常数函数与幂函数的导数及导数公式表
- 格式:ppt
- 大小:244.50 KB
- 文档页数:14
8个基本初等函数的导数公式一、常数函数的导数公式:对于常数函数f(x)=c,其中c为任意常数,则有f'(x)=0。
这是因为常数函数的图像是一条水平线,斜率为0,所以它的导数恒为0。
二、幂函数的导数公式:对于幂函数f(x)=x^n,其中n为一个实数常量,则有f'(x)=nx^(n-1)。
这是因为幂函数的图像是一条由原点出发,通过点(x,x^n)的曲线,斜率与该点的切线斜率相等,而切线的斜率正好等于x^n的导数。
三、指数函数的导数公式:对于指数函数f(x)=a^x,其中a为一个大于0且不等于1的实数常量,则有f'(x)=a^x*ln(a)。
这是因为指数函数的导数与函数自身成正比例关系,比例常数为该指数的底数乘以自然对数。
四、对数函数的导数公式:对于对数函数f(x)=log_a(x),其中a为一个大于0且不等于1的实数常量,则有f'(x)=1/(x*ln(a))。
这是因为对数函数的导数与函数自身成反比例关系,比例常数为导数函数的定义域上的所有值的倒数。
五、三角函数的导数公式:(1) 对于正弦函数f(x)=sin(x),则有f'(x)=cos(x)。
(2) 对于余弦函数f(x)=cos(x),则有f'(x)=-sin(x)。
(3) 对于正切函数f(x)=tan(x),则有f'(x)=sec^2(x)。
(4) 对于余切函数f(x)=cot(x),则有f'(x)=-csc^2(x)。
(5) 对于割函数f(x)=sec(x),则有f'(x)=sec(x)*tan(x)。
(6) 对于余割函数f(x)=csc(x),则有f'(x)=-csc(x)*cot(x)。
这是因为三角函数的导数与函数自身有一定的关系,可以通过极限的方法证明出来。
六、双曲函数的导数公式:(1) 对于双曲正弦函数f(x)=sinh(x),则有f'(x)=cosh(x)。
导数常用公式导数是微积分中的一个重要概念,它描述了函数在某一点处的变化率。
在实际应用中,导数常常用于求解最优化问题、优化控制问题等。
下面介绍一些导数常用公式。
1. 常数函数的导数对于常数函数f(x)=c,它的导数为0,即f'(x)=0。
2. 幂函数的导数对于幂函数f(x)=x^n,它的导数为f'(x)=nx^(n-1)。
3. 指数函数的导数对于指数函数f(x)=a^x,它的导数为f'(x)=a^xlna。
4. 对数函数的导数对于对数函数f(x)=lnx,它的导数为f'(x)=1/x。
5. 三角函数的导数对于正弦函数f(x)=sinx,它的导数为f'(x)=cosx;对于余弦函数f(x)=cosx,它的导数为f'(x)=-sinx;对于正切函数f(x)=tanx,它的导数为f'(x)=sec^2x。
6. 复合函数的导数对于复合函数f(g(x)),它的导数为f'(g(x))g'(x)。
7. 和、差、积、商的导数对于函数f(x)和g(x),它们的和、差、积、商的导数分别为:f(x)+g(x)的导数为f'(x)+g'(x);f(x)-g(x)的导数为f'(x)-g'(x);f(x)g(x)的导数为f'(x)g(x)+f(x)g'(x);f(x)/g(x)的导数为[f'(x)g(x)-f(x)g'(x)]/g^2(x)。
以上是导数常用公式的介绍,它们在微积分中有着广泛的应用。
在实际问题中,我们可以利用这些公式来求解函数的导数,从而得到函数在某一点处的变化率。
同时,这些公式也为我们提供了一些求解最优化问题、优化控制问题等的工具。
以下是一些常见的导数公式:1. 常数函数的导数:(c)' = 0,其中c为常数。
2. 幂函数的导数:(x^n)' = nx^(n-1),其中n为实数。
3. 指数函数的导数:(e^x)' = e^x。
4. 对数函数的导数:(ln(x))' = 1/x。
5. 三角函数的导数:- (sin(x))' = cos(x)- (cos(x))' = -sin(x)- (tan(x))' = sec^2(x)- (cot(x))' = -csc^2(x)- (sec(x))' = sec(x)tan(x)- (csc(x))' = -csc(x)cot(x)6. 反三角函数的导数:- (arcsin(x))' = 1/√(1-x^2)- (arccos(x))' = -1/√(1-x^2)- (arctan(x))' = 1/(1+x^2)- (arccot(x))' = -1/(1+x^2)- (arcsec(x))' = 1/(|x|√(x^2-1))- (arccsc(x))' = -1/(|x|√(x^2-1))7. 求和规则:(f(x) + g(x))' = f'(x) + g'(x),其中f(x)和g(x)是可导函数。
8. 乘积规则:(f(x)g(x))' = f'(x)g(x) + f(x)g'(x),其中f(x)和g(x)是可导函数。
9. 商规则:(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2,其中f(x)和g(x)是可导函数且g(x)≠0。
10. 链式法则:如果y = f(g(x)),则dy/dx = f'(g(x))g'(x),其中f(u)和g(x)是可导函数。
导数公式大全导数是微积分中一个重要的概念,用于描述函数的变化率。
在实际应用中,导数广泛用于求解最优化问题、曲线拟合、物理问题以及其他各种工程和科学领域。
下面是一些常用的导数公式,它们可以帮助我们计算各种函数的导数。
1.基本函数的导数公式(1)常数函数:f(x)=C,其中C为常数,导数为0。
(2)幂函数:f(x) = x^n,其中n为正整数,导数为f'(x) =nx^(n-1)。
(3)指数函数:f(x)=e^x,导数为f'(x)=e^x。
(4)对数函数:f(x) = ln(x),导数为f'(x) = 1/x,其中x大于0。
(5)三角函数:正弦函数:f(x) = sin(x),导数为f'(x) = cos(x)。
余弦函数:f(x) = cos(x),导数为f'(x) = -sin(x)。
正切函数:f(x) = tan(x),导数为f'(x) = sec^2(x)。
(6)反三角函数:反正弦函数:f(x) = arcsin(x),导数为f'(x) = 1/√(1-x^2),其中-1<x<1反余弦函数:f(x) = arccos(x),导数为f'(x) = -1/√(1-x^2),其中-1<x<1反正切函数:f(x) = arctan(x),导数为f'(x) = 1/(1+x^2)。
2.基本运算法则(1)和差法则:若f(x)和g(x)是可导函数,则有(f(x)±g(x))'=f'(x)±g'(x)。
(2)常数倍法则:若f(x)是可导函数,则有(k·f(x))'=k·f'(x),其中k为常数。
(3)乘积法则:若f(x)和g(x)是可导函数,则有(f(x)·g(x))'=f'(x)·g(x)+f(x)·g'(x)。
16个基本导数公式详解在微积分中,导数是一个基本的概念。
它描述了函数在给定点的变化率。
了解导数的基本公式对于求解微积分问题是至关重要的。
在本文中,我们将详细讨论16个基本导数公式,每个公式都将包含定义、求导法则和常见的具体例子。
1.常数函数的导数:定义:如果函数$f(x)$是一个常数,则$f'(x)=0$。
求导法则:常数的导数是0。
例如:对于函数$f(x)=5$,它的导数$f'(x)=0$。
2.幂函数的导数:定义:对于函数 $f(x)=x^n$,其中 $n$ 是一个正整数,则$f'(x)=nx^{n-1}$。
求导法则:对于幂函数,使用幂函数的指数作为系数,然后将指数减1例如:对于函数$f(x)=x^2$,它的导数$f'(x)=2x$。
3.指数函数的导数:定义:对于函数 $f(x)=a^x$,其中 $a$ 是一个正常数且 $a \neq 1$,则 $f'(x)=a^x \ln(a)$。
求导法则:对于指数函数,使用指数和常数的乘积,并且乘以自然对数的底数。
例如:对于函数 $f(x)=2^x$,它的导数 $f'(x)=2^x \ln(2)$。
4.对数函数的导数:定义:对于函数 $f(x)=\log_a(x)$,其中 $a$ 是一个正常数且 $a\neq 1$,则 $f'(x)=\frac{1}{x \ln(a)}$。
求导法则:对于对数函数,使用1除以输入的自变量乘以自然对数的底数。
例如:对于函数 $f(x)=\log_2(x)$,它的导数 $f'(x)=\frac{1}{x\ln(2)}$。
5.正弦函数的导数:定义:对于函数 $f(x)=\sin(x)$,则 $f'(x)=\cos(x)$。
求导法则:正弦函数的导数是余弦函数。
例如:对于函数 $f(x)=\sin(2x)$,它的导数 $f'(x)=2\cos(2x)$。
6.余弦函数的导数:定义:对于函数 $f(x)=\cos(x)$,则 $f'(x)=-\sin(x)$。
高等数学导数公式大全一、基本导数公式1. 设常数a为导数常数,则有:(1)导数为零:d(ax)/dx = 0(2)导数为常数:d(ax)/dx = a2. 幂函数导数:(1)常数的幂函数导数:d(x^n)/dx = nx^(n-1),其中n为正整数(2)自然指数函数的导数:d(e^x)/dx = e^x(3)指数函数的导数:d(a^x)/dx = ln(a)*a^x,其中a>0且a≠1(4)对数函数的导数:d(logₐx)/dx = 1/(xlna),其中a>0且a≠1 3. 三角函数导数:(1)正弦函数的导数:d(sin x)/dx = cos x(2)余弦函数的导数:d(cos x)/dx = -sin x(3)正切函数的导数:d(tan x)/dx = sec^2 x(4)余切函数的导数:d(cot x)/dx = -csc^2 x(5)正割函数的导数:d(sec x)/dx = sec x * tan x(6)余割函数的导数:d(csc x)/dx = -csc x * cot x4. 反三角函数导数:(1)反正弦函数的导数:d(arcsin x)/dx = 1/√(1-x²),(-1≤x≤1)(2)反余弦函数的导数:d(arccos x)/dx = -1/√(1-x²),(-1≤x≤1)(3)反正切函数的导数:d(arctan x)/dx = 1/(1+x²)(4)反余切函数的导数:d(arccot x)/dx = -1/(1+x²)(5)反正割函数的导数:d(arcsec x)/dx = 1/(x√(x²-1)),(x>1或x<-1)(6)反余割函数的导数:d(arccsc x)/dx = -1/(x√(x²-1)),(x>1或x<-1)二、导数运算法则1. 基本导数运算法则:(1)和差法则:d(u±v)/dx = du/dx ± dv/dx(2)常数倍法则:d(cu)/dx = c * du/dx,其中c为常数(3)乘积法则:d(uv)/dx = u * dv/dx + v * du/dx(4)商法则:d(u/v)/dx = (v * du/dx - u * dv/dx) / v²,其中v≠02. 复合函数的导数:若y=f(u)和u=g(x)是可导函数,则有:d(f(g(x)))/dx = d(f(u))/du * d(g(x))/dx3. 反函数的导数:若y=f(x)的反函数为x=g(y),则有:d(g(y))/dy = 1 / d(f(x))/dx,其中d(f(x))/dx≠0三、高级导数公式1. 高阶导数:(1)二阶导数:d²y/dx² = d(dy/dx)/dx(2)三阶导数:d³y/dx³ = d(d²y/dx²)/dx = d²(dy/dx)/dx²2. 高阶导数公式:(1)幂函数的n阶导数:d^n(x^m)/dx^n = (m)(m-1)(m-2)...(m-n+1)x^(m-n)(2)指数函数的n阶导数:d^n(e^x)/dx^n = e^x(3)对数函数的n阶导数:d^n(logₐx)/dx^n = (-1)^(n-1)(n-1)!/x^n四、隐函数求导公式设x和y是关于变量t的函数,则有:dy/dx = dy/dt / dx/dt例如,对于方程x^2 + y^2 = R^2,其中R为常数,可得:dy/dx = -x/y以上是高等数学导数公式的大全,涵盖了基本导数公式、导数运算法则、高级导数公式和隐函数求导公式。
导数公式及其运算法则导数是微积分中的重要概念,它描述了函数在特定点处的变化率。
导数的公式及其运算法则包括如下几类:基本导数公式、常数倍法则、和差法则、乘法法则、除法法则、复合函数法则、反函数法则和链式法则。
一、基本导数公式:1.常数函数:对于常数函数f(x)=c,其导数为f'(x)=0。
例如,f(x)=7的导数为f'(x)=0。
2.幂函数:对于幂函数f(x)=x^n,其中n是任意实数,其导数为f'(x)=n*x^(n-1)。
例如,f(x)=x^3的导数为f'(x)=3*x^23. 指数函数:对于指数函数 f(x) = a^x,其中 a 是任意正常数且a≠1,其导数为 f'(x) = ln(a)*a^x。
例如,f(x) = 2^x 的导数为 f'(x) = ln(2)*2^x。
4. 对数函数:对于对数函数 f(x) = log_a(x),其中 a 是任意正常数且a≠1,其导数为 f'(x) = 1/(x*ln(a))。
例如,f(x) = log_2(x)的导数为 f'(x) = 1/(x*ln(2))。
5. 三角函数:对于三角函数 f(x) = sin(x),其导数为 f'(x) =cos(x)。
同样地,cos(x) 的导数为 -sin(x),tan(x) 的导数为sec^2(x),cot(x) 的导数为 -csc^2(x)。
二、常数倍法则:若函数 f(x) 和 g(x) 都是可导函数,c 是常数,则 (cf(x))' =cf'(x)。
三、和差法则:若函数f(x)和g(x)都是可导函数,则(f(x)+g(x))'=f'(x)+g'(x)和(f(x)-g(x))'=f'(x)-g'(x)。
四、乘法法则:若函数f(x)和g(x)都是可导函数,则(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。
3.2.1 3.2.2 常数与幂函数的导数
● 学习目标:
1、 能够由定义根据求导的步骤,推导常数函数与幂函数的导数。
2、 培养学生归纳推理、探究规律的能力。
● 学习重点、难点:
重点:利用已学的求导方法对常数函数与幂函数进行探究; 难点:从特殊到一般的规律探究公式。
● 前情回顾:
1、导数公式:=)(0'x f ;
2、导数的几何意义:)(0'x f 表示: ;
● 学习过程:
(一)自主学习:
(二)强化训练:
1、试用上节学习的导数公式推导以下函数的导数:并加以记忆: (1)C C x f ,)(=为常数 (2)x x f =)(
(3)2)(x x f = (4)x
x f 1
)(=
2、试说明0'
=c 及1'
=x 的几何意义;
3、求下列函数的导数:
5
)(x x f = 12
)(x x f = .3
0)(x
x f = 108
)(x
x f =
3
)(-=x x f π=)(x f x x f sin )(= x x f cos )(=
x x f 2)(= x e x f =)( x x f ln )(= x x f 3log )(= 4求下列函数在给定点处的切线方程:
(1)2)(x x f = (2,4) (2)2
)(x x f = 1=x 2=x
(3) x x f cos )(= 2
π
=x (4) x x f =)( 3=x
● 小结:你记住这些公式了吗?
● 思考:多项式765432)(2345+-+-+=x x x x x x f 的导数如何求解?。
这里将列举六类基本初等函数的导数以及它们的推导过程(初等函数可由之运算来):1.常函数(即常数)y=c(c为常数) y'=0 【y=0 y'=0:导数为本身的函数之一】2.幂函数y=x^n,y'=n*x^(n-1)(n∈R) 【1/X的导数为-1/(X^2)】3.指数函数y=a^x,y'=a^x * lna 【y=e^x y'=e^x:导数为本身的函数之二】4.对数函数y=logaX,y'=1/(xlna) (a>0且a≠1,x>0);【y=lnx,y'=1/x】5.三角函数(1)正弦函数y=(sinx )y'=cosx(2)余弦函数y=(cosx)y'=-sinx(3)正切函数y=(tanx)y'=1/(cosx)^2(4)余切函数y=(cotx)y'=-1/(sinx)^26.反三角函数(1)反正弦函数y=(arcsinx)y'=1/√1-x^2(2)反余弦函数y=(arccosx)y'=-1/√1-x^2(3)反正切函数y=(arctanx)y'=1/(1+x^2)(4)反余切函数y=(arccotx)y'=-1/(1+x^2)口诀为了便于记忆,有人整理出了以下口诀:常为零,幂降次,对导数(e为底时直接导数,a为底时乘以lna),指不变(特别的,自然对数的指数函数完全不变,一般的指数函数须乘以lna);正变余,余变正,切割方(切函数是相应割函数(切函数的倒数)的平方),割乘切,反分式推导在推导的过程中有这几个常见的公式需要用到:1.①(u±v)'=u'±v'②(uv)'=u'v+uv'③(u/v)'=(u'v-uv')/ v^22. 原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数是x=g(y),则有y'=1/x'.3. 复合函数的导数:复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。
初等函数导数公式表
下面是常见的初等函数导数公式表:
1.常数函数的导数为0:$(k)'=0$,其中$k$为常数。
2.幂函数的导数为幂次减1乘以原函数的导数:$(x^n)'=nx^{n-1}$,其中$n$为正整数。
3.指数函数的导数为其自身乘以常数$a$的导数:$(a^x)'=a^x\lna$,其中$a$为正实数且不等于$1$。
4.对数函数的导数为其自身的导数除以自身:$(\log_ax)'=\frac{1}{x\lna}$,其中$a$为正实数且不等于$1$。
5.正弦函数的导数为余弦函数:$(\sinx)'=\cosx$。
6.余弦函数的导数为负的正弦函数:$(\cosx)'=-\sinx$。
7.正切函数的导数为其自身的导数为:$(\tanx)'=\sec^2x$。
8.余切函数的导数为其自身的导数为:$(\cotx)'=-\csc^2x$。
9.反正弦函数的导数为:$(\arcsinx)'=\frac{1}{\sqrt{1-x^2}}$。
10.反余弦函数的导数为:$(\arccosx)'=-\frac{1}{\sqrt{1-x^2}}$。
11.反正切函数的导数为:$(\arctanx)'=\frac{1}{1+x^2}$。
12.反余切函数的导数为:$(\operatorname{arccot}x)'=-\frac{1}{1+x^2}$。
以上是一些常见的初等函数导数公式。
需要注意的是,在使用这些公式时,应该注意导数的定义域和值域,并注意使用链式法则和乘积法则等常见的求导法则。
1/ 1。