常数与幂函数的导数、导数公式表 PPT
- 格式:ppt
- 大小:2.15 MB
- 文档页数:32
以下是一些常见函数的导数:
1. 常数函数:f(x)=c的导数为0。
2. 幂函数:f(x)=x^n的导数为f'(x)=nx^(n-1)。
3. 指数函数:f(x)=a^x的导数为f'(x)=a^x*lna。
4. 对数函数:f(x)=lnx的导数为f'(x)=1/x。
5. 三角函数:
* 正弦函数:f(x)=sinx的导数为f'(x)=cosx。
* 余弦函数:f(x)=cosx的导数为f'(x)=-sinx。
* 正切函数:f(x)=tanx的导数为f'(x)=sec^2x。
6. 反三角函数:
* 反正弦函数:f(x)=arcsinx的导数为f'(x)=1/√(1-x^2)。
* 反余弦函数:f(x)=arccosx的导数为f'(x)=-1/√(1-x^2)。
* 反正切函数:f(x)=arctanx的导数为f'(x)=1/(1+x^2)。
7. 双曲函数:
* 自然双曲正弦函数:f(x)=shx的导数为f'(x)=chx。
* 自然双曲余弦函数:f(x)=chx的导数为f'(x)=shx。
8. 幂函数:对于形如f(x)=ax^n的幂函数,其导数为
f'(x)=nax^(n-1)。
9. 分式函数:对于形如f(x)=u/v的函数,其中u和v都是可导的,其导数为f'(x)=(u'v-uv')/v^2。
这只是一部分常见函数的导数,实际上还有很多其他类型的函数,这些函数的导数都需要根据具体情况进行计算。
3.2导数的运算3.2.1常数与幂函数的导数3.2.2导数公式表学习目标核心素养1.能根据定义求函数y=C,y=x,y=x2,y=1 x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.(重点、难点) 通过利用基本初等函数的导数公式求简单函数的导数的学习,提升学生的数学运算素养.1.常数与幂函数的导数原函数导函数f(x)=C f′(x)=0f(x)=x f′(x)=1f(x)=x2f′(x)=2xf(x)=1x f′(x)=-1x2原函数导函数f(x)=C(C为常数)f′(x)=0 f(x)=x u f′(x)=ux u-1(x>0,u≠0) f(x)=sin x f′(x)=cos xf(x)=cos x f′(x)=-sin xf(x)=a x f′(x)=a x ln a(a>0,a≠1) f(x)=e x f′(x)=e xf (x )=log a x f′(x )=1x ln a (a >0,a ≠1,x >0)f (x )=ln xf′(x )=1x1.下列结论:①(sin x )′=cos x ;②(x 53)′=x 23; ③(log 3x )′=13ln x ;④(ln x )′=1x .其中正确的有( )A .0个B .1个C .2个D .3个C [∵②(x 53)′=53x 23;③(log 3x )=1x ln 3;∴②③错误,故选C.] 2.若函数f (x )=x ,则f′(1)等于( ) A .0 B .-12 C .12D .1C [∵f′(x )=(x )′=(x12)′=12x 12-1=12x,∴f′(1)=12,故选C.]3.曲线y =sin x 在⎝ ⎛⎭⎪⎫π4,22处的切线方程为________.42x -8y +2(4-π)=0 [∵k =(sin x )′|x =π4=cos π4=22,∴切线方程为y -22=22⎝ ⎛⎭⎪⎫x -π4,即42x -8y +2(4-π)=0.]利用导数公式求函数的导数(1)y =x 12;(2)y =1x 4;(3)y =5x 3; (4)y =2sin x 2cos x2;(5)y =log 12x . [思路探究] 先将解析式化为基本初等函数的形式,再利用公式求导. [解] (1)y ′=(x 12)′=12x 12-1=12x 11. (2)y ′=(x -4)′=-4x -4-1=-4x -5=-4x 5. (3)y ′=(5x 3)′=(x 35)′=35x 35-1=35x -25=355x 2.(4)∵y =2sin x 2cos x2=sin x ,∴y ′=cos x . (5)y ′=(log 12x )′=1x ln 12=-1x ln 2.用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给函数的特征,将题中函数的结构进行调整,再选择合适的求导公式.提醒:若题目中所给出的函数解析式不符合导数公式,需通过恒等变换对解析式进行化简或变形后求导,如根式化成指数幂的形式求导.导数公式的综合应用1.若y =c ,y =x 和y =x 2都表示路程关于时间的函数,则其导数的物理意义是什么?提示:若y =c 表示路程关于时间的函数,则y ′=0可以解释为某物体的速度始终为0,即物体一直处于静止状态;若y =x 表示路程关于时间的函数,则y ′=1可以解释为某物体做速度为1的匀速运动;若y =x 2表示路程关于时间的函数,则y ′=2x 可以解释为某物体做变速运动,它在x 时刻的瞬时速度为2x .2.指数函数与对数函数的导数公式各具有什么特点?[提示] (1)指数函数的导数等于指数函数本身乘以底数的自然对数,y =e x 的导数是y =a x (a >0,a ≠1)导数的特例.(2)对数函数的导数等于x 与底数的自然对数乘积的倒数,y =ln x 的导数是y =log a x (a >0,a ≠1,x >0)导数的特例.【例2】 已知点P (-1,1),点Q (2,4)是曲线y =x 2上两点,是否存在与直线PQ 垂直的切线,若有,求出切线方程;若没有,说明理由.[思路探究] 先求导数,再根据导数的几何意义求解. [解] 因为y ′=(x 2)′=2x ,假设存在与直线PQ 垂直的切线. 设切点坐标为(x 0,y 0),由PQ 的斜率为k =4-12+1=1,又切线与PQ 垂直,所以2x 0=-1,即x 0=-12,所以切点坐标为⎝ ⎛⎭⎪⎫-12,14.所以所求切线方程为 y -14=(-1)()x +12, 即4x +4y +1=0.1.(变结论)若本例条件不变,求与直线PQ 平行的曲线y =x 2的切线方程. [解] 因为y ′=(x 2)′=2x , 设切点为M (x 0,y 0), 则y ′|x =x 0=2x 0. 又因为PQ 的斜率为k =4-12+1=1, 而切线平行于PQ ,所以k =2x 0=1, 即x 0=12.所以切点为M ⎝ ⎛⎭⎪⎫12,14, 所以所求切线方程为y -14=x -12, 即4x -4y -1=0.2.(变条件)若函数改为y =ln x ,试求与直线PQ 平行的切线方程. [解] 设切点为(a ,b ),因为k PQ =1, 则由f′(a )=1a =1,得a =1, 故b =ln 1=0,则与直线PQ 平行的切线方程为y =x -1,即x -y -1=0.解决切线问题,关键是确定切点,要充分利用:(1)切点处的导数是切线的斜率.(2)切点在切线上.(3)切点又在曲线上这三个条件联立方程解决.1.思考辨析(1)若函数f (x )=log 2π,则f′(x )=1πln 2.( ) (2)若函数f (x )=3x ,则f′(x )=x ·3x -1.( ) (3)若函数f (x )=4x ,则f′(x )=4x 2.( ) [提示] (1)× π为常数. (2)× f′(x )=3x ln 3. (3)× f′(x )=-4x 2.2.函数f (x )=x ,则f′(3)等于( ) A .36 B .0 C .12xD .32A [∵f′(x )=12x ,∴f′(3)=123=36.]3.设函数f (x )=log a x ,f′(1)=-1,则a =________. 1e [∵f′(x )=1x ln a ,∴f′(1)=1ln a =-1,∴a =1e.] 4.过曲线y =sin x 上的点P ⎝ ⎛⎭⎪⎫π6,12的切线方程为________.63x -12y -3π+6=0 [曲线y =sin x 在点P ⎝ ⎛⎭⎪⎫π6,12处的切线斜率为k =y ′|x =π6=cos π6=32. 所以切线方程为y -12=32⎝ ⎛⎭⎪⎫x -π6,即63x -12y -3π+6=0.]5.求下列函数的导数:(1)y =cos π6;(2)y =1x 5;(3)y =x 2x ;(4)y =lg x ;(5)y =5x ;(6)y =cos ⎝ ⎛⎭⎪⎫π2-x .[解] (1)y ′=0. (2)∵y =1x 5=x -5,∴y ′=(x -5)′=-5x -6=-5x 6. (3)∵y =x 2x=x 32.∵y ′=(x 32)′=32x 12=32x . (4)y ′=1x ln 10. (5)y ′=5x ln 5.(6)∵y =cos ⎝ ⎛⎭⎪⎫π2-x =sin x ,∴y ′=(sin x )′=cos x .课时分层作业(十七) 常数与幂函数的导数导数公式表(建议用时:40分钟)[基础达标练]1.已知f (x )=1x ,则f ′(3)=( ) A .-13 B .-19 C .19D .13B [∵f (x )=1x ,∴f ′(x )=-1x 2,∴f ′(3)=-132=-19,故选B.] 2.已知f (x )=ln x ,则f ′(e)=( ) A .0 B .1e C .1D .eB [∵f (x )=ln x ,∴f ′(x )=1x ,则f ′(e)=1e ,故选B.] 3.已知f (x )=x α(α∈Q ),若f ′(-1)=4,则α等于( ) A .3 B .-3 C .4D .-4D [∵f (x )=x α,∴f ′(x )=αx α-1. ∴f ′(-1)=α(-1)α-1=4. ∴α=-4.]4.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A .1e B .-1e C .-eD .eD [y ′=e x ,设切点为(x 0,y 0),则⎩⎨⎧y 0=k x 0,y 0=e x 0,k =e x 0,∴e x 0·x 0=e x 0,∴x 0=1,∴k =e.]5.若幂函数f (x )=mx α的图象经过点A ⎝ ⎛⎭⎪⎫14,12,则它在点A 处的切线方程是( )A .2x -y =0B .2x +y =0C .4x -4y +1=0D .4x +4y +1=0C [因为函数f (x )=mx α为幂函数,所以m =1.又幂函数f (x )=x α的图象经过点A ⎝ ⎛⎭⎪⎫14,12,所以α=12,所以f (x )=x 12,f ′(x )=12x ,f ′⎝ ⎛⎭⎪⎫14=1,所以f (x )的图象在点A 处的切线方程为y -12=x -14,即4x -4y +1=0.]6.已知函数f (x )=x m -n (m ,n ∈Q )的导数为f ′(x )=nx 3,则m +n =________. 12 [∵f (x )=x m -n ,∴f ′(x )=(m -n )x m -n -1, ∴⎩⎨⎧m -n =n ,m -n -1=3,解得m =8,n =4,∴m +n =12.] 7.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则点P 的坐标为________.(1,1) [因为y ′=e x ,所以曲线y =e x 在点(0,1)处的切线的斜率为k 1=e 0=1. 设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率为k 2=-1m 2(m >0),因为两切线垂直,所以k 1·k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).]8.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k+1,其中k ∈N *,若a 1=16,则a 1+a 3+a 5的值是________.21 [∵y ′=2x ,∴y =x 2(x >0)的图象在点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ).又该切线与x 轴的交点为(a k +1,0),∴a k +1=12a k ,即数列{a k }是首项a 1=16,公比q =12的等比数列,∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.]9.已知曲线C :y =x 3.(1)求曲线C 上点(1,1)处的切线方程;(2)在(1)中的切线与曲线C 是否还有其他公共点? [解] (1)因为y ′=3x 2, 所以切线斜率k =3,所以切线方程为y -1=3(x -1), 即3x -y -2=0. (2)由⎩⎨⎧3x -y -2=0,y =x 3, 所以(x -1)(x 2+x -2)=0, 所以x 1=1,x 2=-2,所以公共点为(1,1)及(-2,-8),即其他公共点为(-2,-8). 10.若曲线y =x-12在点(a ,a-12)处的切线与两个坐标轴围成的三角形的面积为9,求实数a 的值.[解] ∵y =x -12,∴y ′=-12x -32, ∴曲线在点(a ,a-12)处的切线的斜率为k =-12a -32, ∴切线方程为y -a-12=-12a -32 (x -a ).令x =0,得y =32a -12;令y =0, 得x =3a .由题意知,a >0,该切线与两个坐标轴围成的三角形的面积为S =12×3a ×32a -12=94a 12=9,∴a =16.[能力提升练]1.设曲线y =x 在点(2,2)处的切线与直线ax +y +1=0垂直,则a =( ) A .22B .24C .-2 2D .2 2D [∵y =x =x 12,∴y ′=12x -12=12x ,∴切线的斜率k =y ′|x =2=122,由已知,得-a =-22,即a =22,故选D.]2.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2 020(x )等于( )A .sin xB .-sin xC .cos xD .-cos xA [f 1(x )=f 0′(x )=(sin x )′=cos x , f 2(x )=f 1′(x )=(cos x )′=-sin x , f 3(x )=f 2′(x )=(-sin x )′=-cos x , f 4(x )=(-cos x )′=sin x , f 5(x )=(sin x )′=f 1(x ), f 6(x )=f 2(x ),…, f n +4(x )=f n (x ),可知周期为4,所以f 2 020(x )=f 505×4(x )=sin x .]3.曲线y =log 2x 在点(1,0)处的切线与两坐标轴所围成的三角形的面积为________.12log 2e [y ′=1x ln 2=1x ·log 2e ,所以切线的斜率k =y ′|x =1=log 2e ,切线方程为y =(x -1)log 2e ,令x =0,得y =-log 2e ,令y =0,得x =1,因此所求三角形的面积S =12×1×log 2e =12log 2e.]4.已知函数f (x )=⎩⎨⎧x 3,x ≤0,ln x ,0<x <1,,f ′(a )=12,则实数a 的值为________.112或-2 [由题意得 f ′(x )=⎩⎪⎨⎪⎧3x 2,x ≤0,1x ,0<x <1,若 f ′(a )=12,则⎩⎪⎨⎪⎧0<a <1,1a=12或⎩⎨⎧a ≤0,3a 2=12,解得a =112或a =-2.]5.点P是曲线y=e x上任意一点,求点P到直线y=x的最小距离.[解]如图,当曲线y=e x在点P(x0,y0)处的切线与直线y=x平行时,点P 到直线y=x的距离最近.则曲线y=e x在点P(x0,y0)处的切线斜率为1,又y′=(e x)′=e x,所以e x0=1,得x0=0,代入y=e x,得y0=1,即P(0,1).由点到直线的距离公式,得最小距离为d=|-1|2=22.11/11。
3.2.1-3.2.2常数与幂函数的导数、导数公式表教学过程:创设情景我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数()y f x =,如何求它的导数呢?由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数. 新课讲授一、函数()y f x c ==的导数根据导数定义,因为()()0y f x x f x c c x x x∆+∆--===∆∆∆ 所以00lim lim 00x x y y ∆→∆→∆'===0y '=表示函数y c =图像(图3.2-1)上每一点处的切线的斜率都为0.若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.二、函数()y f x x ==的导数因为()()1y f x x f x x x x x x x∆+∆-+∆-===∆∆∆ 所以00lim lim 11x x y y ∆→∆→∆'===∆1y '=表示函数y x =图像(图3.2-2)上每一点处的切线的斜率都为1,若y x =表示路程关于时间的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动.三、函数2()y f x x ==的导数 因为22()()()y f x x f x x x x x x x ∆+∆-+∆-==∆∆∆2222()2x x x x x x x x+∆+∆-==+∆∆ 所以00lim lim (2)2x x y y x x x ∆→∆→∆'==+∆=∆2y x '=表示函数y x =图像(图3.2-3)上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2y x =减少得越来越慢;当0x >时,随着x 的增加,函数2y x =增加得越来越快.若2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x . 四、函数1()y f x x==的导数 因为11()()y f x x f x x x x x x x-∆+∆-+∆==∆∆∆ 2()1()x x x x x x x x x x-+∆==-+∆∆+⋅∆ 所以220011lim lim ()x x y y∆→∆→∆'==-=-∆ 课本练习A 、B 五、基本初等函数的导数公式表:课本练习A 、B 1.2.()3.4.5.ln 6.7.8.n R a ∈'n 'n-1''x 'x x 'x 'a '若f(x)=c,则f(x)=0若f(x)=x ,则f(x)=nx 若f(x)=sinx,则f(x)=cosx 若f(x)=cosx,则f(x)=-sinx 若f(x)=a ,则f(x)=a 若f(x)=e ,则f(x)=e 1若f(x)=log x,则f(x)=xlna1若f(x)=lnx,则f(x)=x。