《数学实验》王向东高等教育出版社实验一习题详解
- 格式:pdf
- 大小:138.56 KB
- 文档页数:8
贵州师范学院2012级数本一班李刚数学实验课后练习答案习题2.11. syms x y;>> x=-5:0.01:5;>> y=x.^1/2;>> plot(x,y)2. f plot('exp(-x.^2)',[-5,5])3. ezplot('x.^3+y.^3-3*x*y',[-5,5])4 . ezplot('y.^2-x.^3/(1-x)',[-5,5])5.t=0:0.1:2*pi;x=t-sin(t);y=2*(1-cos(t));plot(x,y)6. t=0:0.1:2*pi; x=cos(t).^3; >> y=sin(t).^3;>> plot(t,y)>>7: t=0:0.1:2*pi; x=cos(t); y=2*sin(t); z=3*t; plot3(x,y,z)8: x =0:0.1:2*pi; r=x; polar(x,r)9: x =0:0.1:2*pi; r=exp(x); polar(x,r)10: x=0:0.1:2*pi; r=sqrt(cos(2*x)); polar(x,r)11: x=0:0.1:2*pi; r=sqrt(sin(2*x)); polar(x,r)12: x =0:0.1:2*pi; r=1+cos(x); polar(x,r)练习2.2 1:(1)(2):syms n; limit('sqrt(n+2)-2*(sqrt(n+1))+sqrt(n)',n,inf)Ans= 0 (3):: (4):(5):(6):2:3:fplot('x.^2*sin(x.^2-x-2)',[-2,2])练习2.3 1:(2):2:练习2.4 1:(1)(2):(3)(4):2:(1):syms x;int(x^(-x),x,0,1)ans =int(x^(-x),x = 0 .. 1)vpa(ans,10)ans =1.291285997(2):syms x;int(exp(2*x)*cos(x)^3,x,0,2*pi)ans =-22/65+22/65*exp(4*pi)(3):syms x; int(exp(x^2/2)/sqrt(2*pi),x,0,1)ans =-1125899906842624/5644425081792261*i*erf(1/2*i*2^(1/2))*pi^(1/2)*2^(1/2) >> vpa(ans,10)ans =.4767191345(4):syms x;int(x*log(x^4)*asin(1/x^2),x,1,3)ans =int(x*log(x^4)*asin(1/x^2),x = 1 .. 3)>> vpa(ans,10)ans =2.459772128(5):syms x ;int(exp(x^2/2)/sqrt(2*pi),x,-inf,inf)ans =Inf(6):syms x ;int(sin(x)/x,x,0,inf)ans =1/2*pi(7):syms x ;int(tan(x)/sqrt(x),x,0,1)Warning: Explicit integral could not be found. > In sym.int at 58ans =int(tan(x)/x^(1/2),x = 0 .. 1)>> vpa(ans,10)ans =.7968288892(8):syms x ;int(exp(-x^2/2)/(1+x^4),x,-inf,inf)ans =1/4*pi^(3/2)*2^(1/2)*(AngerJ(1/2,1/2)-2/pi^(1/2)*sin(1/2)+2/pi^(1/2)*cos(1/2)-WeberE(1/2,1/2 ))>> vpa(ans,10)ans =1.696392536(9):syms x ;int(sin(x)/sqrt(1-x^2),x,0,1)ans =1/2*pi*StruveH(0,1)>> vpa(ans,10)ans =.8932437410练习2.5(1):syms n;symsum(1/n^2^n,n,1,inf)ans =sum(1/((n^2)^n),n = 1 .. Inf)(2):s yms n ;symsum(sin(1/n),n,1,inf)ans =sum(sin(1/n),n = 1 .. Inf)(3):syms n ;symsum(log(n)/n^3,n,1,inf) ans =-zeta(1,3)(4):syms n ;symsum(1/(log(n))^n,n,3,inf) ans =sum(1/(log(n)^n),n = 3 .. Inf)(5):syms n;symsum(1/(n*log(n)),n,2,inf) ans =sum(1/n/log(n),n = 2 .. Inf)(6):yms n;symsum((-1)^n*n/(n^2+1),n,1,inf)ans =-1/4*Psi(1-1/2*i)+1/4*Psi(1/2-1/2*i)-1/4*Psi(1+1/2*i)+1/4*Psi(1/2+1/2*i)第三章练习3.11:(1):a=-30:1:30;b=-30:1:30;[x,y]=meshgrid(a,b);z=10*sin(sqrt(x.^2+y.^2))./(sqrt(1+x.^2+y.^2)); meshc(x,y,z)(2):a=-30:1:30;b=-30:1:30;[x,y]=meshgrid(a,b);z=4*x.^2/9+y.^2;meshc(x,y,z)(3):(4):a=-30:1:30;b=-30:1:30;[x,y]=meshgrid(a,b); z=x.^2/3-y.^2/3; meshc(x,y,z)(5):a=-30:1:30;>> b=-30:1:30;>> [x,y]=meshgrid(a,b); >> z=x*y;>> meshc(x,y,z)(6):(7):a=-30:1:30;>> b=-30:1:30;>> [x,y]=meshgrid(a,b); >> z=sqrt(x.^2+y.^2); >> meshc(x,y,z)(8):(9):a=-30:1:30;>> b=-30:1:30;>> [x,y]=meshgrid(a,b);>> z=atan(x./y);>> meshc(x,y,z)练习3.21;a=-1:0.1:1;>> b=0:0.1:2;>> [x,y]=meshgrid(a,b);>> z=x.*exp(-x.^2-y.^2);>> [px,py]=gradient(z,0.1,0.1);>> contour(a,b,z)>> hold on>> quiver(a,b,px,py)2:a=-2:0.1:1;>> b=-7:0.1:1;>> [x,y]=meshgrid(a,b);>> z=y.^3/9+3*x.^2.*y+9*x.^2+y.^2+x.*y+9; >> plot3(x,y,z)>> grid on3:[x,y]=meshgrid(-2*pi:0.2:2*pi); z=x.^2+2*y.^2;plot3(x,y,z)hold onezplot('x^2+y^2-1',[-2*pi,2*pi]) ; grid on4:t=0:0.03:2*pi;>> s=[0:0.03:2*pi]';>> x=(0*s+1)*cos(t);y=(0*s+1)*sin(t);z=s*(0*t+1); >> mesh(x,y,z)>> hold on>> [x,y]=meshgrid(-1:0.1:1);>> z=1-x+y;>> mesh(x,y,z)5:syms x y z dx dyz=75-x^2-y^2+x*y;zx=diff(z,x),zy=diff(z,y)zx =-2*x+yzy =-2*y+x练习3.31:ezplot('x^2+y^2-2*x',[-2,2]);>> grid onsyms x y ;s=int(int(x+y+1,y,-sqrt(1-(x-1)^2),sqrt(1-(x-1)^2)),x,0,2)s =2*pi2:syms r t ;>> s=int(int(sqrt(1+r^2*sin(t)),r,0,1),t,0,2*pi)s =int(1/2*((1+sin(t))^(1/2)*sin(t)^(1/2)+log(sin(t)^(1/2)+(1+sin(t))^(1/2)))/sin(t)^(1/2),t = 0 .. 2*pi) 3:syms x y z ;>> s=int(int(int(1/(1+x+y+z)^3,z,0,1-x-y),y,0,1-x),x,0,1)s =-5/16+1/2*log(2)4:s=vpa(int(int(x*exp(-x^2-y^2),y,0,2),x,-1,10))s =0.16224980455070416645061789474030练习3.41:(1):y=dsolve('Dy=x+y','y(0)=1','x')得:y =-1-x+2*exp(x)(2):y=dsolve('Dy=2*x+y^2','y(0)=0')y =tan(t*x^(1/2)*2^(1/2))*x^(1/2)*2^(1/2)练习4.11:(1):p=[5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -6 8 0 0 0 -5 0 0]; >> x=roots(p)x =0.97680.9388 + 0.2682i0.9388 - 0.2682i0.8554 + 0.5363i0.8554 - 0.5363i0.6615 + 0.8064i0.6615 - 0.8064i0.3516 + 0.9878i0.3516 - 0.9878i-0.0345 + 1.0150i-0.0345 - 1.0150i-0.4609 + 0.9458i-0.4609 - 0.9458i-0.1150 + 0.8340i-0.1150 - 0.8340i-0.7821 + 0.7376i-0.7821 - 0.7376i-0.9859 + 0.4106i-0.9859 - 0.4106i-1.0416-0.7927(2): p=[8 36 54 23];x=roots(p)x =-1.8969 + 0.6874i-1.8969 - 0.6874i-0.70632:p1=[1 0 -3 -2 -1];p2=[1 -2 5];[q2,r2]=deconv(p1,p2)q2 =1 2 -4r2 =0 0 0 -20 19 3:syms x;f=x^4+3*x^3-x^2-4*x-3;g=3*x^3+10*x^2+2*x-3;p1=factor(f),p2=factor(g)p1 =(x+3)*(x^3-x-1)p2 =(x+3)*(3*x^2+x-1)4:syms x ;f=x^12-1;p=factor(f)p =(-1+x)*(1+x^2+x)*(1+x)*(1-x+x^2)*(1+x^2)*(x^4-x^2+1)5: (1):p=[1 0 1];q=[1 0 0 0 1];[a,b,r]=residue(p,q)a =-0.0000 - 0.3536i-0.0000 + 0.3536i0.0000 - 0.3536i0.0000 + 0.3536ib =0.7071 + 0.7071i0.7071 - 0.7071i-0.7071 + 0.7071i-0.7071 - 0.7071ir =[](2):p=[1];q=[1 0 0 0 1];[a,b,r]=residue(p,q)a =-0.1768 - 0.1768i -0.1768 + 0.1768i0.1768 - 0.1768i0.1768 + 0.1768ib =0.7071 + 0.7071i0.7071 - 0.7071i -0.7071 + 0.7071i -0.7071 - 0.7071ir =[](3):p=[1 0 1];q=[1 1 -1 -1];[a,b,r]=residue(p,q)a =0.5000-1.00000.5000b =-1.0000-1.00001.0000r =[] (4): p=[1 1 0 0 0 -8];[a,b,r]=residue(p,q)a =-4-38b =-11r =1 1 1练习 4.21:(1):D=[2 1 3 1;3 -1 2 1;1 2 3 2;5 0 6 2];det(D)ans =6(2):syms a b c dD=[a 1 0 0 ;-1 b 1 0;0 -1 c 1;0 0 -1 d];det(D)ans =a*b*c*d+a*b+a*d+c*d+12:(1):D=[1 1 1 1; a b c d;a^2 b^2 c^2 d^2;a^3 b^3 c^3 d^3];det(D)ans =b*c^2*d^3-b*d^2*c^3-b^2*c*d^3+b^2*d*c^3+b^3*c*d^2-b^3*d*c^2-a*c^2*d^3+a*d^2*c^3+a *b^2*d^3-a*b^2*c^3-a*b^3*d^2+a*b^3*c^2+a^2*c*d^3-a^2*d*c^3-a^2*b*d^3+a^2*b*c^3+a^ 2*b^3*d-a^2*b^3*c-a^3*c*d^2+a^3*d*c^2+a^3*b*d^2-a^3*b*c^2-a^3*b^2*d+a^3*b^2*c(2): s yms a b x y zD=[a*x+b*y a*y+b*z a*z+b*x; a*y+b*z a*z+b*x a*x+b*y;a*z+b*x a*x+b*y a*y+b*z];det(D)ans =3*a^3*x*z*y+3*b^3*y*x*z-a^3*x^3-a^3*y^3-b^3*z^3-a^3*z^3-b^3*x^3-b^3*y^33: (1): D=[1 1 1 1;1 2 -1 4;2 -3 -1 -5;3 1 2 11];D1=[5 1 1 1;-2 2 -1 4;-2 -3 -1 -5;0 1 2 11];D2=[1 5 1 1;1 -2 -1 4;2 -2 -1 -5;3 0 2 11];D3=[1 1 5 1;1 2 -2 4;2 -3 -2 -5;3 1 0 11];D4=[1 1 1 5;1 2 -1 -2;2 -3 -1 -2;3 1 2 0];x1=det(D1)/det(D);x2=det(D2)/det(D);x3=det(D3)/det(D);x4=det(D4)/det(D);x1,x2,x3,x4x1 =1x2 =2x3 =3x4 =-1(2):D=[5 6 0 0 0;1 5 6 0 0;0 1 5 6 0;0 0 1 5 6;0 0 0 1 5]; D1=[1 6 0 0 0;0 5 6 0 0;0 1 5 6 0;0 0 1 5 6;1 0 0 1 5]; D2=[5 1 0 0 0;1 0 6 0 0;0 0 5 6 0;0 0 1 5 6;0 1 0 1 5]; D3=[5 6 1 0 0;1 5 0 0 0;0 1 0 6 0;0 0 0 5 6;0 0 1 1 5]; D4=[5 6 0 1 0;1 5 6 0 0;0 1 5 0 0;0 0 1 0 6;0 0 0 1 5]; D5=[5 6 0 0 1;1 5 6 0 0;0 1 5 6 0;0 0 1 5 0;0 0 0 1 1]; x1=det(D1)/det(D);x2=det(D2)/det(D);x3=det(D3)/det(D);x4=det(D4)/det(D);x5=det(D5)/det(D);x1,x2,x3,x4,x5x1 =2.2662x2 =-1.7218x3 =1.0571x4 =-0.5940x5 =0.3188练习 4.3 1:A=[1 2 0;3 4 -1; 1 1 -1];B=[1 2 3;-1 0 1;-2 4 -3];A',2+A,2*A-B,A*B,A^2,A^(-1)ans =1 3 12 4 10 -1 -1ans =3 4 25 6 13 3 1ans =1 2 -37 8 -34 -2 1ans =-1 2 51 2 162 -2 7ans =7 10 -214 21 -33 5 0ans =-3.0000 2.0000 -2.00002.0000 -1.0000 1.0000-1.0000 1.0000 -2.0000 2:(1):B=[2 4 3];B'ans =243(2):A=[1 2 3];B=[2 4 3];A.*B,B.*Aans =2 8 9ans =2 8 93:(1):A=[0 1 0;1 0 0;0 0 1];B=[1 0 0;0 0 1;0 1 0];C=[1 -4 3;2 0 -1;1 -2 0];A^(-1),B^(-1),X=A^(-1)*C*B^(-1) ans =0 1 01 0 00 0 1ans =1 0 00 0 10 1 0X =2 -1 01 3 -41 0 -2(2):>> A=[1 2 3;2 2 3;3 5 1];B=[1 0 0;2 0 0;3 0 0];A^(-1),x=A^(-1)*Bans =-1.0000 1.0000 0.00000.5385 -0.6154 0.23080.3077 0.0769 -0.1538x =1 0 00 0 00 0 0练习 4.41:(1):A=[4 2 -1;3 -1 2;11 3 0];b=[2;10;8];B=[A,b];rank(A),rank(B)ans =2ans =3(2):A=[2 1 -1 1;3 -2 1 -3;1 4 -3 5];b=[1;4;-2];B=[A,b];rank(A),rank(B)ans =2ans =2(3):A=[ 1 1 1 1; 1 2 -1 4;2 -3 -1 -5;3 1 2 11];b=[5;-2;-2;0];B=[A,b];rank(A),rank(B)ans =4ans =4(4):A=[ 1 1 2 -1; 2 1 1 -1;2 2 1 2];b=[0;0;0];B=[A,b];rank(A),rank(B)ans =3ans =32:syms a;A=[-2 1 1;1 -2 1;1 1 -2];b=[-2;a;a^2];B=[A,b];rank(A),rank(B)ans =2ans =3练习4.51:(1):A=[0 1;-1 0];[a,b]=eig(A)a =0.7071 0.70710 + 0.7071i 0 - 0.7071ib =0 + 1.0000i 000 - 1.0000i(2):A=[0 0 1;0 1 0;1 0 0];[a,b]=eig(A)a =0.7071 0.7071 00 0 -1.0000-0.7071 0.7071 0b =-1 0 00 1 00 0 1(3):A=[4 1 -1;3 2 -6;1 -5 3];[a,b]=eig(A)a =0.0185 -0.9009 -0.3066-0.7693 -0.1240 -0.7248-0.6386 -0.4158 0.6170b =-3.0527 0 00 3.6760 00 0 8.3766(4):A=[1 1 1 1;1 1 -1 -1;1 -1 1 -1;1 1 -1 1];[a,b]=eig(A)a =0.5615 0.3366 0.2673 -0.7683-0.5615 -0.3366 0.0000 -0.0000-0.5615 -0.3366 -0.5345 -0.6236-0.2326 0.8125 0.8018 -0.1447b =-1.4142 0 0 00 1.4142 0 00 0 2.0000 00 0 0 2.0000(5):A=[5 7 6 5;7 10 8 7;6 8 10 9;5 7 9 10];[a,b]=eig(A)a =0.8304 0.0933 0.3963 0.3803-0.5016 -0.3017 0.6149 0.5286-0.2086 0.7603 -0.2716 0.55200.1237 -0.5676 -0.6254 0.5209b =0.0102 0 0 00 0.8431 0 00 0 3.8581 00 0 0 30.2887(6):A=[5 6 0 0 0;1 5 6 0 0 ;0 1 5 6 0 ;0 0 1 5 6; 0 0 0 1 5 ]; [a,b]=eig(A)a =0.7843 -0.7843 -0.9860 -0.9237 -0.92370.5546 0.5546 0.0000 0.3771 -0.37710.2614 -0.2614 0.1643 -0.0000 0.00000.0924 0.0924 0.0000 -0.0628 0.06280.0218 -0.0218 -0.0274 0.0257 0.02579.2426 0 0 0 00 0.7574 0 0 00 0 5.0000 0 00 0 0 2.5505 00 0 0 0 7.4495 2:(1):A=[0 1;-1 0];[a,b]=eig(A)a =0.7071 0.70710 + 0.7071i 0 - 0.7071ib =0 + 1.0000i 00 0 - 1.0000i>> P=orth(a),B=P'*A*P,P*P'P =-0.7071 -0.70710 - 0.7071i 0 + 0.7071iB =0 + 1.0000i 0 - 0.0000i0 - 0.0000i 0 - 1.0000ians =1.0000 0 + 0.0000i0 - 0.0000i 1.0000>> inv(a)*A*a0 + 1.0000i 000 - 1.0000i3:(1):A=[2 0 0;0 3 2;0 2 3]; [a,b]=eig(A)a =0 1.0000 0-0.7071 0 0.70710.7071 0 0.7071b =1.0000 0 00 2.0000 00 0 5.0000>> P=orth(a),B=P'*A*P,P*P'P =-1.0000 0 -0.00000.0000 0.7071 0.7071-0.0000 -0.7071 0.7071B =2.0000 0.0000 0.00000.0000 1.0000 00.0000 0 5.0000ans =1.0000 -0.0000 0.0000-0.0000 1.0000 -0.00000.0000 -0.0000 1.0000(2):A=[1 1 0 -1;1 1 -1 0;0 -1 1 1;-1 0 1 1];[a,b]=eig(A)a =-0.5000 0.7071 0.0000 0.50000.5000 -0.0000 0.7071 0.50000.5000 0.7071 0.0000 -0.5000-0.5000 0 0.7071 -0.5000 b =-1.0000 0 0 00 1.0000 0 00 0 1.0000 00 0 0 3.0000 >> P=orth(a),B=P'*A*P,P*P'P =-0.5000 -0.4998 -0.4783 -0.52100.5000 -0.4822 0.5212 -0.49580.5000 0.4998 -0.4964 -0.5037-0.5000 0.5175 0.5031 -0.4786 B =-1.0000 0.0000 0.0000 0.00000.0000 2.9988 -0.0362 0.03440.0000 -0.0362 1.0007 -0.00060.0000 0.0344 -0.0006 1.0006 ans =1.0000 0.0000 0.0000 -0.00000.0000 1.0000 -0.0000 00.0000 -0.0000 1.0000 0.0000-0.0000 0 0.0000 1.0000练习5.3 1: [m,v]=unifstat(1,11)m =6v =8.33332:[m,v]=normstat(0,16)m =v =256>> s=sqrt(v)s =163:x=randn(200,6);s=std(x)s =0.9094 0.9757 0.9702 0.9393 0.9272 1.09824: x=normrnd(0,16,300,1);hist(x,10)练习 5.61:x=[352 373 411 441 462 490 529 577 641 692 743];y=[166 153 177 201 216 208 227 238 268 268 274];plot(x,y,'*')4:(1):x=[10 10 10 15 15 15 20 20 20 25 25 25 30 30 30];y=[25.2 27.3 28.7 29.8 31.1 27.8 31.2 32.6 29.7 31.7 30.1 32.3 29.4 30.8 32.8]; plot(x,y,'*')。
实验十:简单的鹿群增长问题•问题一:鹿群增长模型•问题二:养老保险问题•问题三:金融公司的支付基金流动•问题四:保险金问题摘要:本篇实验报告主要是针对实验十:简单的鹿群增长问题而建立的模型。
并且将此模型的求解方法,运用到其他的类似的模型当中。
对该模型的求解,运用斧分方程组和线性代数的有关知识,通过用matlab编程,实现对矩阵的特征值和特征向量的自动求解。
以及将已知矩阵进行对角化。
并且用该模型的建模思想和求解方法,对课后的四个实验任务,分别进行了模型的建立和求解。
具体的四个实验任务如下:(1)鹿群增长模型的建立,算法编程以及程序的可行性验证;(2)养老保险问题模型的建立与求解;(3)金融公司支付基金的流动模型的建立与求解;(4)人寿保险计划模型的建立与求解;针对这几个实验任务,我分别建立了不同的数学模型,运用Matlab编程进行求解。
通过书上给出的实际数据进行了算法的可行性检验,并且通过实际数据给出了该模型的优略性评价。
问题一:鹿群增长模型问题重述:假设在一个自然生态地区生长着一群鹿,在一段时间内鹿群的增长受资源制约的因素较小。
这里所说的资源包括:有限的食物、空间、水等。
试建立一个简单的鹿群增长模型,并以适当的数据给出结果。
给出数据一:x0=0.8 ,yO=l ,al=0.3 ,a2=1.5 ,bl=0.62 ,b2=0.75 ,s=0.8; 数据二:xO=2.8 ,y0=3.4 ,al=0.4 ,a2=1.8 ,b 1=0.61 ,b2=0.72 ,s=0.7; 情况下的结果模型假设:(1)只考虑母鹿,并将其分为两组,一岁以下为幼鹿组,其余的为成年组;(2)不考虑饱和状态,即在所考虑的时间段内,种群的增长基本上是不受自然资源的制约;(3)鹿的生育数与鹿的总数成正比。
符号说明:X fl:第“年幼鹿的数量;y n:第"年成年鹿的数量;%:幼鹿的生育率;a2:成年鹿的的生育率;也:幼鹿的存活率;b2 :成年鹿的存活率;A:系数矩阵;人:矩阵A的特征值;入:矩阵A的特征值;X o:开始时幼鹿的数量;%):开始时成年鹿的数量;S:刚出生的幼鹿在哺乳期的存活率;J 代入方程⑴中,可以得到:= Au模型的建立:问题分析:根据鹿群数量增长的关系模型,建立幼鹿和成年鹿的数量关系式(观测吋间取为一年),建立如下的线性斧分方程组:(1)问题转化为对(2)进行求解。
楚雄师范学院2013年首届“雁峰杯”数学建模竞赛论文题目种群增长规律模型2013 年5月26日种群增长规律模型摘要:某个自然环境中只有一种生物的群体(生态学上称种群)生存时,人们常用Logistic模型来描述这个种群数量的演变过程。
而且一个种群就不存在相互竞争、相互依存或是弱肉强食的关系。
本文在Logistic模型基础上,根据种群数量的统计数据,建立种群指数增长模型,并利用Matlab这一数学软件对所统计的数据进行拟合,最后对模型进行分析和评价。
关键词:Logistic模型生物种群指数增长 Matlab软件一、问题重述在某个地区生长着一个种群(一类生物群落),主要依靠自然资源存活并繁殖,假设该种群单位时间的增长量与其数量成正比。
一个动物学家在2012年对的数量。
假设该地区最多只能容纳该种群2000只,请计算出该种群达到最大容量的大概时间。
二、问题分析种群的数量随时间变化而变化,根据统计数据绘出曲线图如图1。
图表 1种群数量的动态变化由图表1所绘曲线图可知种群的数量变化趋势大致成指数曲线增长,类似于其他生物种群数量的动态变化趋势。
对于生物种群的这种指数曲线的动态变化趋势,往往用Logistic模型来描述,并且根据种群的统计数据利用Matlab软件处理。
利用所得的模型对以往种群的数量进行推算预测,可检验模型的精确度,以便对模型进行改进。
三、模型假设1、假设环境环境条件允许生物种群数量有一个最大值,即环境容纳量N,当种群数量达到环境最大容纳量时,种群数量不再增长;2、种群数量的增长简单利用固有增长率r来描述;3、种群中每个个体处于同一水平,在种群增长的过程中隔天到差异如年龄结构等个不予考虑;4、在所研究地区只考虑区域内部的种群数量,不考虑种群在区域间的迁入与迁出;5、种群总数是随时间连续变化的。
四.符号说明t :时间;x:种群在t时的数量;)(tr :种群的固有增长率;N :种群的最大数量;五.模型的建立与求解根据模型的假设,在最大容量为2000只,种群生长不受其他任何条件的限制,也就是说食物等能充分满足种群需求的情况下,种群就能充分发挥其增长能力,数量迅速增加,呈现指数增长规律,也称为“J”型增长,这种增长变化的曲线如图表2所示图表 2种群数量散点图种群在有限环境中的增长不是“J ”型,而是“S ”型,但因为在较大的空间容量,以及不考虑其它因素的情况下,种群在有限环境中的增长也可以看做是“J ”型增长,即符合“S ”型增长曲线的logistic 模型是同等的。
数学实验课后习题解答配套教材:王向东戎海武文翰编著数学实验王汝军编写实验一曲线绘图【练习与思考】画出下列常见曲线的图形。
以直角坐标方程表示的曲线:1.立方曲线3x y=clear;x=-2:0.1:2; y=x.^3; plot(x,y)2.立方抛物线3x y=clear;y=-2:0.1:2; x=y.^3; plot(x,y) grid on3.高斯曲线2xe y-=clear;x=-3:0.1:3;y=exp(-x.^2); plot(x,y); grid on%axis equal以参数方程表示的曲线4. 奈尔抛物线)(,3223x y t y t x ===clear;t=-3:0.05:3; x=t.^3;y=t.^2; plot(x,y) axis equal grid on5. 半立方抛物线2323,()x t y t y x ===clear;t=-3:0.05:3; x=t.^2;y=t.^3; plot(x,y) %axis equal grid on6.迪卡尔曲线2332233,(30)11at at x y x y axy t t==+-=++ clear;a=3;t=-6:0.1:6; x=3*a*t./(1+t.^2); y=3*a*t.^2./(1+t.^2); plot(x,y)7.蔓叶线233222,()11at at x x y y t t a x===++- clear;a=3;t=-6:0.1:6;x=3*a*t.^2./(1+t.^2); y=3*a*t.^3./(1+t.^2); plot(x,y)8. 摆线)cos 1(),sin (t b y t t a x -=-=clear;clc; a=1;b=1;t=0:pi/50:6*pi; x=a*(t-sin(t)); y=b*(1-cos(t)); plot(x,y); axis equal grid on9. 内摆线(星形线))(sin ,cos 32323233a y x t a y t a x =+==clear;a=1;t=0:pi/50:2*pi; x=a*cos(t).^3; y=a*sin(t).^3; plot(x,y)10. 圆的渐伸线(渐开线))cos (sin ),sin (cos t t t a y t t t a x -=+=clear; a=1;t=0:pi/50:6*pi;x=a*(cos(t)+t.*sin(t)); y=a*(sin(t)+t.*cos(t)); plot(x,y) grid on11. 空间螺线ct z t b y t a x ===,sin ,coscleara=3;b=2;c=1; t=0:pi/50:6*pi; x=a*cos(t); y=b*sin(t); z=c*t;plot3(x,y,z) grid on以极坐标方程表示的曲线:12. 阿基米德线0,≥=r a rϕclear; a=1;phy=0:pi/50:6*pi; rho=a*phy;polar(phy,rho,'r-*')13. 对数螺线ϕa e r =clear; a=0.1;phy=0:pi/50:6*pi; rho=exp(a*phy); polar(phy,rho) 14. 双纽线))()((2cos 22222222y x a y x a r -=+=ϕclear; a=1;phy=-pi/4:pi/50:pi/4; rho=a*sqrt(cos(2*phy)); polar(phy,rho)hold onpolar(phy,-rho)15. 双纽线)2)((2sin 222222xy a y x a r =+=ϕclear; a=1;phy=0:pi/50:pi/2;rho=a*sqrt(sin(2*phy)); polar(phy,rho) hold onpolar(phy,-rho)16. 四叶玫瑰线0,2sin ≥=r a r ϕclear;close a=1;phy=0:pi/50:2*pi; rho=a*sin(2*phy); polar(phy,rho)17. 三叶玫瑰线0,3sin ≥=r a r ϕclear;close a=1;phy=0:pi/50:2*pi; rho=a*sin(3*phy); polar(phy,rho)18. 三叶玫瑰线0,3cos ≥=r a r ϕclear;close a=1;phy=0:pi/50:2*pi; rho=a*cos(3*phy); polar(phy,rho)实验二 极限与导数【练习与思考】1. 求下列各极限(1)nn n)11(lim -∞→ (2)n nn n 3lim 3+∞→ (3))122(lim n n n n ++-+∞→clear;syms ny1=limit((1-1/n)^n,n,inf)y2=limit((n^3+3^n)^(1/n),n,inf)y3=limit(sqrt(n+2)-2*sqrt(n+1)+sqrt(n),n,inf)y1 =1/exp(1) y2 =3 y3 =0(4))1112(lim 21---→x x x (5)x x x 2cot lim 0→ (6))3(lim 2x x x x -+∞→clear; syms x ;y4=limit(2/(x^2-1)-1/(x-1),x,1) y5=limit(x*cot(2*x),x,0)y6=limit(sqrt(x^2+3*x)-x,x,inf)y4 =-1/2 y5 =1/2 y6 =3/2(7)x x x m )(cos lim ∞→ (8))111(lim 1--→x x e x (9)x x x 11lim30-+→ clear;syms x my7=limit(cos(m/x),x,inf)y8=limit(1/x-1/(exp(x)-1),x,1) y9=limit(((1+x)^(1/3)-1)/x,x,0)y7 =1y8 =(exp(1) - 2)/(exp(1) - 1) y9 =1/32. 考虑函数22),sin(3)(32<<-=x x x x f作出图形,并说出大致单调区间;使用diff 求)('x f ,并求)(x f 确切的单调区间。
楚 雄 师 范 学 院2006—2007学年 第二 学期期末考试试卷 《数学实验》(B )卷 评分标准答题要求:1、写出各实验的MATLAB求解命令或程序2、除绘图题外,写出各实验的实验结果一、完成以下实验(每个实验5分,共20分)。
实验一 曲线绘图1.抛物线223y x x =-+-解:clear;x=-2:0.1:2;y=-x.^2+2*x-2;plot(x,y) 5分2.圆的渐开线2(cos sin ),2(sin cos )x t t t y t t t =+=-解:clear;t=linspace(0,2*pi);x=2*(cos(t)+t.*sin(t));y=2*(sin(t)-t.*cos(t));plot(x,y) 5分实验二 极限与导数3.求极限)lim x x →∞ 解:clear;syms x;s=limit(sqrt(x^2+3*x)-x,x,1)s =1 5分4.求函数()ln ln y x =的一阶导数解:syms x;y=log(log(x));dy=diff(y,x,1)dy =1/x/log(x) 5分二、完成以下实验(每个实验5分,共20分)。
实验三 级数5.求出()arctan f x x =马克劳林展开式的前5项解:clear;syms x;y=atan(x);f=taylor(y,0,5)f =x-1/3*x^3 5分6.求级数1n ∞=∑的和 解:clearsyms ns=sqrt(n+2)-2*sqrt(n+1)+sqrt(n);symsum(s,n,1,inf)ans =sum((n+2)^(1/2)-2*(n+1)^(1/2)+n^(1/2),n = 1 .. Inf) 5分实验四 积分 7.计算积分153cos dx x -⎰解:clear;syms x;s=int(1/(5-3*cos(x)),x)s =1/2*atan(2*tan(1/2*x)) 5分8.选用一种计算数值积分的方法,求数值积分20sin(2)x e x dx π⎰法1 复化梯形求积公式x=0:0.01:2*pi;y=exp(x).*sin(2*x);s1=trapz(x,y)s1 = -213.7824 5分法2 复化抛物线求积公式先编写M-函数文件function y=ex08(x)y=exp(x).*sin(2*x);保存后,在命令 命令运行指令:s2=quad('ex08',0,2*pi)2=quad('ex08',0,2*pi)s2 = -213.7967法3 牛顿-科兹求积公式s3=quadl('ex08',0,1)s3 =-213.7967三、完成以下实验(每个实验5分,共20分)。
数学实验练习2.1画出下列常见曲线的图形。
(其中a=1,b=2,c=3)1、立方抛物线3xy=解:x=-5:0.1:0;y=(-x).^(1/3);y=-y;x=0:0.1:5;y=[y,x.^(1/3)];x=[-5:0.1:0,0:0.1:5];plot(x,y)2、高斯曲线2x e=y-解:fplot('exp(-x.^2)',[-5,5])3、笛卡儿曲线)3(13,1333222axy y x t at y t at x =++=+=解:ezplot('x.^3+y.^3-3*x*y',[-5,5])xyx.3+y.3-3 x y = 0或t=-5:0.1:5; x=3*t./(1+t.^2); y=3*t.^2./(1+t.^2); plot(x,y)4、蔓叶线)(1,1322322xa x y t at y t at x -=+=+=解:ezplot('y.^2-x.^3/(1-x)',[-5,5])xyy.2-x.3/(1-x) = 0或t=-5:0.1:5; x=t.^2./(1+t.^2); y=t.^3./(1+t.^2); plot(x,y)5、摆线)cos 1(),sin (t b y t t a x -=-= 解:t=0:0.1:2*pi;x=t-sin(t); y=2*(1-cos(t)); plot(x,y)6、星形线)(sin ,cos 32323233a y x t a y t a x =+== 解:t=0:0.1:2*pi; x=cos(t).^3; y=sin(t).^3;plot(x,y)或ezplot('x.^(2/3)+y.^(2/3)-1',[-1,1])xyx.2/3+y.2/3-1 = 07、螺旋线ct z t b y t a x ===,sin ,cos 解:t=0:0.1:2*pi; x=cos(t); y=2*sin(t); z=3*t; plot3(x,y,z) grid on8、阿基米德螺线θa r = 解:x =0:0.1:2*pi; r=x; polar(x,r)902701809、对数螺线θa e r = 解:x =0:0.1:2*pi; r=exp(x); polar(x,r)90270180010、双纽线))()((2cos 22222222y x a y x a r -=+=θ 解:x=0:0.1:2*pi; r=sqrt(cos(2*x)); polar(x,r)90270或ezplot('(x.^2+y.^2).^2-(x.^2-y.^2)',[-1,1]) grid onxy(x.2+y.2).2-(x.2-y.2) = 011、双纽线)2)((2sin 222222xy a y x a r =+=θ 解:x=0:0.1:2*pi; r=sqrt(sin(2*x)); polar(x,r)90270或ezplot('(x.^2+y.^2).^2-2*x*y',[-1,1]) grid onxy(x.2+y.2).2-2 x y = 012、心形线)cos 1(θ+=a r 解:x =0:0.1:2*pi; r=1+cos(x); polar(x,r)90270练习2.21、求出下列极限值。
数学实验课后习题解答配套教材:王向东戎海武文翰编著数学实验王汝军编写实验一 曲线绘图【练习与思考】画出下列常见曲线的图形。
以直角坐标方程表示的曲线:1. 立方曲线3x y =clear;x=-2:0.1:2; y=x.^3;plot(x,y)2. 立方抛物线3x y = clear;y=-2:0.1:2; x=y.^3; plot(x,y) grid on3. 高斯曲线2xe y -=clear;x=-3:0.1:3; y=exp(-x.^2); plot(x,y); grid on%axis equal以参数方程表示的曲线4. 奈尔抛物线)(,3223x y t y t x === clear;t=-3:0.05:3; x=t.^3;y=t.^2; plot(x,y) axis equal grid on5. 半立方抛物线2323,()x t y t y x === clear;t=-3:0.05:3; x=t.^2;y=t.^3; plot(x,y) %axis equal grid on6. 迪卡尔曲线2332233,(30)11at at x y x y axy t t==+-=++ clear;a=3;t=-6:0.1:6;x=3*a*t./(1+t.^2); y=3*a*t.^2./(1+t.^2); plot(x,y)7. 蔓叶线233222,()11at at x x y y t t a x===++- clear;a=3;t=-6:0.1:6;x=3*a*t.^2./(1+t.^2); y=3*a*t.^3./(1+t.^2); plot(x,y)8. 摆线)cos 1(),sin (t b y t t a x -=-= clear;clc; a=1;b=1;t=0:pi/50:6*pi; x=a*(t-sin(t)); y=b*(1-cos(t)); plot(x,y);axis equal grid on9. 内摆线(星形线))(sin ,cos 32323233a y x t a y t a x =+== clear; a=1;t=0:pi/50:2*pi; x=a*cos(t).^3; y=a*sin(t).^3; plot(x,y)10. 圆的渐伸线(渐开线))cos (sin ),sin (cos t t t a y t t t a x -=+= clear; a=1;t=0:pi/50:6*pi;x=a*(cos(t)+t.*sin(t)); y=a*(sin(t)+t.*cos(t)); plot(x,y) grid on11.空间螺线ct==,,cosx=sinazttbycleara=3;b=2;c=1;t=0:pi/50:6*pi;x=a*cos(t);y=b*sin(t);z=c*t;plot3(x,y,z)grid on以极坐标方程表示的曲线:12.阿基米德线0rϕa,≥=rclear;a=1;phy=0:pi/50:6*pi;rho=a*phy;polar(phy,rho,'r-*')13. 对数螺线ϕa e r = clear; a=0.1;phy=0:pi/50:6*pi; rho=exp(a*phy); polar(phy,rho) 14. 双纽线))()((2cos 22222222y x a y x a r -=+=ϕ clear; a=1;phy=-pi/4:pi/50:pi/4; rho=a*sqrt(cos(2*phy)); polar(phy,rho) hold onpolar(phy,-rho)15. 双纽线)2)((2sin 222222xy a y x a r =+=ϕ clear; a=1;phy=0:pi/50:pi/2;rho=a*sqrt(sin(2*phy)); polar(phy,rho) hold onpolar(phy,-rho)16. 四叶玫瑰线0,2sin ≥=r a r ϕ clear;close a=1;phy=0:pi/50:2*pi; rho=a*sin(2*phy); polar(phy,rho)17.三叶玫瑰线0arϕ=r,3sin≥clear;closea=1;phy=0:pi/50:2*pi;rho=a*sin(3*phy);polar(phy,rho)18.三叶玫瑰线0=rrϕa,3cos≥clear;closea=1;phy=0:pi/50:2*pi;rho=a*cos(3*phy);polar(phy,rho)实验二 极限与导数【练习与思考】1. 求下列各极限 (1)n n n)11(lim -∞→ (2)n n n n 3lim 3+∞→ (3))122(lim n n n n ++-+∞→ clear;syms ny1=limit((1-1/n)^n,n,inf)y2=limit((n^3+3^n)^(1/n),n,inf)y3=limit(sqrt(n+2)-2*sqrt(n+1)+sqrt(n),n,inf)y1 =1/exp(1)y2 =3y3 =0(4))1112(lim 21---→x x x (5)x x x 2cot lim 0→ (6))3(lim 2x x x x -+∞→ clear;syms x ;y4=limit(2/(x^2-1)-1/(x-1),x,1)y5=limit(x*cot(2*x),x,0)y6=limit(sqrt(x^2+3*x)-x,x,inf)y4 =-1/2y5 =1/2y6 =3/2(7)x x x m )(cos lim ∞→ (8))111(lim 1--→x x e x (9)x x x 11lim 30-+→ clear;syms x my7=limit(cos(m/x),x,inf)y8=limit(1/x-1/(exp(x)-1),x,1)y9=limit(((1+x)^(1/3)-1)/x,x,0)y7 =1y8 =(exp(1) - 2)/(exp(1) - 1)y9 =1/32. 考虑函数22),sin(3)(32<<-=x x x x f作出图形,并说出大致单调区间;使用diff 求)('x f ,并求)(x f 确切的单调区间。
数学建模教材目录(2008年10月整理)1982年以来国内正式出版的数学建模教材、译著及竞赛辅导材料,及与数学建模相关的数学实验教材(仅据各地告知的统计):1.E.A.Bender.数学模型引论.朱尧辰、徐伟宣译,科学普及出版社,1982.2.近藤次郎.数学模型.宫荣章等译,机械工业出版社,1985.3.C.L.戴姆、E.S.艾维著.数学构模原理.海洋出版社,1985.4.姜启源.数学模型.高等教育出版社,1987.5.任善强.数学模型.重庆大学出版社,1987.6.M.Braun,C.S.Coleman,D.A.Drew,微分方程模型.朱煜民、周宇虹译,国防科技大学出版社(本书为W.F.Lucas主编的ModulesinAppliedMathematics一书的第一卷),1988.7.谌安琦.科技工程中的数学模型.中国铁道出版社,1988.8.江裕钊、辛培清.数学模型与计算机模拟.电子科技大学出版社,1989.9.杨启帆、边馥萍.数学模型.浙江大学出版社,1990.10.董加礼、曹旭东、史明仁.数学模型.北京工业大学出版社,1990.11.唐焕文、冯恩民、孙育贤、孙丽华.数学模型引论.大连理工大学出版社,1990.12.姜启源.数学模型(第二版).高等教育出版社,1991.13.H.P.Williams,.数学规划模型建立与计算机应用.国防工业出版社,1991.14.李文.应用数学模型.华中理工大学出版社,1993.15.叶其孝主编.大学生数学建模竞赛辅导教材.湖南教育出版社,1993.16.寿纪麟.数学建模—方法与范例.交通大学出版社,1993.17.叶其孝.建模教育与国际数学建模竞赛.《工科数学》杂志社,1994.18.濮定国、田蔚文主编.数学模型.东南大学出版社,1994.19.欧阳亮.系统科学中数学模型.山东大学出版社,1995.20.陈义华.数学模型.重庆大学出版社,1995.21.朱思铭、李尚廉.数学模型.中山大学出版社,1995.22.蔡常丰.数学模型建模分析.科学出版社,1995.23.徐全智、杨晋浩.数学建模入门.电子科技大学出版社,1996.24.沈继红、施久玉、高振滨、张晓威.数学建模.哈尔滨工程大学出版社,1996.25.任善强、雷鸣.数学模型.重庆大学出版社,1996.26.齐欢.数学模型方法.华中理工大学出版社,1996.27.王树禾.数学模型基础.中国科学技术大学出版社,1996.28.李尚志主编.数学建模竞赛教程.江苏教育出版社,1996.29.南京地区工科院校数学建模与工业数学讨论班.数学建模与实验.河海大学出版社,1996.30.谭永基、俞文?.数学模型.复旦大学出版社,1997.31.D.Burghes.数学建模—来自英国四个行业中的案例研究,叶其孝、吴庆宝译.世界图书出版公司,1997.32.叶其孝主编.大学生数学建模竞赛辅导教材(二).湖南教育出版社,1997.33.刘来福、曾文艺.数学模型与数学建模.北京师范大学出版社,199734.S.J.Brams,W.F.Lucas,P.D.Straffin,Jr..政治及有关模型.国防科技大学出版社(本书为W.F.Lucas主编的ModulesinAppliedMathematics一书的第二卷),199735.W.F.Lucas,F.S.Roberts,R.M.Thrall.离散与系统模型.国防科技大学出版社(本书为W.F.Lucas主编的ModulesinAppliedMathematics一书的第三卷),199736.H.Marcus-Roberts,M.Thompson.生命科学模型.国防科技大学出版社(本书为W.F.Lucas主编的ModulesinAppliedMathematics 一书的第四卷),199737.叶其孝主编.大学生数学建模竞赛辅导教材(三).湖南教育出版社,199838.袁震东数学建模.华东师范大学出版社,199739.贺昌政.数学建模导论.成都科技大学出版社,199840.费培之.数学模型实用教程.四川大学出版社,199841.郭锡伯、徐安农.高等数学实验课讲义.中国标准出版社,199842.H.B.Griffiths,A.Oldknow.模型数学.萧礼、张志军编译,科学出版社,199843.乐经良.数学实验.高等教育出版社,199944.萧树铁主编.数学实验.高等教育出版社,1999.45.李尚志.数学实验.高等教育出版社,1999.46.谢云荪等.数学实验.科学出版社,199947.吴翊等.数学建模的理论与实践.国防科技大学出版社,199948.周义仓.数学建模实验.西安交通大学出版社,199949.朱道元.数学建模精品案例.东南大学出版社,199950.雷功炎.数学模型讲义.北京大学出版社,199951.朱建青.数学建模.解放军出版社,199952.边馥萍.工科基础数学实验.天津大学出版社,199953.贾晓峰.微积分与数学模型.高等教育出版社,199954.赵静等.数学建模与数学实验,高等教育出版社,施普林格出版社,200055.龚劬,、刘琼荪、何中市、傅鹂.数学实验.科学出版社,200056.白其峥.数学建模案例分析.海洋出版社,200057.蔡锁章等.数学建模原理与方法.海洋出版社.200058.杨学桢.数学建模方法.河北大学出版社,200059.王庚.实用计算机数学建模.安徽大学出版社,200060.魏平等.数学实验.吉林人民出版社,200061.钟尔杰.实用数值计算方法.高等教育出版社,200162.杨振华、郦志新.数学实验科学出版社,200163.叶其孝主编.大学生数学建模竞赛辅导教材(四).湖南教育出版社,200164.全国大学生数学建模竞赛组委会.大学数学建模的理论与实践–2001中国大学生数学建模夏令营.湖南教育出版社,200165.钟尔杰.数学实验简明教程.电子科技大学出版社,200166.何万生、李万同.数学模型与建模.甘肃教育出版社,200167.何万生.数学模型与建模.甘肃教育出版社,2001.68.胡良剑、丁晓东、孙晓君.数学实验——使用MATLAB.上海科学技术出版社,200169.张兴永.数学建模简明教程.中国矿业大学出版社,2001.70.宋世德、郭满才、王经民、边宽江等..数学实验.高等教育出版社,200271.杨振华、郦志新.数学实验.科学出版社,200272.刘新平、魏暹逊等.数学建模导论.陕西师范大学出版社,200273.何文章、宋作忠.数学建模与实验.哈尔滨工程大学出版社,200274.刘来福、曾文艺.数学模型与数学建模.北京师范大学出版社,200275.周晓阳、谢松发、梅正阳.数学实验与MATLAB.华中科技大学出版社,200276.袁震东、蒋鲁敏、束金龙.数学建模简明教程.华东师范大学出版社,200277.刘承平.数学建模方法.高等教育出版社,200378.徐全智、杨晋浩.数学建模.高等教育出版社,200379.姜启源.、谢金星、叶俊.数学模型(第三版).高等教育出版社,200380.魏贵民、郭科.理工数学实验.高等教育出版社,200381.万福永、戴浩晖.数学实验教程.科学出版社,200382.朱道元.数学建模案例精选.科学出版社,2003.83.李秀珍、庞常词、韦忠礼、黄福同.数学实验.中国农业科学技术出版社,200384.谢兆鸿、范正森、王艮远.数学建模技术.中国水利水电出版社,200385.赵红革.高等数学教材(含数学实验).经济日报出版社,200386.蔡锁章等.数学建模.林业出版社,.200387.薛长虹等.大学数学实验.西南交通大学出版社,200388.朱建青.数学建模方法.郑州大学出版社,200389.杨瑞琰等.数学建模入门.中国地质大学出版社,200390.孙卫、张宇萍.高等数学实验.西北工业大学出版社,200391.杨策平.经济数学模型分析.中国地质大学出版社,200392.袁震东等.数学建模方法.华东师范大学出版社,200393.赫孝良、戴永红、周义仓.数学建模竞赛赛题简析与论文点评.西安交通大学出版社,200394.李尚志等.数学实验(第二版).高等教育出版社,200495.王向东.数学实验.高等教育出版社,200496.李亚杰.数学实验.高等教育出版社,200497.刘琼荪等.数学实验.高等教育出版社,200498.张国权.数学实验.科学出版社,200499.马知恩、周义仓.传染病动力学的数学建模与研究.科学出版社,2004100.杨静化、韩可勤.医药数学建模教程.科学出版社,2004101.颜文勇.高等数学及实验.科学出版社,2004102.赵红革.经济数学教材(含数学实验).经济日报出版社,2004103.何文章,、桂占吉、贾敬.大学数学实验.哈尔滨工程大学出版社,2004104.刘振航.数学建模.中国人民大学出版社,2004105.王兵团.数学建模基础.清华大学出版社,2004106.李继玲等.数学实验基础.清华大学出版社,2004107.李继玲、沈跃云、韩鑫.数学实验基础.清华大学出版社,2004108.薛毅.数学建模基础.北京工业大学出版社,2004109.郎艳怀等.经济数学方法与模型教程.上海财经大学出版社,2004110.甘筱青、陈涛、陈钰菊.数学建模教育及竞赛.江西高校出版社,2004111.赵东方.数学实验与数学模型.华中师范大学出版社,2004112.李林、周永正、煮祖庆、詹棠森.数学实驼与数学建模教程.中国林业出版社,2004113.王冬琳.数学建模及实验.国防工业出版社,2004114.张珠宝等.数学实验与数学建模.高等教育出版社,2005115.边馥萍、侯文华、梁冯珍.数学模型方法与算法.高等教育出版社,2005116.苏海容副主编.数学模型与数学实验(高职高专用书).高等教育出版社,2005117.韩中庚.数学建模方法及其应用.高等教育出版社,2005118.杨启帆等.数学建模.高等教育出版社,2005119.唐焕文、贺明峰.数学模型引论(第三版).高等教育出版社,2005120.阮晓青、周义仓.数学建模引论.高等教育出版社,2005121.王正东、尹强.数学软件与数学实验.科学出版社,2005122.宋来忠主编.数学建模与实验.科学出版社,2005123.焦光虹.数学实验.科学出版社,2005124.孟军、尹海东.农业数学实验.科学出版社,2005125.F.R.Giordano,M.D.Weir,W.P.Fox.数学建模(第三版).叶其孝、姜启源等译.机械工业出版社,2005126.M.M.Meerschaert.数学建模–方法与分析(第二版).刘来福等译.机械工业出版社,2005127.吴建国主编.数学建模案例精编.中国水利水电出版社,2005128.马新生、陈涛、陈钰菊、廖川荣.高等数学实验教材.中国科技出版社,2005129.杨启帆等.数学建模竞赛——浙大学生获奖论文点评(1999-2004).浙江大学出版社,2005130.姜启源.、邢文训、谢金星、杨顶辉.大学数学实验.清华大学出版社,2005131.谢金星、薛毅.优化建模与LINDO/LINGO软件.清华大学出版社,2005132.柏宏斌、陈德勤.数学实验.四川大学出版社,2005133.谭永基、蔡志杰、俞文鮆.数学模型.复旦大学出版社,2005134.熊启才.数学模型方法及应用.重庆大学出版社,2005135.杨尚俊.数学建模简明教程.安徽大学出版社,2005136.刘锋.数学建模.南京大学出版社,2005137.萧树铁主编.数学实验(第二版).高等教育出版社,2006138.李继成、朱旭、李萍.数学实验.高等教育出版社,2006139.谭永基等.经济、管理数学模型案例教程.高等教育出版社,2006140.杨启帆等.数学建模案例集.高等教育出版社,2006141.胡良剑、孙晓君.MATLAB数学实验.高等教育出版社,2006142.万福永、戴浩晖、潘建瑜.数学实验教程-MATLAB版.科学出版社,2006143.焦光虹.数学实验.科学出版社,2006144.董臻圃主编.数学建模方法与实践.国防工业出版社,2006145.陈汝栋、于延荣.数学模型与数学建模.国防工业出版社,2006146.张兴永、朱开永.数学建模.煤炭工业出版社,2006147.曹喜望.管理科学中的数学模型.北京大学出版社,2006.148.王兵团.数学实验基础(修订本).清华大学出版社,2006149.湖北省大学生数学建模竞赛专家组.数学建模(本科册).华中科技大学出版社,2006150.张学山、江开忠、李路.高等数学实验.华东理工大学出版社,2006151.赵红革、王为洪等.高等数学教材(含数学实验).北京交通大学出版社,2006152.李伯德.数学建模方法.甘肃教育出版社,2006153.黄世华.数学建模基础教程.甘肃教育出版社,,2006154.任善强、雷鸣.数学模型(第二版修订版).重庆大学出版社,2006155.刘新平、陈斯养等.全国大学生数学建模竞赛获奖论文集.陕西师范大学出版社,2006156.李辉来、刘明姬等.数学实验.高等教育出版社,2007157.姜启源、谢金星主编.数学建模案例选集.高等教育出版社,2007158.全国大学生数学建模竞赛组委会.数学建模的实践—2006年全国大学生数学建模夏令营论文集.高等教育出版社,2007 159.赵静、但琦主编.数学建模与数学实验(第三版).高等教育出版社,2007160.戴明强、李卫军、杨鹏飞.数学模型及其应用.科学出版社,2007161.袁新生.lingo和excel在数学建模中的应用.科学出版社,2007162.韩中庚.数学建模竞赛获奖论文精选与点评.科学出版社,2007163.高隆昌、杨元.数学建模基础理论.科学出版社,2007164.彭放等、数学建模方法.科学出版社,2007165.肖海军.数学实验基础.科学出版社,2007166.蔡光兴、金裕红.大学数学实验.科学出版社,2007167.江世宏.MATLAB语言与数学实验.科学出版社,2007168.高等教育出版社2008年12月赵东方.数学模型与计算.科学出版社,2007169.冯杰等.数学建模原理与案例.科学出版社,2007170.宋世德、郭满才.数学实验.中国农业出版社,2007171.李志林、欧宜贵.数学建模及典型案例分析.化学工业出版社,2007172.吴礼斌、李柏年.数学实验与建模.国防工业出版社,2007173.李宏艳、王雅芝.数学实验(第二版).清华大学出版社,2007174.薛毅、陈立萍.统计建模与R软件.清华大学出版社,2007175.陈理荣.数学建模导论.北京邮电大学出版社,2007176.周义仓、赫孝良.数学建模实验(第二版).西安交通大学出版社,2007177.赵临龙.全国数学建模竞赛—高职高专大学生获奖论文点评(2002-2006年).中国人民大学出版社,2007 178.罗万成等.大学生数学建模案例精选.西南交通大学出版社,2007179.杨桂元等.数学模型应用实例.合肥工业大学出版社,2007180.薛南青.数学建模基础理论与案例精选.山东大学出版社,2007181.数学建模走进中学课堂(VCD).中央广播电视大学音像出版社,2007182.贾晓峰、魏毅强、王希云.微积分与数学模型.高等教育出版社.,2008183.孙浩等.数学建模简明教程.高等教育出版社,2008184.徐全智.数学建模(第二版).高等教育出版社,2008185.陈恩水、王峰.数学建模与数学实验.科学出版社2008186.汪晓银、邹庭荣.数学软件与数学实验.科学出版社,2008187.刘焕彬等.数学模型与实验.科学出版社,2008188.王庚、王敏生.现代数学建模方法.科学出版社,2008189.王树禾.数学模型选讲.科学出版社,2008190.陶凤燕等.对应分析数学模型及其应用.科学出版社,2008191.陆志奇、李静.竞争数学模型的理论研究.科学出版社,2008192.朱道元.数学建模.机械工业出版社,2008193.李秀珍等.数学实验.机械工业出版社,2008194.刘三阳主编.数学建模.电子工业出版社,2008195.刘保东等.数学建模与数学实验.人民邮电出版社,2008196.重庆邮电大学数学建模组.数学建模素材选编.人民邮电出版社,2008197.王文波.数学建模及其基础知识详解.武汉大学出版社,2008198.张圣勤.数学建模与数学实验.复旦大学出版社,2008199.任善强、雷鸣、肖剑、周寅亮.数学模型.重庆大学出版社,2008200.王连堂主编.数学建模.陕西师范大学出版社,2008201.肖华勇.基于MATLAB和LINGO的数学实验.西北工业大学出版社,2008202.朱旭、李换琴、籍万新.MATLAB与基础数学实验.西安交通大学出版社,2008203.雷功炎.数学模型八讲——模型、模式与文化.北京大学出版社,2008204.叶其孝主编.大学生数学建模竞赛辅导教材(五).湖南教育出版社,2008205.李大潜主编.中国大学数学建模竞赛(第三版).高等教育出版社,2008.《工程数学学报》编辑部:地址:西安交通大学理学院;邮编: 710049 ;电话: (029)82667877。