清华大学-理论力学-习题解答--1-4
- 格式:pdf
- 大小:109.47 KB
- 文档页数:1
理论力学第4版习题答案理论力学是物理学中的一门基础课程,它研究物体运动的规律和力的作用关系。
而理论力学第4版习题是帮助学生巩固和应用所学知识的重要工具。
本文将为读者提供一些理论力学第4版习题的答案,以帮助他们更好地理解和掌握这门学科。
1. 题目:一个质量为m的物体以初速度v0沿着水平面上的直线运动,受到一个与速度成正比的阻力F=-kv作用。
求物体的速度随时间的变化关系。
答案:根据牛顿第二定律,物体的加速度a等于受到的合力F除以质量m。
由于物体只受到阻力和重力两个力的作用,因此有F=mg-kv。
代入牛顿第二定律的公式,得到ma=mg-kv,即m(dv/dt)=mg-kv。
整理后得到mdv/(mg-kv)=dt,两边同时积分得到ln|mg-kv|=-(k/m)t+C,其中C为积分常数。
通过指数函数的性质,可以得到mg-kv=Ae^(-kt/m),其中A为常数。
解出v后,即可得到物体的速度随时间的变化关系。
2. 题目:一个质量为m的物体以初速度v0沿着竖直方向上的直线运动,受到一个与速度平方成正比的阻力F=-kv^2作用。
求物体的速度随时间的变化关系。
答案:同样根据牛顿第二定律,物体的加速度a等于受到的合力F除以质量m。
由于物体只受到阻力和重力两个力的作用,因此有F=mg-kv^2。
代入牛顿第二定律的公式,得到ma=mg-kv^2,即m(dv/dt)=mg-kv^2。
整理后得到mdv/(mg-kv^2)=dt,两边同时积分得到(1/v0-1/v)=kt/m,其中k为常数。
解出v后,即可得到物体的速度随时间的变化关系。
3. 题目:一个质量为m的物体沿着半径为R的圆周上的轨道做匀速圆周运动。
求物体受到的向心力大小和方向。
答案:根据牛顿第二定律,物体的加速度a等于受到的合力F除以质量m。
在圆周运动中,物体受到的合力只有向心力Fc。
由于物体做匀速圆周运动,所以加速度a的大小为v^2/R,其中v为物体的速度。
将这个加速度代入牛顿第二定律的公式,得到Fc=mv^2/R。
理论力学复习题1一、 是非题1、 力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
( √)2、 在理论力学中只研究力的外效应。
( √)3、 两端用光滑铰链连接的构件是二力构件。
( × )4、 作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
( √ )5、 作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
(× )6、 三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
( × )7、 平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
(√ )8、 约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
( × )9、 在有摩擦的情况下,全约束力与法向约束力之间的夹角称为摩擦角。
(× )10、 用解析法求平面汇交力系的平衡问题时,所建立的坐标系x ,y 轴一定要相互垂直。
( × )11、 一空间任意力系,若各力的作用线均平行于某一固定平面,则其独立的平衡方程最多只有3个。
( × )12、 静摩擦因数等于摩擦角的正切值。
( √ )13、 一个质点只要运动,就一定受有力的作用,而且运动的方向就是它受力方向。
( × )14、 已知质点的质量和作用于质点的力,质点的运动规律就完全确定。
(× )15、 质点系中各质点都处于静止时,质点系的动量为零。
于是可知如果质点系的动量为零,则质点系中各质点必都静止。
( × )16、 作用在一个物体上有三个力,当这三个力的作用线汇交于一点时,则此力系必然平衡。
( × )17、 力对于一点的矩不因力沿其作用线移动而改变。
( √ )18、 在自然坐标系中,如果速度υ = 常数,则加速度α = 0。
( × )19、 设一质点的质量为m ,其速度 与x 轴的夹角为α,则其动量在x 轴上的投影为mvx =mvcos a 。
阿第一章思考题解答1.1答:平均速度是运动质点在某一时间间隔t t t ∆+→内位矢大小和方向改变的平均快慢速度,其方向沿位移的方向即沿t ∆对应的轨迹割线方向;瞬时速度是运动质点在某时刻或某未知位矢和方向变化的快慢程度其方向沿该时刻质点所在点轨迹的切线方向。
在0→∆t 的极限情况,二者一致,在匀速直线运动中二者也一致的。
1.2答:质点运动时,径向速度r V 和横向速度θV 的大小、方向都改变,而r a 中的r 只反映了r V 本身大小的改变,θa 中的θθ r r +只是θV 本身大小的改变。
事实上,横向速度θV 方向的改变会引起径向速度r V 大小大改变,2θ r -就是反映这种改变的加速度分量;经向速度rV 的方向改变也引起θV 的大小改变,另一个θr 即为反映这种改变的加速度分量,故2θ r r a r -=,.2θθθr r a +=。
这表示质点的径向与横向运动在相互影响,它们一起才能完整地描述质点的运动变化情况1.3答:内禀方程中,n a 是由于速度方向的改变产生的,在空间曲线中,由于a 恒位于密切面内,速度v 总是沿轨迹的切线方向,而n a 垂直于v 指向曲线凹陷一方,故n a 总是沿助法线方向。
质点沿空间曲线运动时,0,0≠=b b F a z 何与牛顿运动定律不矛盾。
因质点除受作用力F ,还受到被动的约反作用力R ,二者在副法线方向的分量成平衡力0=+b b R F ,故0=b a 符合牛顿运动率。
有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。
有人也许还会问:某时刻若b b R F 与大小不等,b a 就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同,质点的位置也在改变,副法线在空间中方位也不再是原来b a 所在的方位,又有了新的副法线,在新的副法线上仍满足00==+b b b a R F 即。
这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变。
2-28 图示机构中,主动件的角速度或速度已经标明,欲求从动件的速度或角速度,试选择动点和动系,分析三个运动,并按图示位置分析三个速度。
解:
(a) 以折杆为动系,曲柄末端为动点,则牵连运动和相对运动都是直线运动,绝对运动是定轴转动。
(b) 以滑槽为动系, 曲柄末端为动点,牵连运动为直线运动,相对运动为沿滑槽的曲线运动,绝对运动为定轴转动。
(c) 以曲柄为动系,直杆末端点为动点,则牵连运动为定轴转动,相对运动和绝对运动都是直线运动。
(d) 以曲柄为动系,销钉为动点,则绝对运动和相对运动是直线运动,牵连运动是定轴转动。
(e) 以曲柄为动系,半圆的圆心为动点。
则绝对运动和相对运动都是直线运动,牵连运动是定轴转动。
(f) 以曲柄为动系,铰结点为动点,则绝对运动为定轴转动,相对运动为直线运动,牵连运动为定轴转动。
(g) 以曲柄为动系,销钉为动点,则相对运动为直线运动,绝对运动为定轴转动,牵连运动也为定轴转动。
(h) 以较长的曲柄为动系,滑块铰结点为动点,分别讨论联立求解。
第一组,绝对运动为定轴转动,第二组绝对运动为直线运动。
相对运动都为直线运动,牵连运动为定轴转动。
平面运动,牵连运动为定轴转动。
平面运动,牵连运动为定轴转动。
理论力学(郝桐生)第一章习题1-1.画出下列指定物体的受力图。
解:习题1-2.画出下列各物系中指定物体的受力图。
解:习题1-3.画出下列各物系中指定物体的受力图。
解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。
解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。
解:(1)研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。
求撑杆BC所受的力。
解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。
解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。
(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向与假设相反,为受压;BC杆受压。
习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。
解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。
解:(1) 研究铰E,受力分析,画力三角形:由图知:(2) 研究铰C,受力分析,画力三角形:由图知:习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。