在直角坐标系中,由一个点电荷产生的静电场强度为E=3xi+4yj,其中i和j为单位矢量,求出点电荷的电荷量。
答案:静电场的强度和电荷量的关系由高斯定律给出,即E=ρ/ε0,其中E为静电场强度,ρ为电荷密度,ε0为真空中的介电常数。
在此题中,静电场强度为E=3xi+4yj,代入高斯定律可得ρ/ε0=3xi+4yj。
解析:根据高斯定律,静电场的强度与电荷量的关系是一个线性关系。
通过求解此关系方程组,我们可以确定电荷量的值。
物理数学物理法练习题三:3. 一根长为L的均质细杆,质量为m,绕过其一端的固定轴按垂直于杆的方向以角速度ω旋转,求杆上离轴一端的质点的动能。
答案:质点的动能可表示为K=1/2Iω^2,其中K为动能,I为转动惯量,ω为角速度。
对于质点来说,其距离轴的距离为r=L,转动惯量为I=1/3mL^2。
代入公式,动能可表示为K=1/2(1/3mL^2)ω^2=1/6mL^2ω^2。
解析:根据转动惯量的定义和动能的定义,我们可以通过计算转动惯量和角速度的乘积来确定质点的动能。
【物理】物理数学物理法题20套(带答案)含解析一、数学物理法1.如图所示,身高h =1.7 m 的人以v =1 m/s 的速度沿平直路面远离路灯而去,某时刻人的影长L 1=1.3 m ,2 s 后人的影长L 2=1.8 m .(1)求路灯悬吊的高度H .(2)人是远离路灯而去的,他的影子的顶端是匀速运动还是变速运动? (3)在影长L 1=1.3 m 和L 2=1.8 m 时,影子顶端的速度各是多大? 【答案】(1)8.5m (2)匀速运动(3)1.25/m s 【解析】 【分析】(1)匀匀速运动,画出运动图景,结合几何关系列式求解; (2)(3)根据比例法得到影子的顶端的速度的表达式进行分析即可. 【详解】(1)画出运动的情景图,如图所示:根据题意,有:CD=1.3m EF=1.8m CG=EH=1.7m ;CE=vt=2m ;BF=BC+3.8m 根据几何关系: 1.3CG CDAB BC +=3.8EH EFAB BC += 可得:H=AB=8.5m ;(2)设影子在t 时刻的位移为x ,则有: x vt hx H-=, 得:x=HH h-vt , 影子的位移x 是时间t 的一次函数,则影子顶端是匀速直线运动; (3)由(2)问可知影子的速度都为v′= x Hv tH h=-=1.25m/s ;【点睛】本题关键是结合光的直线传播,画出运动的图景,结合几何关系列式分析,注意光的传播时间是忽略不计的.2.在地面上方某一点分别以和的初速度先后竖直向上抛出两个小球(可视为质点),第二个小球抛出后经过时间与第一个小球相遇,要求相遇地点在抛出点或抛出点以上,改变两球抛出的时间间隔,便可以改变值,试求(1)若,的最大值 (2)若,的最大值【答案】(1)(2)22212v v v t g -∆=-【解析】 试题分析:(1)若,取最大值时,应该在抛出点处相遇 ,则最大值(2)若,取最大值时,应该在第一个小球的上抛最高点相遇,解得,分析可知,所以舍去最大值22212v v v t g -∆=考点:考查了匀变速直线运动规律的应用【名师点睛】本题的解题是判断并确定出△t 取得最大的条件,也可以运用函数法求极值分析.3.图示为一由直角三角形ABC 和矩形CDEA 组成的玻璃砖截面图。
【物理】物理数学物理法练习题含答案含解析一、数学物理法1.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F 有最小值,求此最小值;(2)求在(1)的情况下木楔对水平面的摩擦力是多少?【答案】(1)min sin 2F mg θ= (2)1sin 42mg θ 【解析】【分析】(1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解.(2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解.【详解】木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ=(1)木块在力F 的作用下沿斜面向上匀速运动,则: Fcos mgsin f αθ=+N Fsin F mgcos αθ+=N f F μ=联立解得:()2mgsin F cos θθα=- 则当=αθ时,F 有最小值,2min F mgsin =θ(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F 的水平分力,即 ()f Fcos αθ='+当=αθ时,12242f mgsin cos mgsin θθθ='= 【点睛】木块放在斜面上时正好匀速下滑隐含动摩擦因数的值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,求出外力F 的表达式,讨论F 取最小值的条件.2.质量为M 的木楔倾角为θ,在水平面上保持静止,质量为m 的木块刚好可以在木楔上表面上匀速下滑.现在用与木楔上表面成α角的力F 拉着木块匀速上滑,如图所示,求:(1)当α=θ时,拉力F 有最小值,求此最小值;(2)拉力F 最小时,木楔对水平面的摩擦力.【答案】(1)mg sin 2θ (2)12mg sin 4θ 【解析】【分析】对物块进行受力分析,根据共点力平衡,利用正交分解,在沿斜面方向和垂直于斜面方向都平衡,进行求解采用整体法,对m 、M 构成的整体列平衡方程求解.【详解】(1)木块刚好可以沿木楔上表面匀速下滑时,mg sin θ=μmg cos θ,则μ=tan θ,用力F 拉着木块匀速上滑,受力分析如图甲所示,则有:F cos α=mg sin θ+F f ,F N +F sin α=mg cos θ, F f =μF N联立以上各式解得:()sin 2cos mg F θθα=-. 当α=θ时,F 有最小值,F min =mg sin 2θ.(2)对木块和木楔整体受力分析如图乙所示,由平衡条件得,F f ′=F cos(θ+α),当拉力F 最小时,F f ′=F min ·cos 2θ=12mg sin 4θ. 【点睛】木块放在斜面上时正好匀速下滑隐含摩擦系数的数值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,结合数学知识即可解题.3.我国“辽宁号”航空母舰经过艰苦努力终于提前服役,势必会对南海问题产生积极影响.有些航空母舰上装有帮助飞机起飞的弹射系统,已知某型号战机在跑道上加速时可能产生的最大加速度为5.0m/s 2,当飞机的速度达到50m/s 时才能离开航空母舰起飞.设航空母舰处于静止状态.试求:(1)若要求该飞机滑行160m 后起飞,弹射系统必须使飞机具有多大的初速度?(2)若舰上无弹射系统,要求该飞机仍能从此舰上正常起飞,问该舰甲板至少应为多长?(3)若航空母舰上不装弹射系统,设航空母舰甲板长为L=160m ,为使飞机仍能从此舰上正常起飞,这时可以先让航空母舰沿飞机起飞方向以某一速度匀速航行,则这个速度至少为多少?【答案】(1)030/v m s = (2)250x m = (3)110/v m s =【解析】(1)根据速度位移公式得,v 2-v 02=2ax ,代入数据解得:v 0=30m/s .(2)不装弹射系统时,有:v 2=2aL , 解得:22500m 250m 225v L a ===⨯ (3)设飞机起飞所用的时间为t ,在时间t 内航空母舰航行的距离为L 1,航空母舰的最小速度为v 1.对航空母舰有:L 1=v 1t对飞机有:v =v 1+atv 2-v 12=2a (L +L 1)联立解得:v 1=10m/s .【点睛】解决本题的关键掌握匀变速直线运动的速度位移公式,并能灵活运用,对于第三问,关键抓住飞机的位移等于甲板的长度与航空母舰的位移之和进行求解.4.质量为M 的木楔倾角为θ,在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.如果用与木楔斜面成α角的力F 拉着木块匀速上升,如图所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F 有最小值,求此最小值;(2)当α=θ时,木楔对水平面的摩擦力是多大?【答案】(1)mg sin 2θ (2)12mg sin 4θ 【解析】【分析】【详解】 木块在木楔斜面上匀速向下运动时,有mg sin θ=μmg cos θ即μ=tan θ.(1)木块在力F 作用下沿斜面向上匀速运动,有F cosα=mg sinθ+F fF sinα+F N=mg cosθF f=μF N解得F=2sincos sinθαμα+mg=2sin coscos cos sin sinθθθαθ+mga=sin2cos()θθα-mg则当α=θ时,F有最小值,为F min=mg sin2θ.(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F的水平分力,即F f=F cos(α+θ)当α=θ时,F取最小值mg sin 2θ,F fm=F min cos2θ=mg·sin 2θcos2θ=12mg sin4θ.5.如图所示,MN是一个水平光屏,多边形ACBOA为某种透明介质的截面图。
物理数学物理法练习题20含解析一、数学物理法1.如图所示,圆心为O 1、半径4cm R =的圆形边界内有垂直纸面方向的匀强磁场B 1,边界上的P 点有一粒子源,能沿纸面同时向磁场内每个方向均匀发射比荷62.510C/kg qm=⨯、速率5110m/s v =⨯的带负电的粒子,忽略粒子间的相互作用及重力。
其中沿竖直方向PO 1的粒子恰能从圆周上的C 点沿水平方向进入板间的匀强电场(忽略边缘效应)。
两平行板长110cm L =(厚度不计),位于圆形边界最高和最低两点的切线方向上,C 点位于过两板左侧边缘的竖线上,上板接电源正极。
距极板右侧25cm L =处有磁感应强度为21T B =、垂直纸面向里的匀强磁场,EF 、MN 是其左右的竖直边界(上下无边界),两边界间距8cm L =,O 1C 的延长线与两边界的交点分别为A 和O 2,下板板的延长线与边界交于D ,在AD 之间有一收集板,粒子打到板上即被吸收(不影响原有的电场和磁场)。
求:(1)磁感应强度B 1的方向和大小;(2)为使从C 点进入的粒子出电场后经磁场偏转能打到收集板上,两板所加电压U 的范围; (3)当两板所加电压为(2)中最大值时,打在收集板上的粒子数与总粒子数的比值η。
(可用反三解函数表示,如π1arcsin 62=)【答案】(1)11B =T ,方向垂直纸面向里;(2)1280V 2400V U ≤≤;(3)17arcsinarcsin168π+【解析】 【分析】 【详解】 (1)由题可知,粒子在圆形磁场区域内运动半径r R =则21v qvB m R=得11T B =方向垂直纸面向里。
(2)如图所示211()22L qU y mR v=⋅且要出电场04cm y ≤≤在磁场B 2中运动时22v qvB mr=合,cos v v a =合 进入B 2后返回到边界EF 时,进出位置间距2cos y r a ∆=得22mv y qB ∆=代入得8cm y ∆=说明与加速电场大小无关。
要打到收集板上,设粒子从C 点到EF 边界上时所发生的侧移为y 0,需满足04cm 8cm y ≤≤且110222L y L y L=+ 得2cm 4cm y ≤≤sin r r a L +≤且12tan y a L =得150cm 4y ≤≤综上需满足152cm cm 4y ≤≤即两板所加电压U 满足1280V 2400V U ≤≤(3)由(2)可知,两板间加最大电压2400V 时,带电粒子出电场时的偏转距离为154cm ,则要打到收集板上,粒子应从PO 1左侧的θ角和右侧的β角之间出射,其中1sin 16θ=,7sin 8β= 即能打到收集板上的粒子数占总粒数的比值17arcsinarcsin 168πη+=2.如图所示,ABCD 是柱体玻璃棱镜的横截面,其中AE ⊥BD ,DB ⊥CB ,∠DAE=30°,∠BAE=45°,∠DCB=60°,一束单色细光束从AD 面入射,在棱镜中的折射光线如图中ab 所示,ab 与AD 面的夹角α=60°.已知玻璃的折射率n=1.5,求:(结果可用反三角函数表示)(1)这束入射光线的入射角多大?(2)该束光线第一次从棱镜出射时的折射角.【答案】(1)这束入射光线的入射角为48.6°; (2)该束光线第一次从棱镜出射时的折射角为48.6° 【解析】试题分析:(1)设光在AD 面的入射角、折射角分别为i 、r ,其中r=30°, 根据n=,得: sini=nsinr=1.5×sin30°=0.75 故i=arcsin0.75=48.6° (2)光路如图所示:ab 光线在AB 面的入射角为45°,设玻璃的临界角为C ,则: sinC===0.67sin45°>0.67,因此光线ab 在AB 面会发生全反射 光线在CD 面的入射角r′=r=30°根据n=,光线在CD 面的出射光线与法线的夹角: i′="i=arcsin" 0.75=48.6°3.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为37︒,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的拉力如何变化?(孩子:你可能需要用到的三角函数有:3375sin ︒=,4cos375︒=,3374tan ︒=,4373cot ︒=)【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解.把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示由平衡条件得:AO 绳上受到的拉力为21000sin 37OA GF F N === BO 绳上受到的拉力为1cot 37800OB F F G N ===若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示:由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.4.如图所示,身高h =1.7 m 的人以v =1 m/s 的速度沿平直路面远离路灯而去,某时刻人的影长L 1=1.3 m ,2 s 后人的影长L 2=1.8 m .(1)求路灯悬吊的高度H .(2)人是远离路灯而去的,他的影子的顶端是匀速运动还是变速运动? (3)在影长L 1=1.3 m 和L 2=1.8 m 时,影子顶端的速度各是多大? 【答案】(1)8.5m (2)匀速运动(3)1.25/m s 【解析】 【分析】(1)匀匀速运动,画出运动图景,结合几何关系列式求解; (2)(3)根据比例法得到影子的顶端的速度的表达式进行分析即可. 【详解】(1)画出运动的情景图,如图所示:根据题意,有:CD=1.3m EF=1.8m CG=EH=1.7m ;CE=vt=2m ;BF=BC+3.8m 根据几何关系: 1.3CG CDAB BC +=3.8EH EFAB BC += 可得:H=AB=8.5m ;(2)设影子在t 时刻的位移为x ,则有: x vt hx H-=, 得:x=HH h-vt , 影子的位移x 是时间t 的一次函数,则影子顶端是匀速直线运动; (3)由(2)问可知影子的速度都为v′= x Hv tH h=-=1.25m/s ; 【点睛】本题关键是结合光的直线传播,画出运动的图景,结合几何关系列式分析,注意光的传播时间是忽略不计的.5.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1sin 42mg θ 【解析】 【分析】(1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解.(2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:Fcos mgsin f αθ=+N Fsin F mgcos αθ+=N f F μ=联立解得:()2mgsin F cos θθα=-则当=αθ时,F 有最小值,2min F mgsin =θ(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F 的水平分力,即()f Fcos αθ='+当=αθ时,12242f mgsin cos mgsin θθθ='= 【点睛】木块放在斜面上时正好匀速下滑隐含动摩擦因数的值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,求出外力F 的表达式,讨论F 取最小值的条件.6.2016年7月5日,美国宇航局召开新闻发布会,宣布已跋涉27亿千米的朱诺号木星探测器进入木星轨道。
若探测器在t 时间内绕木星运行N 圈,且这N 圈都是绕木星在同一个圆周上运行,其运行速率为v 。
探测器上的照相机正对木星拍摄整个木星时的视角为θ(如图所示),设木星为一球体。
求:(1)木星探测器在上述圆形轨道上运行时的轨道半径; (2)木星的第一宇宙速度。
【答案】(1)2vtNπ;(2sin 2θ【解析】 【详解】(1)设木星探测器在圆形轨道运行时,轨道半径为r ,由2rv Tπ=可得 2vT r π=由题意可知t T N= 联立解得2vtr Nπ=(2)探测器在圆形轨道上运行时,设木星的质量为M ,探测器的质量为m ,万有引力提供向心力得22mM v G m r r= 设木星的第一宇宙速度为0v ,则有202v m MG m R R''= 联立解得0v =由题意可知sin 2R r θ=解得0v =7.如图所示,MN是两种介质的分界面,下方是折射率n =空,P 、B 、P '三点在同一直线上,其中PB =,在Q 点放置一个点光源,AB 2h =,QA h =,QA 、PP '均与分界面MN 垂直。
(1)若从Q 点发出的一束光线经过MN 面上的O 点反射后到达P 点,求O 点到A 点的距离;(2)若从Q 点发出的另一束光线经过MN 面上A 、B 间的中点O '点(图中未标出)进入下方透明介质,然后经过P '点,求这束光线从Q →O '→P '所用时间(真空中的光速为c )。
【答案】(1)262x h -=;(2)32ht c=【解析】 【详解】(1)如图甲所示,Q 点通过MN 的像点为Q ',连接PQ '交MN 于O 点。
由反射定律得i i ='则AOQ BOP '∽设OA x =有6x h h= 解得262x h -=(2)光路如图乙所示AO h '=有tan 1h hα== 所以45α=根据折射定律得sin 2sin αγ=,1sin 2γ= 所以30γ=则2QO h '=,2O P h ''=所以光线从Q →O '→P '所用时间为QO O P t c v'''=+ 根据cv n=解得32ht c=8.竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B 静止于水平轨道的最左端,如图(a )所示。