高中数学 3.2.1-3.2.2 常数与幂函数的导数 导数公式表课件 新人教B版选修1-1
- 格式:ppt
- 大小:568.00 KB
- 文档页数:17
3.2.1 常数与幂函数的导数 3.2.2 导数公式表课堂探究探究一 利用导数公式求函数的导数利用导数定义求导是求导数的基本方法,但过于烦琐,通常若所求函数符合求导公式,则利用导数公式求导数可简化求导过程,但需要准确记忆公式,恰当选择公式;对于不能直接用公式的类型,关键是将其进行适当变形,转化为可以直接应用公式的基本初等函数形式,如y =5x 3可以写成y =35x 等,就可以直接使用幂函数的求导公式求导. 【典型例题1】 求下列函数的导数:(1)y =x 7; (2)y =x x ; (3)y =log 3x ; (4)y =2sin x 2·cos x 2;(5)y =1x 2. 思路分析:对于基本初等函数的求导,直接利用导数公式求导,应注意将所给函数关系式转化为能直接应用公式的形式.解:(1)y ′=7x 6;(2)因为y =x x =32x ,所以y ′=3212x =32x ; (3)y ′=1x ln 3; (4)因为y =2sin x 2·cos x 2=sin x ,所以y ′=cos x ; (5)因为y =1x 2=x -2,所以y ′=-2x -3=-2x3. 探究二 导数的应用利用导数来求曲线在某点处的切线斜率是一种非常有效的方法,它适合于任何可导函数,这就为导数和解析几何的沟通搭建了桥梁,利用切线的斜率建立相应的未知参数的方程来解决.【典型例题2】 若曲线y =12x -在点(a ,12a -)处的切线与两坐标轴围成的三角形的面积为18,求a 的值.思路分析:先求出切线方程,再求出切线在x 轴、y 轴上的截距,利用三角形面积公式列方程求a . 解:y ′=-1232x -(x >0),故在点(a ,12a -)处的切线的斜率k =-1232a -, 所以切线方程为y -12a -=-1232a - (x -a ),易得切线在x 轴、y 轴上的截距分别为3a ,3212a -, 所以切线与两坐标轴围成的三角形的面积为S =12×3a ×3212a -=9412a =18. 所以a =64.。