数学物理方法 2 复变函数的积分
- 格式:ppt
- 大小:2.17 MB
- 文档页数:56
第三章 复变函数的积分§3-1复变函数的积分【刘连寿、王正清编著《数学物理方法》P 29-31】复变函数积分的定义:设C 为复平面上以0z 为起点,而以z 为终点的一段路径(即一根曲线),在C 上取一系列分点011,,,,n n z z z z z -=把C 分为n 段,在每一小段[1k k z z -]上任取一点k ξ作和数:()()()111nnn k k k k k k k S f z z f z ξξ-===-=∆∑∑, 其中1k k k z z z -∆=-如果当n →∞且每一小段的长度(1||||k k k z z z -∆=-)趋于零时, 和式()1nk kk f z ξ=∆∑的极限存在,并且其值与k z 及k ξ的选取方式无关,则称这一极限为()f z 沿路径C 由0z 到z 的积分:()()1limlim nn k k Cn n k fz dz S f z ξ→∞→∞===∆∑⎰,C 称为积分路径(()f z 在C 上取值,即z 在C 上变化)。
若C 为围线(闭的曲线),则积分记为: ()Cf z dz ⎰. (围道积分)几点说明:1. 复变函数的积分不仅与积分端点有关,还与积分路径有关。
(与我们以前在高等数学中学过的实变函数的线积分类似。
)2.因为 z x iy =+,dz dx idy =+,()()(),,f z u x y iv x y =+,于是()()()(),,CCf z dz u x y iv x y dx idy =++⎡⎤⎣⎦⎰⎰()()()(),,,,C C u x y dx v x y dy i v x y dx u x y dy ⎡⎤⎡⎤=-++⎣⎦⎣⎦⎰⎰,所以复变函数的积分可以归结为两个实变函数的线积分,它们分别是复变函数积分的实部和虚部。
3.从复变函数积分的定义出发,可以直接得出复变函数的积分具有如下简单性质:(1)0C dz z z =-⎰,z 、0z 分别为C 之起点、终点。
复变函数论总结摘要:对数学物理方法的第一篇复变函数论每一章每一节做了总结,对这一章也有了深入的认识,通过积分与柯西积分定理和柯西积分公式,学习了圆域内泰勒级数的展开与环域内洛朗级数的展开,以及应用留数定理计算实变函数定积分,傅立叶积分与傅立叶变换。
关键词:复数;导数;解析;积分;柯西公式、定理;幂级数展开;留数;傅立叶积分与傅立叶变换1引言《复变函数论主要内容》第一章复变函数 complex function第二章复变函数的积分 complex function integral第三章幂级数展开 power series expansion第四章留数定理 residual theorem第五章傅立叶变换 Fourier integral transformation第一章复变函数§1.1 复数及复数的运算§1.2 复变函数§1.3导数§1.4解析函数§1.1 复数及复数的运算1.复数的概念的数被称为复数,其中。
;;i为虚数单位,其意义为当且仅当时,二者相等复数与平面向量一一对应z平面虚轴y. (x,y)rx实轴模幅角 (k)注意:复数“零”(即实部和虚部都等与零的复数)的幅角没有明确意义2.复数的表示代数表示三角表示指数表示一个复数z的共轭复数注意:在三角表示和指数表示下,两个复数相等当且仅当模相等且幅角相差3.无限远点在复变函数论中,通常还将模为无限大的复数也跟复平面上的一点对应,而且称这一点为无限远点,我们把无限远点记作,它的模为无限大,幅角则没有明确意义4.复数的运算复数的加法法则:复数与的和定义是两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
复数的加法满足交换律和结合律,且,当同一方向时等号成立。
复数的减法法则:且有复数的乘法法则:乘法的交换律、结合律与分配律都成立复数的除法法则:注意:采用三角式或指数式比较方便。
第二章复变函数的积分基本要求:1.正确理解复变数函数路积分的概念;2.深刻理解柯西定理及孤立奇点的定义;3.理解并会熟练运用柯西公式。
教学内容:§2.1 复数函数的积分,路积分及其与实变函数曲线积分的联系。
§2.2 柯西定理。
柯西定理的内容和应用,孤立奇点,单连通区域,复连通区域,回路积分。
§2.3 不定积分*。
原函数。
§2.4 柯西公式。
柯西公式的导出,高阶导数的积分表达式。
(模数原理及刘维定理不作要求)本章重点:柯西定理,柯西公式和孤立奇点。
§2.1 复变函数的积分(一)复变函数的积分(简称复积分)1.复积分的定义曲线l 是分段光滑曲线(起点0()A z ,终点()n B z );()f z 在l 上连续;(光滑曲线:曲线上每一点都有切线)。
把曲线l 分成n 小段,1k k z z -→是第k 小段,在1[]k k z z --上任取一点k ζ,求和111()()=()nnkk k k k k k f z z f z ζζ-==-∆∑∑,当n →∞而且每个k z ∆都趋于零时,如果这个和的极限存在,而且其值与各个k ζ的选取无关,则这个和的极限称为函数()f z 沿曲线l 从A ,终点B 的路积分,记作()lf z dz ⎰,即max 01()lim()k nkk lz k f z dz f z ζ∆→==∆∑⎰(2.1.1)2. 复积分的计算方法复变函数积分可以分解为两个实积分来计算。
即:()(,)(,)f z u x y iv x y =+,dz dx idy =+(,)(,)(()[(,),(,)]())(,)llllu x y dx v x y d f z dz u x y iv x y dx idy i y v x y dx u x y dy-+=++=+⎰⎰⎰⎰3. 复积分的性质复变函数的路积分可以归结为两个实变函数的线积分,因而实变函数线积分的许多性质也对路积分成立,如(1)常数因子可以移到积分号之外;()d ()d llcf z z c f z z =⎰⎰(2)函数和的积分等于各个函数的积分和;[]1212()()......()()().......()nnll l l f z f z f z dz f z dz f z dz f z dz +++=+++⎰⎰⎰⎰(3)反转积分路径,积分变号;()()l lf z dz f z dz +-=-⎰⎰(4)全路径上的积分等于各段上的积分和。