实验三 二阶系统的特性测量
- 格式:doc
- 大小:11.32 MB
- 文档页数:8
实验三 典型环节(或系统)的频率特性测量一.实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。
2.学习根据实验所得频率特性曲线求取传递函数的方法。
二.实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试。
2.用实验方法完成典型二阶系统开环频率特性曲线的测试。
3.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。
三、实验原理及说明1.实验用一阶惯性环节传递函数参数、电路设计及其幅相频率特性曲线:对于1)(+=Ts Ks G 的一阶惯性环节,其幅相频率特性曲线是一个半圆,见图3.1。
取ωj s =代入,得)()(1)(ωϕωωωj e r T j Kj G =+=(3-2-1)在实验所得特性曲线上,从半园的直径(0)r ,可得到环节的放大倍数K ,K =(0)r 。
在特性曲线上取一点k ω,可以确定环节的时间常数T ,kk tg T ωωϕ)(-=。
(3-2-2)实验用一阶惯性环节传递函数为12.01)(+=s s G ,其中参数为R 0=200K Ω,R 1=200K Ω,C=1uF ,参数根据实验要求可以自行搭配,其模拟电路设计参阅下图3.2。
在进行实验连线之前,先将U13单元输入端的100K 可调电阻顺时针旋转到底(即调至最大),使输入电阻R 0的总阻值为200K;其中,R1、C1在U13单元模块上。
U8单元为反相器单元,将U8单元输入端的10K 可调电阻逆时针旋转到底(即调至最小),使输入电阻R 的总值为10K;注明:所有运放单元的+端所接的100K 、10K 电阻均已经内部接好,实验时不需外接。
图3.22.实验用典型二阶系统开环传递函数参数、电路设计及其幅相频率特性曲线:对于由两个惯性环节组成的二阶系统,其开环传递函数为12)1)(1()(2221++=++=Ts s T Ks T s T K s G ξ )1(≥ξ 令上式中 s j ω=,可以得到对应的频率特性 )(22)(12)(ωϕωωξωωj e r T j T Kj G =++-=二阶系统开环传递函数的幅相频率特性曲线,如图所示。
自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。
二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。
1.比例(P)环节的模拟电路及其传递函数示于图1-1。
2.惯性(T)环节的模拟电路及其传递函数示于图1-2。
3.积分(I)环节的模拟电路及其传递函数示于图1-3。
4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。
5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。
6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。
三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。
2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。
附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
实验三 二阶系统的性能分析一、实验目的1、研究二阶系统的两个重要参数阻尼比ξ和自然振荡频率n ω对系统动态性能的影响;2、比较比例微分控制的二阶系统和典型二阶系统的性能;3、比较输出量速度反馈控制的二阶系统和典型二阶系统的性能。
二、实验任务1、典型二阶系统二阶系统的传递函数为()s Φ=2222nn ns s ωξωω++,仿真框图如图1-1所示。
图1-1 二阶振荡环节仿真框图(1)令n ω=10不变,ξ取不同值:1ξ=0,2ξ、3ξ(01ξ<<),4ξ=1,5ξ,观察其单位阶跃响应曲线变化情况;下图中1ξ=02ξ=0.5,3ξ=0.707,4ξ=1,5ξ=3(2)令ξ=0不变,ω取不同值,观察其单位阶跃响应曲线变化情况;(3)令ξ=0.2不变,ω取不同值,观察其单位阶跃响应曲线变化情况,并计算超调量%和t;s(4)令n ω=10不变,ξ取不同值(01ξ<<),观察其单位阶跃响应曲线变化情况,并计算超调量%σ和s t 。
2、比例微分控制的二阶系统比例微分控制的二阶系统的结构图如图2-1。
图2-1 比例微分控制的二阶系统的结构图系统中加入比例微分控制,使系统阻尼比增加,并增加一个闭环零点,可以通过仿真比较典型二阶系统和比例微分控制的二阶系统的单位阶跃响应的性能指标。
上图所示的控制系统,令225(2)(2)nns s s sωξω=++,0.1dT=,其中5,0.2nωξ==,从Simulink图形库浏览器中拖曳Step(阶跃输入)、Sum(求和模块)、Pole-Zero (零极点)模块、Scope(示波器)模块到仿真操作画面,连接成仿真框图如图2-2所示。
图中Pole-Zero(零极点)模块建立()G s。
图2-2 典型二阶系统和比例微分控制的二阶系统比较仿真框图3、输出量速度反馈的二阶系统输出量速度反馈的二阶系统的结构图如图2-3。
图2-3 输出量速度反馈的二阶系统的结构图系统中加入输出量的速度反馈控制,使系统阻尼比增加,可以通过仿真比较典型二阶系统和输出量速度反馈控制的二阶系统的单位阶跃响应的性能指标。
自控实验—二三阶系统动态分析在自控实验中,二、三阶系统动态分析是非常重要的一部分。
通过对系统的动态性能进行分析,可以评估系统的稳定性、响应速度和稳态误差等方面的性能。
本次实验将使用PID控制器对二、三阶系统进行实时控制,并通过实验数据对系统进行动态分析。
首先,我们先了解什么是二、三阶系统。
在控制系统中,系统的阶数表示系统传递函数的阶数,也可以理解为系统动态特性的复杂程度。
二阶系统由两个极点和一个零点组成,三阶系统由三个极点和一个零点组成。
二、三阶系统的动态响应特性与极点位置有关,不同的极点位置对系统的稳定性、响应速度和稳态误差等性能有着不同的影响。
在实验中,我们将使用PID控制器对二、三阶系统进行控制。
PID控制器是一种经典的比例-积分-微分控制器,可以根据误差信号进行调节,通过调整比例系数、积分时间和微分时间来控制系统的响应特性。
实验中,我们将根据二、三阶系统的实时数据进行PID参数调整,以达到控制系统的稳定和快速响应的目的。
在进行实验前,我们首先需要对二、三阶系统进行建模。
二、三阶系统的传递函数通常表示为:二阶系统:G(s) = K / (s^2 + 2ξω_ns + ω_n^2)三阶系统:G(s) = K / (s^3 + 3ξω_ns^2 + 3ω_n^2s + ω_n^3)其中,K表示系统的增益,ξ表示系统的阻尼比,ω_n表示系统的自然频率。
通过实验数据的统计和分析,我们可以估计出系统的K、ξ和ω_n的值,并据此进行PID参数的调整。
接下来,我们进行实验。
我们首先将PID控制器的参数设为初始值,然后对系统进行实时控制,并记录系统输出的数据。
通过对这些数据进行分析,我们可以得到系统的稳态误差、响应时间和超调量等性能指标。
对于二阶系统,我们将分析以下几个方面的性能:1.稳态误差:通过比较实际输出值与目标值之间的差异,可以得到系统的稳态误差。
常见的稳态误差有零稳态误差、常数稳态误差和比例稳态误差等。
实验三二阶系统特征参数对系统性能的影响一.实验目的ω,ξ)对系统性能的影响;1.研究二阶系统特征参量(n2.研究斜坡输入作用下二阶系统的静态误差。
二.实验内容ω=12.5保持不变,分别测试阻尼系数不同时系统的特1.搭建二阶系统,将特征参量nω不同时系统的特性;性;再将特征参量ξ=0.4保持不变,分别测试固有频率n2.测试斜坡输入作用下二阶系统的静态误差,将输入强度即斜率不变,改变开环增益;再将开环增益不变,改变输入强度即斜率。
三.实验步骤在实验中观测实验结果时,可选用普通示波器,也可选用本实验台上的虚拟示波器。
如果选用虚拟示波器,只要运行ACES程序,选择菜单列表中的相应实验项目,再选择开始实验,就会打开虚拟示波器的界面,点击开始即可使用本实验台上的虚拟示波器CH1、CH2两通道观察被测波形。
具体用法参见用户手册中的示波器部分。
1.观测特征参量ξ对二阶系统性能的影响实验中所用到的功能区域:阶跃信号、虚拟示波器、实验电路A1、实验电路A2、实验电路A3。
ω=12.5:二阶系统模拟电路如图1-3-1所示,其固有频率nω=12.5)图1-3-1二阶系统模拟电路(n(1)设置阶跃信号源:A.将阶跃信号区的选择开关拨至“0~5V”;B.将阶跃信号区的“0~5V”端子与实验电路A3的“IN32”端子相连接;C.按压阶跃信号区的红色开关按钮就可以在“0~5V”端子产生阶跃信号。
(2)搭建二阶系统模拟电路:A.将实验电路A3的“OUT3”端子与实验电路A1的“IN11”、“IN13”两端子同时连接,将A1的“OUT1”与A2的“IN21”相连接,A2的“OUT2”与A3的“IN33”相连接;B.按照图1-3-1选择拨动开关:图中:R1=200K、R2=200K、R3=200K、R4=100K、R5=64K、R6为可选电阻、R7=10K、R8=10K、C1=1.0uF、C2=1.0uF将A3的S5、S6、S10,A1的S3、S6、S9,A2的S3、S8拨至开的位置;C.当R6=50K时,二阶系统阻尼系数ξ=0.8,将A2的S15拨至开。
实验二.二、三阶系统动态分析一.实验目的:1.学习二、三阶系统的电模拟方法及参数测试方法;2.观察二、三阶系统的阶跃响应曲线,了解参数变化对动态特性的影响; 3.学习虚拟仪器(超抵频示波器)的使用方法; 4.使用MATLAB 仿真软件进行时域法分析; 5.了解虚拟实验的使用方法。
二.实验设备及仪器1.模拟实验箱; 2.低频信号发生器;3.虚拟仪器(低频示波器); 4.计算机;5.MATLABL 仿真软件。
三.实验原理及内容实验原理:1、二阶系统的数学模型系统开环传递函数为系统闭环传递函数为2、 二阶系统暂态性能(a) 延迟时间t d : 系统响应从 0 上升到稳态值的 50% 所需的时间。
)2s (s n 2nςω+ω为阻尼比(,为无阻尼自然振荡频率其中:ςωω+ςω+ω==n 2nn 22ns 2s )s (G )s (R )s (C(b) 上升时间t r : 对于欠阻尼系统是指 , 系统响应从 0 上升到稳态值所需的时间 ; 对于过阻尼系统则指 , 响应从稳态值的 10% 上升到 90% 所需的时间。
(c) 峰值时间t p : 系统响应到达第一个峰值所需的时间。
(d) 最大超调量σp ( 简称超调量 ) : 系统在暂态过程中输出响应超过稳态值的最大偏离量。
通常以单位阶跃响应稳态值的百分数来表示 , 即%100e e esin 1e)t sin(1e1)y(t )y()y()y(t σ22pn pn pn 11t 2t p d 2t p p p ⨯===-=+--=-=∞∞-=-------ζπζζπζζωζωζωϕζϕωζ超调量)t sin(1e 1)t (y d 2tn ϕωζζω+--=- 2n d p d 1ωπωπt 0)t sin()t (y ζω-==∴= 峰值时间求导可得对dr t t ωπt 1y(t)rϕ-=== 可令2n21n πϕωξ-=-t ≈n2d n d 2.06.01t 7.01ως+ς+ως+≈或n2d n d2.06.01t 7.01t ως+ς+≈ως+≈或(e) 调节时间t s : 系统响应到达并不再越出稳态值的容许误差带±Δ所需的最短时间 , 即通常取Δ为稳态值的 5% 或 2% 。
1364957203实验三 频率特性曲线测试3.2.3 二阶闭环系统的频率特性曲线一.实验目的1. 了解和掌握二阶闭环系统中的对数幅频特性)(ωL 和相频特性)(ωϕ,实频特性)Re(ω和虚频特性)Im(ω的计算。
2. 了解和掌握欠阻尼二阶闭环系统中的自然频率ωn 、阻尼比ξ对谐振频率ωr 和谐振峰值L(ωr )的影响及ωr 和L(ωr ) 的计算。
3. 观察和分析欠阻尼二阶开环系统的谐振频率ωr 、谐振峰值L(ωr ),并与理论计算值作比对。
4. 改变被测系统的电路参数,画出闭环频率特性曲线,观测谐振频率和谐振峰值,填入实验报告。
二.实验内容及步骤1.被测系统模拟电路图的构成如图3-2-3所示,观测二阶闭环系统的频率特性曲线,测试其谐振频率r ω、谐振峰值)(r L ω。
2.改变被测系统的各项电路参数,画出其系统模拟电路图,及闭环频率特性曲线,並计算和测量系统的谐振频率r ω及谐振峰值)(r L ω,填入实验报告。
图3-2-3 二阶闭环系统频率特性测试电路实验步骤:(1)将数/模转换器(B2)输出OUT2作为被测系统的输入。
(2)构造模拟电路:按图3-2-3安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线(3)运行、观察、记录:①将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT程序,在界面的自动控制菜单下的线性控制系统的频率响应分析实验项目,选择二阶系统,就会弹出‘频率特性扫描点设置’表。
在该表中用户可根据自己的需要填入各个扫描点频率(本实验机选取的频率值f,以0.1Hz 为分辨率),如需在特性曲线上标注显示某个扫描点的角频率ω、幅频特性L(ω)或相频特性φ(ω),则可在该表的扫描点上方小框内点击一下(打√)。
设置完后,点击确认后将弹出虚拟示波器的频率特性界面,点击开始,即可按‘频率特性扫描点设置’表规定的频率值,实现频率特性测试。
②测试结束后(约十分钟),可点击界面下方的“频率特性”选择框中的任意一项进行切换,将显示被测系统的闭环对数幅频、相频特性曲线(伯德图)和幅相曲线(奈奎斯特图)。
二阶系统的特性测量实验报告介绍本报告旨在介绍二阶系统的特性测量实验所需的步骤和过程。
二阶系统通常用于描述许多物理现象,如振动、波动和控制系统。
在本实验中,我们将探讨二阶系统的频率响应和阶跃响应。
我们还将测量系统的反馈增益和阻尼比,并验证系统是否稳定。
实验步骤1.实验装置在本实验中,我们将使用以下装置:(1)示波器(2)信号发生器(3)二阶系统模块(4)电缆(5)电源2.频率响应(1)将示波器和信号发生器连接到二阶系统模块。
(2)将信号发生器设置为正弦波,并将频率设置为低于系统的共振频率。
(3)使用示波器测量系统的输入和输出信号,并计算系统的增益和相位差。
(4)逐渐增加信号发生器的频率并再次测量增益和相位差。
记录数据。
(5)绘制增益与频率的图表,以确定系统的特性。
3.阶跃响应(1)将信号发生器连接到二阶系统模块,将输出连接到示波器。
(2)将信号发生器的设置改为阶跃波形,并逐渐增加幅度。
(3)测量系统的阶跃响应,并计算系统的上升时间、峰值时间、峰值值和稳定时间。
4.反馈增益和阻尼比(1)将信号发生器连接到二阶系统模块的输入。
(2)将示波器连接到系统模块的输出,并记录系统的输出信号的振幅。
(3)逐渐增加系统的反馈增益,并记录输出信号的振幅的变化。
(4)使用数据计算系统的阻尼比。
5.验证系统稳定性(1)将系统模块的输入和输出连接到示波器。
(2)使系统运行并观察输出信号。
(3)传递函数的特定零点和极点会决定系统是否稳定。
如果系统有零点或极点在右半平面则不稳定,否则系统是稳定的。
结论二阶系统主要是用于描述许多物理现象的,包括振动、波动和控制系统。
在本实验中,我们探讨了二阶系统的频率响应和阶跃响应。
我们还测量了系统的反馈增益和阻尼比,并验证了系统是否稳定。
这些实验有助于我们更好地了解二阶系统的特性和如何分析和控制它们。
本科实验报告课程名称:自动控制原理实验项目:典型二阶系统的时域特性实验地点:电机馆自控实验室专业班级:学号:学生姓名:指导教师:2012 年5 月15 日一、实验目的和要求:学会利用自动控制实验箱对二阶控制系统进行时域分析。
二、实验内容和原理:1、二阶系统动态特性的测试1. 典型二阶系统的方框图和模拟电路图① 典型二阶系统的方框图及传函图1-2是典型二阶系统的原理方框图,其中T 0=1s ,T 1=0.1s ,K 1分别为10、5、2.5和1。
开环传函: )11.0()1()(11+=+=s s K s T s K s G 其中:===101/K T K K 开环增益。
闭环传函: 2nn 22n 2)(ωζωω++=s s s W 其中:2//;/110011n T K T T T K ==ξω表1-2列出有关二阶系统在三种情况(欠阻尼、临界阻尼和过阻尼)下具体参数的表达式,以便计算理论值。
② 模拟电路图见图1-3。
三、主要仪器设备:TDN-AC/ACS+型控制系统实验箱一套、安装Windows 98系统和ACS2002应用软件的计算机一台。
四、操作方法与实验步骤:准备:将“信号源单元”(U1SG)的ST插针和+5V插针用“短路块”短接,使运算放大器反馈网络上的场效应管3DJ6夹断。
二阶系统瞬态性能指标的测试步骤:①按图1-3接线,R=10K。
②用示波器观察系统阶跃响应C(t),测量并记录超调量M p,峰值时间T p和调节时间t s,并记录在表1-3中。
③分别按R=20K;40K;100K改变系统开环增益,观察响应的阶跃响应C(t),测量并记录性能指标M p,T p和t s,及系统的稳定性。
并将测量值和计算值(实验前必须按公式计算出)进行比较,参数取值及响应曲线,详见表1-3。
五、实验数据记录和处理:(1)R=50K阶跃响应图:(2)R=100K阶跃响应图:六、讨论、心得:通过实验,让我对二阶系统的时域响应有了进一步的了解,也对这种新的实验方法有了进一步的认识,自控是一门不错的课,希望今后能有更多的机会去实践它。
《自动控制原理》实验报告(4)2011- 2012 学年第 1 学期专业:班级:学号:姓名:2011 年11 月15 日一.实验题目:二、三阶系统瞬态响应和稳定性二.实验目的:1.了解和掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。
2.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn、阻尼比ξ对过渡过程的影响。
3.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标Mp、t p、t s的计算。
4.观察和分析Ⅰ型二阶闭环系统在欠阻尼,临界阻尼,过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标Mp、t p值,并与理论计算值作比对。
5.了解和掌握典型三阶系统模拟电路的构成方法及Ⅰ型三阶系统的传递函数表达式。
6.了解和掌握求解高阶闭环系统临界稳定增益K的多种方法(劳斯稳定判据法、代数求解法、MATLAB根轨迹求解法)。
7.观察和分析Ⅰ型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种瞬态响应。
8.了解和掌握利用MA TLAB的开环根轨迹求解系统的性能指标的方法。
9.掌握利用主导极点的概念,使原三阶系统近似为标准Ⅰ型二阶系统,估算系统的时域特性指标。
三.实验内容及步骤二阶系统瞬态响应和稳定性1.Ⅰ型二阶闭环系统模拟电路见图3-1-7,观察阻尼比ξ对该系统的过渡过程的影响。
改变A3单元中输入电阻R来调整系统的开环增益K,从而改变系统的结构参数。
2.改变被测系统的各项电路参数,计算和测量被测对象的临界阻尼的增益K,填入实验报告。
3.改变被测系统的各项电路参数,计算和测量被测对象的超调量Mp,峰值时间tp,填入实验报告,並画出阶跃响应曲线。
图3-1-7 Ⅰ型二阶闭环系统模拟电路积分环节(A2单元)的积分时间常数Ti=R1*C1=1S惯性环节(A3单元)的惯性时间常数T=R2*C2=0.1S阻尼比和开环增益K的关系式为:临界阻尼响应:ξ=1,K=2.5,R=40kΩ欠阻尼响应:0<ξ<1 ,设R=4kΩ,K=25 ξ=0.316过阻尼响应:ξ>1,设R=70kΩ,K=1.43ξ=1.32>1实验步骤: 注:‘S ST ’用“短路套”短接!(1)将函数发生器(B5)单元的矩形波输出作为系统输入R 。
实验三——二阶系统的时域响应及性能分析实验三主要研究了二阶系统的时域响应及其性能分析,通过实验得到不同二阶系统的单位阶跃响应和单位脉冲响应,并对其进行分析和性能评估。
首先,实验中使用的二阶系统是由两个一阶系统串联而成,可以通过两个一阶系统的参数来确定二阶系统的性能。
实验中设置了不同的参数组合来得到不同的二阶系统,并测量了这些系统的单位阶跃响应和单位脉冲响应。
实验中,单位阶跃响应是通过给系统输入一个单位阶跃信号,观察系统的输出得到的。
单位脉冲响应是通过给系统输入一个单位脉冲信号,观察系统的输出得到的。
通过测量这两个响应,可以了解二阶系统在时域的性能。
对于单位阶跃响应,实验中测量了系统的超调量、调整时间和稳态误差。
超调量是指单位阶跃响应中最高峰值与稳态值之差与稳态值的比值,可用来评估系统的动态性能。
调整时间是指从单位阶跃信号开始输入到响应达到其稳态值所需要的时间,反映了系统调整过程的快慢。
稳态误差是指系统最终的输出值与期望值之差,用来评估系统的稳态准确性。
对于单位脉冲响应,实验中测量了系统的峰值和时间常数,用来评估系统的动态特性。
峰值是指单位脉冲响应中的最高值,与系统的阻尼比有关。
时间常数是指单位脉冲响应中曲线从0到达其最大值所需要的时间,与系统的阻尼比和自然频率有关。
通过实验数据的测量和分析,可以得到不同参数组合下的二阶系统的性能指标,进而对系统进行评估。
如果超调量小、调整时间短、稳态误差小,表示系统的动态特性优秀,能够快速、准确地响应输入信号;如果峰值小、时间常数短,表示系统的动态特性好,有较快的响应速度和较小的振荡现象。
综上所述,实验三通过对二阶系统的时域响应进行测量和分析,并对性能指标进行评估,可以得到不同二阶系统的动态特性和稳态准确性信息。
这些信息对于系统设计和参数调整具有重要的参考价值。
通过实验的学习,可以更深入地理解掌握二阶系统的性能分析方法,为系统控制和优化提供理论和实践基础。
实验七 二阶系统的特性测量一、实验目的1、掌握二阶网络的构成方法。
2、掌握二阶网络的系统响应特性。
3、了解二阶网络波特图的测量方法。
二、实验内容1、通过阶跃信号观察其阶跃响应。
2、通过正弦信号观察系统的幅频特性,学会绘制波特图。
三、实验步骤1、把二阶系统分析模块插在主板上,用导线接通此模块“电源接入”和主板上的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关。
2、二阶网络单位阶跃响应测量:函数信号发生器模块产生一频率为1KHz ,峰峰值为5V 左右的方波信号,将方波信号加入到此实验模块的“输入”端。
用示波器测量二阶网络的单位阶跃响应,改变系统的阻尼系数,可以观察不同阻尼情况下的阶跃响应。
与图2-7-2进行比较。
3、二阶网络波特图的测量 幅频特性的测量:(1)首先用函数信号发生器模块的频率选择在中频段,“频率调节”选择最小频率(约为1KHz ),使其产生一峰峰值为5V 左右的正弦信号,加入到此实验模块的插孔“输入”端。
(2)用示波器测量“输出”,观察二阶网络的输出信号。
(3)然后不断增加信号源的输出频率(以二倍频为一步进,即2K 、4K 、6K ……),并保持其输出幅度不变,测量相应频点,并记录下输出信号的幅度、输出信号与输入信号的相位差。
以频率与输出幅度(可换算成相对0点的相对电平值,单位为dB )为变量画出一曲线,即为二阶网络的幅频特性。
相频特性的测量:(1)首先用函数信号发生器模块的频率选择在中频段,“频率调节”选择最小频率(约为1 K ),使其产生一峰峰值为5V 左右的正弦信号,加入到此实验模块的插孔“输入”端。
(2)用示波器的两个探头测量,一个测输出,一个测输入,用李沙育图的方法观察(以45、90、135、180为特征角度)。
不同系统阻尼情况下的幅频和相频特性:先使二阶系统工作在欠阻尼状态下,即1<ξ ,进行观察,可以改变系统的工作阻尼状态,测量过阻尼状态的幅频特性和相频特性。
二阶系统的特性测量实验报告实验目的:学习如何测量二阶系统的特性参数,如自然频率、阻尼比、稳态增益和时间常数,以及理解二阶系统的特性对系统性能的影响。
实验装置:二阶系统模型、函数信号发生器、示波器、多用电表、数字万用表。
实验原理:二阶系统是指带有二阶微分方程的系统,通常采用以下形式的传递函数表示:G(s) = K/(s^2 + 2ξω_ns + ω_n^2)其中,K是系统的稳态增益,ω_n是自然频率,ξ是阻尼比。
通过测量系统的输出响应和输入信号,可以计算出这些参数。
实验步骤:1. 连接实验装置,将函数信号发生器输出连入二阶系统的输入端口,将示波器和多用电表连接到系统的输出端口。
2. 将信号发生器输出一个频率为ω_n的正弦波信号,记录输入信号电压Vi和输出信号电压Vo的大小。
3. 改变输入信号的频率,得到系统的频率响应曲线,在示波器上绘制出曲线,并记录输出信号电压Vo的大小。
反复重复此步骤,直到得到完整的频率响应曲线。
4. 从频率响应曲线中可以读取出系统的自然频率ω_n和阻尼比ξ。
自然频率ω_n对应曲线的峰值,阻尼比ξ对应峰值的左右两侧。
5. 测量系统的稳态增益K,方法是将函数信号发生器输出一个不同于ω_n的正弦波信号,调整其电压大小,使得输出信号电压Vo的大小稳定在一个固定值,同时记录此时的输入信号电压Vi。
6. 计算出系统的时间常数T,方法是测量系统的暂态响应曲线,然后求出曲线的时间常数。
时间常数T等于曲线从初始值到达其稳态值所需的时间。
实验结果:通过实验,我们得到了二阶系统的自然频率ω_n、阻尼比ξ、稳态增益K和时间常数T的值。
将这些值代入二阶系统的传递函数,就可以确定系统的模型。
通过模型,可以进一步分析系统的输入输出特性和动态响应特性。
实验结论:通过本次实验,我们学习了如何测量二阶系统的特性参数,认识了自然频率、阻尼比、稳态增益和时间常数对系统性能的影响。
同时,通过实测数据,我们可以进一步理解二阶系统的动态响应特性。
实验三 二阶系统的动态响应分析实验指导书一、实验目的1.学习和掌握二阶系统动态性能指标的测试方法。
2.研究典型二阶系统参数对系统动态性能和稳定性的影响。
二、实验内容1.根据二阶系统的工作原理框图(动态结构方框图)建立matlab/simulink 仿真模型; 2.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。
三、实验步骤1.建立由一个积分环节和一个惯性环节组成的二阶闭环系统的模型; 2.观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间; 3.改变该二阶系统模拟电路的参数,观测参数对系统动态性能的影响。
4.分析实验结果,完成实验报告。
四、附录1.典型二阶系统典型二阶系统的动态结构方框图如图3.1所示:其开环传递函数为1()(1)KG S S T S =+,10K K T =图3.1图3.2其闭环传递函数为11112111111121222111111()1(1)11212o o o o o o nn n o n n K T s T s K K s K T s T s K T T s T s K T s T s K T T w K s w s w s s T T T w w T ϕξξ+===++++++==++++===自然角频率阻尼比,其中n ω=ξ=取二阶系统的模拟电路如图3.2所示:(1) 比例环节1200()2100G S == (2) 比例积分环节121111()200o o C S G S R R C S s===(3)比例惯性环节 22312111()(1)100(1)x x x x x x R C s R R R C s G s R R C s R R s +===++(4)比例环节4()1R GS R==前向通道传递函数:123442()()()()()12200100(1)11010000(1)x x xx xG s G s G s G s G s R s R s R ss R s s R ==+==++系统的传递函数:4242424110()()11()1011010x xxss R G S s G S ss R s s R φ--+==+++=++210n w -==211502210n x x w R R ξ-===当ξ=1 ,系统为临界阻尼; 当ξ>1,系统为过阻尼; 当0<ξ<1,系统为欠阻尼; 当ξ=0,系统为无阻尼改变元件参数Rx大小,研究不同参数特征下的时域响应。
实验三二阶系统频率响应一、 实验目的(1) 学习系统频率特性响应的实验测试方法。
(2) 了解二阶闭环系统中的对数幅频特性和相频特性的计算。
(3) 掌握根据频率响应实验结果绘制波特图的方法。
(4) 掌握欠阻尼二阶闭环系统中的自然频率、阻尼比对谐振频率、谐振峰值和带宽的影响及 对应的计算。
二、 实验设备(1) XMN-2型学习机;(2) CAE-USE 辅助实验系统(3) 万用表(4) 计算机三、 实验内容本实验用于观察和分析二阶系统瞬态响应的稳定性。
二阶闭环系统模拟电路如图 3-1所示,它由两个积分环节 (0P1和0P2)及其反馈回路构 成。
图3-1二阶闭环系统模拟电路图五、数据采集及处理0P1和0P2为两个积分环节,传递函数为 G (S )丄 T i S (时间常数T RC )。
二阶闭环 系统等效结构图如图 3-2所示。
图3-2二阶闭环系统等效结构图1 1该二阶系统的自然振荡角频率为n ,阻尼为 T RCK 邑 2 2R 四、实验步骤 (1)调整 Rf=40K ,使 K=0.4 (即 Z =0.2 );取 R=1M , C=1 仏使 T=1 秒(3 n=1/1 )。
(2)输入信号位 X sin ( t ),改变角频率使3分别为0.2,0.6,0.8,0.9,1.0,1.2,1.6,2.0,3.0rad/s 。
稳态时,记录下输出响应y Ysin ( t )六、实验报告1、绘制系统结构图,并求出系统传递函数,写出其频率特性表达式。
2、用坐标纸画出二阶闭环系统的对数幅频、相频曲线(波特图)。
3、其波特图上分别标示出谐振峰值(Mr)、谐振频率(3 r)和带宽频率(3 b)。
4、观察和分析曲线中的谐振频率(3 r )、谐振峰值(Mr、和带宽(3 b),并与理论计算值作对比。
实验三 二阶开环系统的频率特性曲线一.实验要求1.研究表征系统稳定程度的相位裕度γ和幅值穿越频率c ω对系统的影响。
2.了解和掌握欠阻尼二阶开环系统中的相位裕度γ和幅值穿越频率c ω的计算。
3.观察和分析欠阻尼二阶开环系统波德图中的相位裕度γ和幅值穿越频率ωc ,与计算值作比对。
二.实验内容及步骤本实验用于观察和分析二阶开环系统的频率特性曲线。
由于Ⅰ型系统含有一个积分环节,它在开环时响应曲线是发散的,因此欲获得其开环频率特性时,还是需构建成闭环系统,测试其闭环频率特性,然后通过公式换算,获得其开环频率特性。
自然频率:TiT K=n ω 阻尼比:KT Ti21=ξ (3-2-1) 谐振频率:221ξωω-=n r 谐振峰值:2121lg20)(ξξω-=r L (3-2-2)计算欠阻尼二阶闭环系统中的幅值穿越频率ωc 、相位裕度γ: 幅值穿越频率: 24241ξξωω-+⨯=n c (3-2-3)相位裕度: 424122arctan)(180ξξξωϕγ++-=+=c(3-2-4)γ值越小,Mp%越大,振荡越厉害;γ值越大,Mp%小,调节时间ts 越长,因此为使二阶闭环系统不致于振荡太厉害及调节时间太长,一般希望:30°≤γ≤70° (3-2-5)本实验所构成的二阶系统符合式(3-2-5)要求。
被测系统模拟电路图的构成如图1所示。
图1 实验电路本实验将数/模转换器(B2)单元作为信号发生器,自动产生的超低频正弦信号的频率从低到高变化(0.5Hz~16Hz ),OUT2输出施加于被测系统的输入端r (t),然后分别测量被测系统的输出信号的开环对数幅值和相位,数据经相关运算后在虚拟示波器中显示。
实验步骤:(1)将数/模转换器(B2)输出OUT2作为被测系统的输入。
(2)构造模拟电路:安置短路套及测孔联线表同笫3.2.2 节《二阶闭环系统的频率特性曲线测试》。
(3)运行、观察、记录:① 将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT 程序,在界面的自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择二阶系统,就会弹出虚拟示波器的界面,点击开始,实验开始后,实验机将自动产生0.5Hz~16H 等多种频率信号,等待将近十分钟,测试结束后,观察闭环对数幅频、相频曲线和幅相曲线。
实验三 二阶系统的特性测量一、实验目的1、掌握二阶网络的构成方法。
2、掌握二阶网络的系统响应特性。
3、了解二阶网络波特图的测量方法。
二、实验内容1、通过阶跃信号观察其阶跃响应。
2、通过正弦信号观察系统的幅频特性,学会绘制波特图。
三、预备知识了解波特图的绘制。
四、实验仪器1、信号与系统实验箱一台。
2、二阶系统分析模块一块。
3、20MHz 示波器一台。
五、实验原理1、波特图频率特性曲线是实际中用的最多的频率特性形式,而波特图则是描述频率特性曲线的一种很好方式,同时波特图提出用对数坐标绘制波特图的 方法,简化了计算和作图。
下面分析波特图的绘制原理:设系统传函为()()()j H H H e <ΩΩ=Ω 对其两边取自然对数,有()()()()()ln ln H H j H G j H Ω=Ω+∠Ω=Ω+∠Ω⎡⎤⎣⎦式中,()()ln G H Ω=Ω称为对数增益,简称为增益,()H ∠Ω是相位,单位为弧度或度。
工程应用中增益通常用分贝(dB )为单位表示,此时应对()H Ω取常用对数并乘以20,即()()20lg G H Ω=Ω (dB )工程应用中,通常将频率坐标用对数尺度表示,称以系统频率响应模的对数和相位大小关于对数频率坐标所作出的频率特性曲线为波特图。
其中 ()G Ω~20lg Ω曲线称为幅度波特图,()H ∠Ω~20lg Ω曲线称为相位波特图。
2、二阶系统在电路系统中,二阶系统是一阶系统的扩展,与一阶系统一样是构成复杂系统基本单元。
一般二阶系统的构成电路如下图:图2-7-1 二阶系统二阶系统的传输函数一般可以写成:2n 2n n()2H s s s 2Ω=+ξΩ+Ω其中n Ω=,ξ=二阶网络的频响函数可以进一步化解为:22212()()2()()n n n b H j j j C j C Ω-Ω==Ω+ξΩΩ+ΩΩ-Ω-1n C =-ξΩ+Ω2n C =-ξΩ-Ω在二阶系统中ξ为二阶系统的阻尼系数,当0<ξ<1时系统处于欠阻尼振荡,其单位冲激响应是一个振荡的过程。
实验三 二阶系统的特性测量
一、实验目的
1、掌握二阶网络的构成方法。
2、掌握二阶网络的系统响应特性。
3、了解二阶网络波特图的测量方法。
二、实验内容
1、通过阶跃信号观察其阶跃响应。
2、通过正弦信号观察系统的幅频特性,学会绘制波特图。
三、预备知识
了解波特图的绘制。
四、实验仪器
1、信号与系统实验箱一台。
2、二阶系统分析模块一块。
3、20MHz 示波器一台。
五、实验原理
1、波特图
频率特性曲线是实际中用的最多的频率特性形式,而波特图则是描述频率特性曲线的一种很好方式,同时波特图提出用对数坐标绘制波特图的 方法,简化了计算和作图。
下面分析波特图的绘制原理:
设系统传函为
()()()j H H H e <ΩΩ=Ω 对其两边取自然对数,有
()()()()()ln ln H H j H G j H Ω=Ω+∠Ω=Ω+∠Ω⎡⎤⎣⎦
式中,()()ln G H Ω=Ω称为对数增益,简称为增益,()H ∠Ω是相位,单位为弧度或度。
工程应用中增益通常用分贝(dB )为单位表示,此时应对()H Ω取常用对数并乘以20,即
()()20lg G H Ω=Ω (dB )
工程应用中,通常将频率坐标用对数尺度表示,称以系统频率响应模的对数和相位大小关于对数频率坐标所作出的频率特性曲线为波特图。
其中 ()G Ω~20lg Ω曲线称为幅度波特图,()H ∠Ω~20lg Ω曲线称为相位波特图。
2、二阶系统
在电路系统中,二阶系统是一阶系统的扩展,与一阶系统一样是构成复杂系统基本单元。
一般二阶系统的构成电路如下图:
图2-7-1 二阶系统
二阶系统的传输函数一般可以写成:
2n 2n n
()2H s s s 2Ω=+ξΩ+Ω
其中
n Ω=
,ξ=二阶网络的频响函数可以进一步化解为:
222
12()()2()()
n n n b H j j j C j C Ω-Ω==Ω+ξΩΩ+ΩΩ-Ω-
1n C =-ξΩ+Ω
2n C =-ξΩ-Ω
在二阶系统中ξ为二阶系统的阻尼系数,当0<ξ<1时系统处于欠阻尼振荡,其单位冲激响应是一个振荡的过程。
当ξ>1时系统处于过阻尼振荡,其单位冲激响应是一个衰减过程。
当ξ=1时系统处于临界阻尼状态。
二阶网络在不同阻尼状态下的单位冲激响应与单位阶跃响应曲线如下图所示:
图2-7-2 二阶系统的阶跃响应
图2-7-3 二阶系统的波特图
实验电路如下图所示:
图2-7-4 二阶网络实验电路
六、实验步骤
1、把二阶系统分析模块插在主板上,用导线接通此模块“电源接入”和主板上的电源
(看清标识,防止接错,带保护电路),并打开此模块的电源开关。
2、二阶网络单位阶跃响应测量:函数信号发生器模块产生一频率为1KHz ,峰峰值为5V 左右的方波信号,将方波信号加入到此实验模块的“输入”端。
用示波器测量二阶网络的单位阶跃响应,改变系统的阻尼系数,可以观察不同阻尼情况下的阶跃响应。
与图2-7-2进行比较。
3、二阶网络波特图的测量 幅频特性的测量:
(1)首先用函数信号发生器模块的频率选择在中频段,“频率调节”选择最小频率(约为1KHz ),使其产生一峰峰值为5V 左右的正弦信号,加入到此实验模块的插孔“输入”端。
(2)用示波器测量“输出”,观察二阶网络的输出信号。
(3)然后不断增加信号源的输出频率(以二倍频为一步进,即2K 、4K 、6K ……),并保持其输出幅度不变,测量相应频点,并记录下输出信号的幅度、输出信号与输入信号的相位差。
以频率与输出幅度(可换算成相对0点的相对电平值,单位为dB )为变量画出一曲线,即为二阶网络的幅频特性。
相频特性的测量:
(1)首先用函数信号发生器模块的频率选择在中频段,“频率调节”选择最小频率(约为1 K ),使其产生一峰峰值为5V 左右的正弦信号,加入到此实验模块的插孔“输入”端。
(2)用示波器的两个探头测量,一个测输出,一个测输入,用李沙育图的方法观察(以45、90、135、180为特征角度)。
不同系统阻尼情况下的幅频和相频特性:
先使二阶系统工作在欠阻尼状态下,即1<ξ ,进行观察,可以改变系统的工作阻尼状态,测量过阻尼状态的幅频特性和相频特性。
七、实验结果及分析
1.绘制不同阻尼情况下,系统的波特图曲线。
频率为1KHz
频率为2KHz
频率为4KHz
频率为6KHz。
2、绘制不同阻尼情况下,系统的阶跃响应曲线频率为1KHz
频率为4KHz
八、实验测试点的说明
1、测试点分别为:
“输入”:模拟信号的输入。
“输出”:测试信号的输出。
“GND”:与实验箱上的地相连。
2、调节点分别为:
“S7”:此试验模块的电源开关。
ξ=
“阻尼系数调节”:。