王向东数学实验课后习题解答(第二篇2.1-2.10)
- 格式:doc
- 大小:1003.50 KB
- 文档页数:53
新课程标准数学选修2—1第一章课后习题解答第一章常用逻辑用语1.1命题及其关系练习(P4)1、略.2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题.(2)若一个函数是偶函数,则这个函数的图象关于y轴对称. 这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0. 这是假命题.否命题:若一个整数的末位数字不是0,则这个整数不能被5整除. 这是假命题.逆否命题:若一个整数不能被5整除,则这个整数的末位数字不是0. 这是真命题.2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题.否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题.逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题.否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题. 逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题. 练习(P8)证明:若1a b -=,则22243a b a b -+--()()2()2322310a b a b a b b a b b a b =+-+---=++--=--=所以,原命题的逆否命题是真命题,从而原命题也是真命题. 习题1.1 A 组(P8)1、(1)是; (2)是; (3)不是; (4)不是.2、(1)逆命题:若两个整数a 与b 的和a b +是偶数,则,a b 都是偶数. 这是假命题.否命题:若两个整数,a b 不都是偶数,则a b +不是偶数. 这是假命题. 逆否命题:若两个整数a 与b 的和a b +不是偶数,则,a b 不都是偶数. 这是真命题.(2)逆命题:若方程20x x m +-=有实数根,则0m >. 这是假命题. 否命题:若0m ≤,则方程20x x m +-=没有实数根. 这是假命题. 逆否命题:若方程20x x m +-=没有实数根,则0m ≤. 这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等.逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题.否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不 相等. 这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上. 这是真命题.(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题. 否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题.逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 B 组(P8)证明:要证的命题可以改写成“若p ,则q ”的形式:若圆的两条弦不是直径,则它们不能互相平分.此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设,AB CD 是O 的两条互相平分的相交弦,交点是E ,若E 和圆心O 重合,则,AB CD 是经过圆心O 的弦,,AB CD 是两条直径. 若E 和圆心O 不重合,连结,,AO BO CO 和DO ,则OE 是等腰AOB ∆,COD ∆的底边上中线,所以,OE AB ⊥,OE CD ⊥. AB 和CD 都经过点E ,且与OE 垂直,这是不可能的. 所以,E 和O 必然重合. 即AB 和CD 是圆的两条直径.原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习(P10)1、(1)⇒;(2)⇒;(3)⇒;(4)⇒.2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真.练习(P12)1、(1)原命题和它的逆命题都是真命题,p是q的充要条件;(2)原命题和它的逆命题都是真命题,p是q的充要条件;(3)原命题是假命题,逆命题是真命题,p是q的必要条件.2、(1)p是q的必要条件;(2)p是q的充分条件;(3)p是q的充要条件;(4)p是q的充要条件.习题1.2 A组(P12)1、略.2、(1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是222+=.a b r习题 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:(1)充分性:如果222++=++,那么a b c ab ac bc2220a b c ab ac bc++---=.所以222-+-+-=a b a c b c()()()0所以,0b c-=.-=,0a b-=,0a c即a b c∆是等边三角形.==,所以,ABC(2)必要性:如果ABC==∆是等边三角形,那么a b c所以222-+-+-=()()()0a b a c b c所以2220++---=a b c ab ac bc所以222++=++a b c ab ac bc1.3简单的逻辑联结词练习(P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1)225x-=的根,假命题;+≠,真命题;(2)3不是方程290(31≠-,真命题.习题1.3 A组(P18)1、(1)4{2,3}∈或2{2,3}∈且2{2,3}∈,假命题;∈,真命题;(2)4{2,3}(3)2是偶数或3不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1不是有理数,真命题;(2)5是15的约数,真命题;(3)23+=,真命题;≥,假命题;(4)8715(5)空集不是任何集合的真子集,真命题.习题 B组(P18)(1)真命题. 因为p为真命题,q为真命题,所以p q∨为真命题;(2)真命题. 因为p为真命题,q为真命题,所以p q∧为真命题;(3)假命题. 因为p为假命题,q为假命题,所以p q∨为假命题;(4)假命题. 因为p为假命题,q为假命题,所以p q∧为假命题.1.4全称量词与存在量词练习(P23)1、(1)真命题; (2)假命题; (3)假命题.2、(1)真命题; (2)真命题; (3)真命题.练习(P26)1、(1)00,n Z n Q ∃∈∉; (2)存在一个素数,它不是奇数;(3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形; (2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题1.4 A 组(P26)1、(1)真命题; (2)真命题; (3)真命题; (4)假命题.2、(1)真命题; (2)真命题; (3)真命题.3、(1)32000,x N x x ∃∈≤; (2)存在一个可以被5整除的整数,末位数字不是0;(3)2,10x R x x ∀∈-+>; (4)所有四边形的对角线不互相垂直. 习题 B 组(P27)(1)假命题. 存在一条直线,它在y 轴上没有截距;(2)假命题. 存在一个二次函数,它的图象与x 轴不相交;(3)假命题. 每个三角形的内角和不小于180︒;(4)真命题. 每个四边形都有外接圆.第一章 复习参考题A 组(P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题.2、略.3、(1)假; (2)假; (3)假; (4)假.4、(1)真; (2)真; (3)假; (4)真; (5)真.5、(1)2,0n N n ∀∈>; (2){P P P ∀∈在圆222x y r +=上},(OP r O =为圆心);(3)(,){(,),x y x y x y ∃∈是整数},243x y +=;(4)0{x x x ∃∈是无理数},30{x q q ∈是有理数}.6、(1)32≠,真命题; (2)54≤,假命题; (3)00,0x R x ∃∈≤,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章 复习参考题B 组(P31)1、(1)p q ∧; (2)()()p q ⌝∧⌝,或()p q ⌝∨.2、(1)Rt ABC ∀∆,90C ∠=︒,,,A B C ∠∠∠的对边分别是,,a b c ,则222c a b =+;(2)ABC ∀∆,,,A B C ∠∠∠的对边分别是,,a b c ,则sin sin sin a b c A B C==.新课程标准数学选修2—1第二章课后习题解答第二章 圆锥曲线与方程2.1曲线与方程练习(P37)1、是. 容易求出等腰三角形ABC 的边BC 上的中线AO 所在直线的方程是0x =.2、3218,2525a b ==. 3、解:设点,A M 的坐标分别为(,0)t ,(,)x y .(1)当2t ≠时,直线CA 斜率 20222CA k t t-==-- 所以,122CB CA t k k -=-= 由直线的点斜式方程,得直线CB 的方程为 22(2)2t y x --=-. 令0x =,得4y t =-,即点B 的坐标为(0,4)t -.由于点M 是线段AB 的中点,由中点坐标公式得4,22t tx y -==. 由2t x =得2t x =,代入42ty -=, 得422xy -=,即20x y +-=……① (2)当2t =时,可得点,A B 的坐标分别为(2,0),(0,2) 此时点M 的坐标为(1,1),它仍然适合方程①由(1)(2)可知,方程①是点M 的轨迹方程,它表示一条直线. 习题2.1 A 组(P37)1、解:点(1,2)A -、(3,10)C 在方程2210x xy y -++=表示的曲线上;点(2,3)B -不在此曲线上2、解:当0c ≠时,轨迹方程为12c x +=;当0c =时,轨迹为整个坐标平面. 3、以两定点所在直线为x 轴,线段AB 垂直平分线为y 轴,建立直角坐标系,得点M 的轨迹方程为224x y +=.4、解法一:设圆22650x y x +-+=的圆心为C ,则点C 的坐标是(3,0). 由题意,得CM AB ⊥,则有1CM AB k k =-. 所以,13y yx x⨯=--(3,0)x x ≠≠ 化简得2230x y x +-=(3,0)x x ≠≠当3x =时,0y =,点(3,0)适合题意;当0x =时,0y =,点(0,0)不合题意.解方程组 222230650x y x x y x ⎧+-=⎪⎨+-+=⎪⎩, 得5,3x y ==所以,点M 的轨迹方程是2230x y x +-=,533x ≤≤. 解法二:注意到OCM ∆是直角三角形,利用勾股定理,得2222(3)9x y x y ++-+=, 即2230x y x +-=. 其他同解法一. 习题 B 组(P37)1、解:由题意,设经过点P 的直线l 的方程为1x y ab+=. 因为直线l 经过点(3,4)P ,所以341ab+= 因此,430ab a b --=由已知点M 的坐标为(,)a b ,所以点M 的轨迹方程为430xy x y --=.2、解:如图,设动圆圆心M 的坐标为(,)x y .由于动圆截直线30x y -=和30x y +=所得弦分别为AB ,CD ,所以,8AB =,4CD =. 过点M 分别作直线30x y -=和30x y +=的垂线,垂足分别为E ,F ,则4AE =,2CF =.ME =,MF =.连接MA ,MC ,因为MA MC =, 则有,2222AE ME CF MF+=+所以,22(3)(3)1641010x y x y -++=+,化简得,10xy =. 因此,动圆圆心的轨迹方程是10xy =.2.2椭圆 练习(P42)1、14. 提示:根据椭圆的定义,1220PF PF +=,因为16PF =,所以214PF =.2、(1)22116x y +=; (2)22116y x +=; (3)2213616x y +=,或2213616y x +=.3、解:由已知,5a =,4b =,所以3c ==.(1)1AF B ∆的周长1212AF AF BF BF =+++.由椭圆的定义,得122AF AF a +=,122BF BF a +=. 所以,1AF B ∆的周长420a ==.(2)如果AB 不垂直于x 轴,1AF B ∆的周长不变化.这是因为①②两式仍然成立,1AF B ∆的周长20=,这是定值. 4、解:设点M 的坐标为(,)x y ,由已知,得直线AM 的斜率 1AM yk x =+(1)x ≠-; 直线BM 的斜率 1BM yk x =-(1)x ≠; 由题意,得2AM BM k k =,所以211y yx x =⨯+-(1,0)x y ≠±≠ 化简,得3x =-(0)y ≠因此,点M 的轨迹是直线3x =-,并去掉点(3,0)-.练习(P48)1、以点2B (或1B )为圆心,以线段2OA 为半径画圆,圆与x 轴的两个交点分别为点12,F F 就是椭圆的两个焦点.这是因为,在22Rt B OF ∆中,2OB b =,222B F OA a ==,所以,2OF c =. 同样有1OF c =. 2、(1)焦点坐标为(8,0)-,(8,0); (2)焦点坐标为(0,2),(0,2)-.3、(1)2213632x y +=; (2)2212516y x +=.4、(1)22194x y += (2)22110064x y +=,或22110064y x +=.5、(1)椭圆22936x y +=,椭圆2211612x y +=的离心率是12,因为132>,所以,椭圆2211612x y +=更圆,椭圆22936x y +=更扁;(2)椭圆22936x y +=的离心率是3,椭圆221610x y +=的离心率是5,因为3>221610x y +=更圆,椭圆22936x y +=更扁.6、(1)8(3,)5; (2)(0,2); (3)4870(,)3737--. 7、7. 习题2.2 A 组(P49)1、解:由点(,)M x y 10=以及椭圆的定义得,点M 的轨迹是以1(0,3)F -,2(0,3)F 为焦点,长轴长为10的椭圆.它的方程是2212516y x +=.2、(1)2213632x y +=; (2)221259y x +=; (3)2214940x y +=,或2214940y x +=.3、(1)不等式22x -≤≤,44y -≤≤表示的区域的公共部分; (2)不等式x -≤≤,101033y -≤≤表示的区域的公共部分. 图略.4、(1)长轴长28a =,短轴长24b =,离心率e =,焦点坐标分别是(-,,顶点坐标分别为(4,0)-,(4,0),(0,2)-,(0,2);(2)长轴长218a =,短轴长26b =,离心率e =,焦点坐标分别是(0,-,,顶点坐标分别为(0,9)-,(0,9),(3,0)-,(3,0).5、(1)22185x y +=; (2)2219x y +=,或221819y x +=;(3)221259x y +=,或221259y x +=.6、解:由已知,椭圆的焦距122F F =.因为12PF F ∆的面积等于1,所以,12112P F F y ⨯⨯=,解得1P y =.代入椭圆的方程,得21154x +=,解得x =所以,点P 的坐标是(1)2±±,共有4个7、解:如图,连接QA . 由已知,得QA QP =. 所以,QO QA QO QP OP r +=+==. 又因为点A 在圆内,所以OA OP <根据椭圆的定义,点Q 的轨迹是以,O A 为焦点,r 为长轴长的椭圆. 8、解:设这组平行线的方程为32y x m =+.把32y x m =+代入椭圆方程22149x y +=,得22962180x mx m ++-=.这个方程根的判别式 223636(218)m m ∆=-- (1)由0∆>,得m -<<当这组直线在y 轴上的截距的取值范围是(-时,直线与椭圆相交.(2)设直线与椭圆相交得到线段AB ,并设线段AB 的中点为(,)M x y . 则 1223x x mx +==-. 因为点M 在直线32y x m =+上,与3m x =-联立,消去m ,得320x y +=.这说明点M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上.9、222213.525 2.875x y +=. 10、地球到太阳的最大距离为81.528810⨯km ,最下距离为81.471210⨯km. 习题 B 组(P50)1、解:设点M 的坐标为(,)x y ,点P 的坐标为00(,)x y ,则0x x =,032y y =. 所以0x x =,023y y = ……①. 因为点00(,)P x y 在圆上,所以22004x y += ……②.将①代入②,得点M 的轨迹方程为22449x y +=,即22149x y +=所以,点M 的轨迹是一个椭圆与例2相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为(,)P x y ,半径为R ,两已知圆的圆心分别为12,O O .分别将两已知圆的方程 22650x y x +++=,226910x y x +--= 配方,得 22(3)4x y ++=, 22(3)100x y -+=当P 与1O :22(3)4x y ++=外切时,有12O P R =+ ……①当P 与2O :22(3)100x y -+=内切时,有210O P R =- ……② ①②两式的两边分别相加,得1212O P O P +=12= ……③ 化简方程③.先移项,再两边分别平方,并整理,得 12x =+ ……④ 将④两边分别平方,并整理,得 22341080x y +-= ……⑤将常数项移至方程的右边,两边分别除以108,得 2213627x y += ……⑥由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,12= ……①由方程①可知,动圆圆心(,)P x y 到点1(3,0)O -和点2(3,0)O 距离的和是常数12,所以点P 的轨迹方程是焦点为(3,0)-、(3,0),长轴长等于12的椭圆. 并且这个椭圆的中心与坐标原点重合,焦点在x 轴上,于是可求出它的标准方程.因为 26c =,212a =,所以3c =,6a =所以236927b =-=.于是,动圆圆心的轨迹方程为2213627x y +=.3、解:设d 是点M 到直线8x =的距离,根据题意,所求轨迹就是集合12MF P M d ⎧⎫==⎨⎬⎩⎭由此得12= 将上式两边平方,并化简,得 223448x y +=,即2211612x y +=所以,点M 的轨迹是长轴、短轴长分别为8,. 4、解:如图,由已知,得(0,3)E - 因为,,R S T 是线段OF ,,R S T '''是线段CF 所以,(1,0),(2,0),(3,0)R S T ;933(4,),(4,),(4,)424R S T '''.直线ER 的方程是33y x =-; 直线GR '的方程是3316y x =-+. 联立这两个方程,解得 3245,1717x y ==.所以,点L 的坐标是3245(,)1717. 同样,点M 的坐标是169(,)55,点N 的坐标是9621(,)2525. 由作图可见,可以设椭圆的方程为22221x y m n+=(0,0)m n >> ……①把点,L M 的坐标代入方程①,并解方程组,得22114m =,22113n =. 所以经过点,L M 的椭圆方程为221169x y +=.把点N 的坐标代入22169x y +,得22196121()()11625925⨯+⨯=,所以,点N 在221169x y +=上.因此,点,,L M N 都在椭圆221169x y +=上.2.3双曲线 练习(P55)1、(1)221169x y -=. (2)2213y x -=.(3)解法一:因为双曲线的焦点在y 轴上所以,可设它的标准方程为22221y x a b-=(0,0)a b >>将点(2,5)-代入方程,得222541a b-=,即22224250a b a b +-=又 2236a b +=解方程组 222222425036a b a b a b ⎧+-=⎪⎨+=⎪⎩令22,m a n b ==,代入方程组,得425036mn m n m n +-=⎧⎨+=⎩解得 2016m n =⎧⎨=⎩,或459m n =⎧⎨=-⎩第二组不合题意,舍去,得2220,16a b ==所求双曲线的标准方程为2212016y x -=解法二:根据双曲线的定义,有2a ==.所以,a = 又6c =,所以2362016b =-=由已知,双曲线的焦点在y 轴上,所以所求双曲线的标准方程为2212016y x -=.2、提示:根据椭圆中222a b c -=和双曲线中222a b c +=的关系式分别求出椭圆、双曲线的焦点坐标.3、由(2)(1)0m m ++>,解得2m <-,或1m >- 练习(P61)1、(1)实轴长2a =,虚轴长24b =;顶点坐标为-;焦点坐标为(6,0),(6,0)-;离心率e =(2)实轴长26a =,虚轴长218b =;顶点坐标为(3,0),(3,0)-; 焦点坐标为-;离心率e =(3)实轴长24a =,虚轴长24b =;顶点坐标为(0,2),(0,2)-; 焦点坐标为-;离心率e =(4)实轴长210a =,虚轴长214b =;顶点坐标为(0,5),(0,5)-;焦点坐标为;离心率5e =2、(1)221169x y -=; (2)2213628y x -=.3、22135x y -=4、2211818x y -=,渐近线方程为y x =±.5、(1)142(6,2),(,)33-; (2)25(,3)4习题2.3 A 组(P61)1、把方程化为标准方程,得2216416y x -=. 因为8a =,由双曲线定义可知,点P 到两焦点距离的差的绝对值等于16. 因此点P 到另一焦点的距离是17.2、(1)2212016x y -=. (2)2212575x y -=3、(1)焦点坐标为12(5,0),(5,0)F F -,离心率53e =; (2)焦点坐标为12(0,5),(0,5)F F -,离心率54e =;4、(1)2212516x y -=. (2)221916y x -=(3)解:因为ce a==,所以222c a =,因此2222222b c a a a a =-=-=.设双曲线的标准方程为 22221x y a a -=,或22221y x a a-=.将(5,3)-代入上面的两个方程,得222591a a -=,或229251a a-=. 解得 216a = (后一个方程无解).所以,所求的双曲线方程为2211616x y -=.5、解:连接QA ,由已知,得QA QP =. 所以,QA QO QP QO OP r -=-==. 又因为点A 在圆外,所以OA OP >.根据双曲线的定义,点Q 的轨迹是以,O A 为焦点,r 为实轴长的双曲线.6、22188x y -=.习题 B 组(P62)1、221169x y -=2、解:由声速及,A B 两处听到爆炸声的时间差,可知,A B 两处与爆炸点的距离的差,因此爆炸点应位于以,A B 为焦点的双曲线上.使,A B 两点在x 轴上,并且原点O 与线段AB 的中点重合,建立直角坐标系xOy .设爆炸点P 的坐标为(,)x y ,则 34031020PA PB -=⨯=. 即 21020a =,510a =.又1400AB =,所以21400c =,700c =,222229900b c a =-=.因此,所求双曲线的方程为221260100229900x y -=. 3、22221x y a b-=4、解:设点11(,)A x y ,22(,)B x y 在双曲线上,且线段AB 的中点为(,)M x y .设经过点P 的直线l 的方程为1(1)y k x -=-,即1y kx k =+-把1y kx k =+-代入双曲线的方程2212y x -=得222(2)2(1)(1)20k x k k x k ------=(220k -≠) ……① 所以,122(1)22x x k k x k +-==- 由题意,得2(1)12k k k -=-,解得 2k =.当2k =时,方程①成为22430x x -+=.根的判别式162480∆=-=-<,方程①没有实数解.所以,不能作一条直线l 与双曲线交于,A B 两点,且点P 是线段AB 的中点.2.4抛物线 练习(P67)1、(1)212y x =; (2)2y x =; (3)22224,4,4,4y x y x x y x y ==-==-.2、(1)焦点坐标(5,0)F ,准线方程5x =-; (2)焦点坐标1(0,)8F ,准线方程18y =-;(3)焦点坐标5(,0)8F -,准线方程58x =; (4)焦点坐标(0,2)F -,准线方程2y =;3、(1)a ,2pa -. (2),(6,- 提示:由抛物线的标准方程求出准线方程. 由抛物线的定义,点M 到准线的距离等于9,所以 39x +=,6x =,y =±练习(P72) 1、(1)2165y x =; (2)220x y =; (3)216y x =-; (4)232x y =-. 2、图形见右,x3、解:过点(2,0)M 且斜率为1的直线l 的方程 为2y x =-与抛物线的方程24y x =联立 224y x y x=-⎧⎨=⎩解得 1142x y ⎧=+⎪⎨=+⎪⎩2242x y ⎧=-⎪⎨=-⎪⎩ 设11(,)A x y ,22(,)B x y ,则AB ===.4、解:设直线AB 的方程为x a =(0)a >.将x a =代入抛物线方程24y x =,得24y a =,即y =± 因为 22AB y ==⨯== 所以,3a = 因此,直线AB 的方程为3x =.习题2.4 A 组(P73)1、(1)焦点坐标1(0,)2F ,准线方程12y =-; (2)焦点坐标3(0,)16F -,准线方程316y =; (3)焦点坐标1(,0)8F -,准线方程18x =; (4)焦点坐标3(,0)2F ,准线方程32x =-. 2、(1)28y x =-; (2),或(4,-3、解:由抛物线的方程22y px =(0)p >,得它的准线方程为2px =-.根据抛物线的定义,由2MF p =,可知,点M 的准线的距离为2p . 设点M 的坐标为(,)x y ,则 22p x p +=,解得32px =. 将32px =代入22y px =中,得y =. 因此,点M的坐标为3()2p,3(,)2p. 4、(1)224y x =,224y x =-; (2)212x y =-(图略)5、解:因为60xFM ∠=︒,所以线段FM所在直线的斜率tan 60k =︒= 因此,直线FM 的方程为1)y x =-与抛物线24y x =联立,得21)142y x y x ⎧=-⎪⎨=⎪⎩将1代入2得,231030x x -+=,解得,113x =,23x =把113x =,23x =分别代入①得1y =,2y = 由第5题图知1(,33-不合题意,所以点M的坐标为.因此,4FM ==6、证明:将2y x =-代入22y x =中,得2(2)2x x -=, 化简得 2640x x -+=,解得3x =± 则321y =±=±因为OB k =,OA k所以15195OB OA k k -⋅===--所以 OA OB ⊥7、这条抛物线的方程是217.5x y =8、解:建立如图所示的直角坐标系,设拱桥抛物线的方程为22x py =-, 因为拱桥离水面2 m ,水面宽4 m 所以 222(2)p =--,1p =因此,抛物线方程为22x y =- ……①水面下降1 m ,则3y =-,代入①式,得22(3)x =-⨯-,x =.这时水面宽为 m.习题 B 组(P74)1、解:设垂线段的中点坐标为(,)x y ,抛物线上相应点的坐标为11(,)x y .根据题意,1x x =,12y y =,代入2112y px =,得轨迹方程为212y px =. 由方程可知,轨迹为顶点在原点、焦点坐标为(,0)8p 的抛物线.2、解:设这个等边三角形OAB 的顶点,A B 在抛物线上,且坐标分别为11(,)x y ,22(,)x y ,则 2112y px =,2222y px =.又OA OB =,所以 22221122x y x y +=+即221212220x x px px -+-=,221212()2()0x x p x x -+-= 因此,1212()(2)0x x x x p -++= 因为120,0,20x x p >>>,所以12x x =由此可得12y y =,即线段AB 关于x 轴对称.因为x 轴垂直于AB ,且30AOx ∠=︒,所以11tan303y x =︒=. 因为2112y x p=,所以1y =,因此12AB y ==.3、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+. 直线BM 的斜率 (1)1BM yk x x =≠-. 由题意,得2AM BM k k -=,所以,2(1)11y y x x x -=≠±+-,化简,得2(1)(1)x y x =--≠±第二章 复习参考题A 组(P80)1、解:如图,建立直角坐标系,使点2,,A B F 在x 轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x 轴上,所以设它的标准方程为22221(0)x y a b+=>>.则 22a c OA OF F A -=-=63714396810=+=22a c OB OF F B +=+=637123848755=+=,解得 7782.5a =,8755c =所以 b ==用计算器算得 7722b ≈因此,卫星的轨道方程是2222177837722x y +=.2、解:由题意,得 12a c R r a c R r -=+⎧⎨+=+⎩, 解此方程组,得1221222R r r a r r c ++⎧=⎪⎪⎨-⎪=⎪⎩因此卫星轨道的离心率21122cr r e aR r r -==++.3、(1)D ; (2)B .4、(1)当0α=︒时,方程表示圆.(2)当090α︒<<︒时,方程化成2211cos y x α+=. 方程表示焦点在y 轴上的椭圆.(3)当90α=︒时,21x =,即1x =±,方程表示平行于y 轴的两条直线. (4)当90180α︒<≤︒时,因为cos 0α<,所以22cos 1x y α+=表示双曲线,其焦点在x 轴上. 而当180α=︒时,方程表示等轴双曲线.5、解:将1y kx =-代入方程224x y -=得 2222140x k x kx -+--= 即 22(1)250k x kx -+-= ……①222420(1)2016k k k ∆=+-=-令 0∆<,解得k >,或k <因为0∆<,方程①无解,即直线与双曲线没有公共点,所以,k 的取值范围为k >,或k <6、提示:设抛物线方程为22y px =,则点B 的坐标为(,)2p p ,点C 的坐标为(,)2pp - 设点P 的坐标为(,)x y ,则点Q 的坐标为(,0)x .因为,PQ y ==2BC p =,OQ x =.所以,2PQ BC OQ =,即PQ 是BC 和OQ 的比例中项.7、解:设等边三角形的另外两个顶点分别是,A B ,其中点A 在x 轴上方.直线FA 的方程为 )2p y x =-与22y px =联立,消去x ,得 220y p --=解方程,得 12)y p =+,22)y p =-把12)y p =+代入)2p y x =-,得 17(2x p =+.把22)y p =代入)2p y x =-,得 27(2x p =-.所以,满足条件的点A 有两个17((2))2A p p +,27((2))2A p p -.根据图形的对称性,可得满足条件的点B 也有两个17((,2))2B p p +-,27((,2))2B p p --所以,等边三角形的边长是112)A B p =+,或者222(2A B p =. 8、解:设直线l 的方程为2y x m =+.把2y x m =+代入双曲线的方程222360x y --=,得221012360x mx m +++=.1265mx x +=-,2123610m x x += ……①由已知,得 21212(14)[()4]16x x x x ++-= ……②把①代入②,解得 m =所以,直线l 的方程为2y x =±9、解:设点A 的坐标为11(,)x y ,点B 的坐标为22(,)x y ,点M 的坐标为(,)x y .并设经过点M 的直线l 的方程为1(2)y k x -=-,即12y kx k =+-.把12y kx k =+-代入双曲线的方程2212y x -=,得222(2)2(12)(12)20k x k k x k ------=2(20)k -≠. ……① 所以,122(12)22x x k k x k+-==-由题意,得2(12)22k k k -=-,解得4k =当4k =时,方程①成为 21456510x x -+=根的判别式25656512800∆=-⨯=>,方程①有实数解. 所以,直线l 的方程为47y x =-.10、解:设点C 的坐标为(,)x y .由已知,得 直线AC 的斜率 (5)5AC yk x x =≠-+ 直线BC 的斜率 (5)5BC yk x x =≠- 由题意,得AC BC k k m =. 所以,(5)55y y m x x x ⨯=≠±+- 化简得,221(5)2525x y x m-=≠± 当0m <时,点C 的轨迹是椭圆(1)m ≠-,或者圆(1)m =-,并除去两点(5,0),(5,0)-;当0m >时,点C 的轨迹是双曲线,并除去两点(5,0),(5,0)-;11、解:设抛物线24y x =上的点P 的坐标为(,)x y ,则24y x =.点P 到直线3y x =+的距离d ===.当2y =时,d. 此时1x =,点P 的坐标是(1,2).12顶为原点、拱高所在直线为y 轴 (向上),建立直角坐标系.设隧道顶部所在抛物线的方程 为22x py =-因为点(4,4)C -在抛物线上 所以 242(4)p =-- 解得 24p =-所以,隧道顶部所在抛物线的方程 为24x y =-.设0.5EF h =+. 则(3, 5.5)F h -把点F 的坐标代入方程24x y =-,解得 3.25h =. 答:车辆通过隧道的限制高度为3.2 m.第二章 复习参考题B 组(P81)1、12PF F S ∆=2、解:由题意,得1PF x ⊥轴.把x c =-代入椭圆方程,解得 2b y a=±. 所以,点P 的坐标是2(,)b c a -直线OP 的斜率21b k ac =-. 直线AB 的斜率2bk a=-.由题意,得2b bac a=,所以,b c =,a =.由已知及1F A a c =+,得 a c +=所以 (1c += c =所以,a =,b =因此,椭圆的方程为221105x y +=.3、解:设点A 的坐标11(,)x y ,点B 的坐标22(,)x y .由OA OB ⊥,得12120x x y y +=.由已知,得直线AB 的方程为25y x =-+. 则有 12125()250y y y y -++= ……①由25y x =-+与22y px =消去x ,得250y py p +-= ……② 12y y p +=-,125y y p =- ……③ 把③代入①,解得54p =当54p =时,方程②成为245250y y +-=,显然此方程有实数根. 所以,54p =4、解:如图,以连接12,F F 的直线为x 轴,线段12F F 的中点为原点,建立直角坐标系.对于抛物线,有176352922922p =+=, 所以,4584p =,29168p =.对于双曲线,有2080529c a c a +=⎧⎨-=⎩解此方程组,得775.5a =,1304.5c = 因此,2221100320b c a =-=.所以,所求双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 因为抛物线的顶点横坐标是 (1763)(1763775.5)987.5a --=--=- 所以,所求抛物线的方程是 29168(987.5)y x =+ 答:抛物线的方程为29168(987.5)y x =+,双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 5、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+ 直线BM 的斜率 (1)1BM yk x x =≠-由题意,得2AM BM k k +=,所以2(1)11y y x x x +=≠±-+,化简,得21(1)xy x x =-≠±所以,点M 轨迹方程是21(1)xy x x =-≠±.6、解:(1)当1m =时,方程表示x 轴;(2)当3m =时,方程表示y 轴;(3)当1,3m m ≠≠时,把方程写成22131x y m m +=--. ①当13,2m m <<≠时,方程表示椭圆; ②2m =时,方程表示圆;③当1m <,或3m >时,方程表示双曲线.7、以AB 为直径的圆与抛物线的准线l 相切.证明:如图,过点,A B 分别作抛物线22(0)y px p =>的准线l 的 垂线,垂足分别为,D E .由抛物线的定义,得 AD AF =,BE BF =.所以,AB AF BF AD BE =+=+.设AB 的中点为M ,且过点M 作抛物线22(0)y px p =>的准线l 的垂线,垂足为C .显然MC ∥x 轴,所以,MC 是直角梯形ADEB 的中位线. 于是,11()22MC AD BE AB =+=.因此,点C 在以AB 为直径的圆上.又MC l ⊥,所以,以AB 为直径的圆与抛物线的准线l 相切. 类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离; 对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.新课程标准数学选修2—1第三章课后习题解答 第三章 空间向量与立体几何 3.1空间向量及其运算 练习(P86)1、略.2、略.3、A C AB AD AA ''=+-,BD AB AD AA ''=-+,DB AA AB AD ''=--.练习(P89)1、(1)AD ; (2)AG ; (3)MG .2、(1)1x =; (2)12x y ==; (3)12x y ==. 3练习(P92) 1、B .2、解:因为AC AB AD AA ''=++,所以22()AC AB AD AA ''=++2222222()4352(0107.5)85AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯++=所以85AC '=3、解:因为AC α⊥所以AC BD ⊥,AC AB ⊥,又知BD AB ⊥. 所以0AC BD ⋅=,0AC AB ⋅=,又知0BD AB ⋅=.2CD CD CD =⋅222222()()CA AB BD CA AB BD CA AB BDa b c =++⋅++=++=++所以CD .练习(P94)1、向量c 与a b +,a b -一定构成空间的一个基底. 否则c 与a b +,a b -共面,于是c 与a ,b 共面,这与已知矛盾. 2、共面 2、(1)解:OB OB BB OA AB BB OA OC OO a b c ''''=+=++=++=++;BA BA BB OC OO c b '''=+=-+=-CA CA AA OA OC OO a b c '''=+=-+=-+(2)1111()2222OG OC CG OC CB b a c a b c '=+=+=++=++. 练习(P97)1、(1)(2,7,4)-; (2)(10,1,16)-; (3)(18,12,30)-; (4)2.2、略.3、解:分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系.则(0,0,0)D ,1(1,1,1)B ,1(1,,0)2M ,(0,1,0)C 所以,1(1,1,1)DB =,1(1,,0)2CM =-.所以,111110cos ,3DB CM DB CM DB CM-+⋅<>===⋅习题3.1 A 组(P97)1、解:如图,(1)AB BC AC +=;(2)AB AD AA AC AA AC CC AC ''''++=+=+=;(3)设点M 是线段CC '的中点,则12AB AD CC AC CM AM '++=+=; (4)设点G 是线段AC '的三等分点,则11()33AB AD AA AC AG ''++==. 向量,,,AC AC AM AG '如图所示. 2、A .3、解:22()AC AB AD AA ''=++2222222()15372(53573722298AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯⨯+⨯⨯+⨯⨯=+所以,13.3AC '≈.4、(1)21cos602AB AC AB AC a ⋅=⋅︒=; (2)21cos1202AD DB AD DB a ⋅=⋅︒=-; (3)21cos1802GF AC GF AC a ⋅=⋅︒=- 11()22GF AC a ==; (4)21cos604EF BC EF BC a ⋅=⋅︒= 11()22EF BD a ==; (5)21cos1204FG BA FG BA a ⋅=⋅︒=- 11()22FG AC a ==; (6)11()22GE GF GC CB BA CA ⋅=++⋅2111()222111424111cos120cos60cos6042414DC CB BA CA DC CA CB CA BA CA DC CA CB CA BA CA a =++⋅=⋅+⋅+⋅=⋅︒+⋅︒+⋅︒=5、(1)60︒; (2)略.6、向量a 的横坐标不为0,其余均为0;向量b 的纵坐标不为0,其余均为0;向量c 的竖坐标不为0,其余均为0.7、(1)9; (2)(14,3,3)-.8、解:因为a b ⊥,所以0a b ⋅=,即8230x --+=,解得103x =. 9、解:(5,1,10)AB =--,(5,1,10)BA =-设AB 的中点为M ,119()(,,2)222OM OA OB =+=-,所以,点M 的坐标为19(,,2)22-,(AB =-=10、解:以1,,DA DC DD 分别作为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -.则1,,,C M D N 的坐标分别为:(0,1,0)C ,1(1,0,)2M ,1(0,0,1)D ,1(1,1,)2N . 1(1,1,)2CM =-,11(1,1,)2D N =-所以2312CM ==,21312D N ==111114cos ,994CM D N --<>==- 由于异面直线CM 和1D N 所成的角的范围是[0,]2π因此,CM 和1D N 所成的角的余弦值为19.11、31(,,3)22- 习题 B 组(P99)1、证明:由已知可知,OA BC ⊥,OB AC ⊥∴ 0OA BC ⋅=,0OB AC ⋅=,所以()0OA OC OB ⋅-=,()0OB OC OA ⋅-=. ∴ OA OC OA OB ⋅=⋅,OB OC OB OA ⋅=⋅.∴ 0OA OC OB OC ⋅-⋅=,()0OA OB OC -⋅=,0BA OC ⋅=. ∴ OC AB ⊥.2、证明:∵ 点,,,E F G H 分别是,,,OA OB BC CA 的中点.∴ 12EF AB =,12HG AB =,所以EF HG = ∴四边形EFGH 是平行四边形.1122EF EH AB OC ⋅=⋅11()()44OB OA OC OB OC OA OC =-⋅=⋅-⋅ ∵ OA OB =,CA CB =(已知),OC OC =.∴ BOC ∆≌AOC ∆(SSS ) ∴ BOC AOC ∠=∠ ∴ OB OC OA OC ⋅=⋅ ∴ 0EF EH ⋅= ∴ EF EH ⊥∴ 平行四边形□EFGH 是矩形.3、已知:如图,直线OA ⊥平面α,直线BD ⊥平面α,,O B 为垂足. 求证:OA ∥BD证明:以点O 为原点,以射线OA 方向为z 轴正方向,建立空间直角坐标系O xyz -,,,i j k 分别为沿x 轴、y 轴、z 轴的坐标向量,且设(,,)BD x y z =.∵ BD α⊥.∴ BD i ⊥,BD j ⊥.∴ (,,)(1,0,0)0BD i x y z x ⋅=⋅==,(,,)(0,1,0)0BD j x y z y ⋅=⋅==. ∴ (0,0,)BD z =. ∴ BD zk =.∴ BD ∥k ,又知,O B 为两个不同的点. ∴ BD ∥OA .3.2立体几何中的向量方法 练习(P104)1、(1)3b a =,1l ∥2l ; (2)0a b ⋅=,1l ⊥2l ; (3)3b a =-,1l ∥2l .2、(1)0u v ⋅=,αβ⊥; (2)2v u =-,α∥β;(3)2247u v u v⋅=-α与β.练习(P107)1、证明:设正方形的棱长为1.11D F DF DD =-,AE BE BA =-.因为11()000D F AD DF DD AD ⋅=-⋅=-=,所以1D F AD ⊥.因为1111()()00022D F AE DF DD BE BA ⋅=-⋅-=+-+=,所以1D F AE ⊥. 因此1D F ⊥平面ADE .2、解:22()CD CD CA AB BD ==++222222361664268cos(18060)68CA AB BD CA AB CA BD AB BD=+++⋅+⋅+⋅=+++⨯⨯⨯︒-︒=∴CD =练习(P111)1、证明:1()()2MN AB MB BC CN AB MB BC CD AB ⋅=++⋅=++⋅222211()22111cos120cos60cos600222MB BC AD AC AB a a a a =++-⋅=+︒+︒-︒=∴ MN AB ⊥. 同理可证MN CD ⊥.2、解:222222()2cos l EF EA A A AF m d n mn θ''==++=+++(或2cos()mn πθ-)22222cos d l m n mn θ=--,所以AA d '==.3、证明:以点D 为原点,,,DA DC DD '的方向分别为x 轴、y 轴、z 轴正方向,建立坐标系,得下列坐标:(0,0,0)D ,(0,1,0)C ,(1,1,0)B ,(0,1,1)C ',11(,1,)22O . ∵ 11(,1,)(1,0,1)022DO BC '⋅=---⋅-= ∴DO BC '⊥ 习题3.2 A 组(P111) 1、解:设正方形的棱长为1(1)1()()2MN CD MB B N CC C D ''''''⋅=+⋅+=,21MN CD '⋅== 112cos 12θ==,60θ=︒.(2)1()2MN AD MB B N AD ''⋅=+⋅=,21MN AD ⋅==1cos 22θ==,45θ=︒.2、证明:设正方体的棱长为1因为11()000DB AC DB BB AC ⋅=+⋅=+=,所以1DB AC ⊥.因为111111()000DB AD DA AB AD ⋅=+⋅=+=,所以11DB AD ⊥. 因此,1DB ⊥平面1ACD .3、证明:∵()cos cos 0OA BC OC OB OA OC OA OB OA θθ⋅=-⋅=-=,∴OA BC ⊥.4、证明:(1)因为11()000AC LE A A AC LE ⋅=+⋅=+=,所以1AC LE ⊥. 因为11()000AC EF A B BC EF ⋅=+⋅=+=,所以1AC EF ⊥. 因此,1AC ⊥平面EFGHLK . (2)设正方体的棱长为1因为1111()()1AC DB A A AC DB DB ⋅=+⋅+=-,211(3)3ACDB ⋅== 所以 1cos 3θ=-.因此1DB 与平面EFGHLK 的所成角α的余弦cos 3α=. 5、解:(1)222211111()()22222DE DE DE DE DA AB AC AB OA AC AB ==⋅=++-=++11(111111)42=++-+-=所以,2DE =(2)11111()()22222AE AO AC AB AO ⋅=+⋅=+=,32AE AO ⋅=1cos2θ===sin 3θ=点O 到平面ABC的距离sin 1OH OA θ=== 6、解:(1)设1AB =,作AO BC ⊥于点O ,连接DO .以点O 为原点,,,OD OC OA 的方向分别为x 轴、y 轴、z 轴正方向,建立坐标系,得下列坐标:(0,0,0)O ,D ,1(0,,0)2B ,3(0,,0)2C ,A .∴3((4DO DA ⋅=-⋅=,18DODA ⋅=,cos 2θ=. ∴ AD 与平面BCD所成角等于45︒.(2)(0,1,0)(0BC DA ⋅=⋅=. 所以,AD 与BC 所成角等于90︒.(3)设平面ABD 的法向量为(,,1)x y ,。
第二章习题参考解答1:证明:有理数全体是尺中可测集,且测度为0.证:(1)先证单点集的测度为O.V XG /?\令£ = {X }.V^>0,V HG /Vpp800—尹“莎),因如Sf 专初屮严'人为开区砖00工I I =工= £ .故加*E = 0.m 以E 可测且mE = 0. M = 1 〃 = 1 '"(2)再证:/?'中全体有理数全体Q 测度为0.设匕}羸是只中全体有理数,VneTV,令E n ={r n }.则{乞}是两两不相交的可测集0088列,由可测的可加性冇:加* 0 =加(u &)=工mE n =工0 = 0.n=1n=l n=\法二:设e = {rJL ,Vne/v,令/;=(乙—缶心+希),其中£是预先给定的任意性,加*2 = 0.2. 证明:若E 是/?"有界集,则m*E<+oo.证明:若E 是/?"有界.则日常数M >0,使Vx = (x p x 2,•••%…)€£,有间=<M ,即 Vz (l < z < /2),有 \x]<M ,从而Eu 匚[[兀一M,兀 +M].1=1所以加门比 -M,兀 +M]sf2M =(2M )” <+oo/=i/=i3. 至少含有一个内点的集合的外测度能否为零?解:不能.事实上,设E u R”, E 中有一个內点兀=(坷,…兀”)wEH5〉(),使得” <? C“Q Q0(兀,5)=訂(兀一牙,兀+ 牙)U E .则/??*£ >m*[]^[(x.+ —)] = s n> 0;=i22f=i2 2所以加* E H O.00cor~q与斤无关的正常数,贝ij : m^Q =诚{工I I n \ | U A o Q} <^l I1=工乔之•由£得n=\ J 】 >=1 i=\ 2〃二 1 /=!4•在㈡上]上能否作一个测度为h-a f但乂界于[Q,切的闭集?解:不能事实上,如果有闭集Fu[d,b]使得mF = b-a.不失一般性,可设aeFf\.beF . 事实上,若a 电F,则可作F* 二{a} U F,F* u [G,/?].UmF^ = m[a] + mF = mF .这样, 我们可记F*为新的F ,从而[a,b]-F = (a,b)-F = (a,b)-FCl@劝.如果[a,b]-FH0,即Bxe[a,b]-F = (a,b)-F f而(a,b)_F是开集,故兀是[a,b]-F的一个内点,由3题,([a,b]- F) = m([a,b]- F) = m(a.b)-mF与mF = b-a才盾.故不存在闭集Fcz[a,b]且mF=b — a5.若将§ 1定理6中条件”加(U ®) <0去掉,等式0 /n(limEJ<lim/nE zt是否仍n>k0"TOO "T8成立?解:§ 1定理6中条件*( U £,.)< 00”是不可去掉的.心k()事实上,Vne2V,令E n-[n-l,n),贝U{E”}爲是两两相交的可测集列,由习题一得15 题:iim£n = lim E/? = 0 m(lim £ J = 0,但V” w N , mE n =m[n-l,n) = l.所以"T8 w_>oo mslim mE n = 1 •从而lim mE n丰加(lim E tl).>00 "—>86.设代,E,…是[0,1)中具有下述性质的可测集列:X/£>0, 3k eN使证& >1-£',00证明:7H(U£/)=1/=!证:事实上,Vg〉0,因为mk G N , mE k >\-£1 > m[O,l] > m(U EJ > mE k >\-£i=\7.证明:对任意可测集A,B,下式恒成立.m{A U B) + m( A Pl B) = mA + mB .证明:A^B = (A\JB-A)\JA且(4UB —4)门4 = 0故m(A U B) = m(A U B 一A) + 加4 •即加(力U B) - mA = m(A B - A) = m(B - A)又因为B = (B-A)U(BnA)..E(B-A)n(BnA) = 0,所以mB =m{B一A) + m{B A A)故加(A U 5) - mA = mB -m(A Pl B),从而m{A U B) + m(A Pl B) = mA + mB&设是A,A?是[0,1]屮的两个可测集且满足m\+mA2 >1,证明:m(A^A2)>0.证:m{A{ UA2) + /n(A, 0^2) = /^ +mA2.又因为加(出U A2) < m([0,l]) = 1所以加(A 0 A?) = mA x + mA^ - m(A, U 人)》加人 + ""V -1 > 09.设A2,码是[0,1]中的两个可测集,且皿+叽+叽>2,证明:/n(A] n A2 n A3) > 0证:m(A l U A2 \J A3) + m[(A{ [J A2)C\A3] = m(A] U >42) + mA3 =in(A{) + m(A2) + m(A3) -m{A{ A A2).所以m(A i nA2) + m[(A I\JA2 Pl ^3)] = + m(A2) + m(A3) -m(A} \JA2 U £)又因为m[(A, nA2)u(A2nx3)u(A3 nA,)i=血[(儿AA2)U(AUA2A A3)J=加(Al 0人2)+ 〃[(£ u A2 n A3)J -zn[(A1AA2)D[(A1 U A2 D AJ] =加(儿门仏)* m[(A UA2)n AJ- m[(A{ C\A2H A J .所以加(岀介每门州)= m(A, M)+/7?[(A U A2 A 4 )1 - zn[(A1 HA2)U (A2 n 4)U (A3 AA)]= m(A,) + m(A2) + zn(A3) -zn(4 U A2 U A3)-加[(人A A2) U (A2 A A3)U (A3 A A,)]因为/n(A1UA2UA3)<m[0,l] = l加KA nA2)u(A2n A3)U(A3 nA)]</n[o,i] = 1 .所以加(A D A2 A A.) > 加(A〕)+ m(A2) + m(A3)-l-l = m(A t) + m(A2)-b m(A3) - 2 > 0.1().证明:存在开集G,使加乙>M G证明:设{乙}爲是[0,1]闭区间的一切有理数,对于V HG/V,令人二⑴一肖心+拾),并^G=Ol n是疋中开集Z Z 川=11二二1 C亍1 —— 1mG < Y mI n=S^F =~^T = - Gn[O,l],故mG > /n[O,l] = l>- = mG. n=\ n=\ 2 | _ 丄2 2211.设E是X中的不可测集,4是疋中的零测集,证明:EHCA不町测.证明:若EC\CA可测.因为£AA(= A,所以m*(EC\A)<m^A = QMVm * (E D A) = 0.故E " A可测.从而E = (E D A) U (E fl CA)可测,这与E不可测矛盾.故E"C4不可测.12•若E是[0,1冲的零测集,若闭集E是否也是零测集.解:不一定,例如:E是[0,1]中的冇理数的全体.E = [0,1]. mE = 0,但mE =加[0,1] = 1.13.证明:若E是可测集,则V6' > 0,存在G 〃型集G = E ,你型集F = E,使m{E 一F) < £ , m(G 一F) < £证明:由P51的定理2,对于E u R” ,存在G»型集GnE ,使得mG = m^E.^E 得可测性,m^E = mE .则V^>0.m(G-E) = mG-mE = 0J卩〉0, m(G -F)<£. 再由定理3,有F a型集F使得F =>E .且m{E一F) = mE一mF =0<s15.证明:有界集E可测当且仅当V^>0,存在开集G二E,闭集F = E,使得m(G- F) < £.证明:«=) V HG/V,由己知,存在开集G“ =)E,闭集F” =)E使得m(G n-F n)<~. n00令G=C|G“,则GoE.Vne/V, m * (G - E) < m * (G n - E) < m * (G n - F n)/?=!v丄一>0(〃TOO).所以,加*9一£)=0.即G-E是零测集,可测.n从而,E = G-(G-E)可测(=>)设E是冇界可测集8 00因为加*E = inf{^l//; I | U o £ ,人为开长方体}<+oo.故,0£〉0,存在开长另一方面,由E 得冇界性,存在7T 中闭长方体I 二E.记3 = / —E,则S 是/?"中 冇界nJ 测集.并冃.m S = ml - mE.由S 得有界可测性,存在开集G" nS 有加(G*-S)v?.因为I 二E ,故G"n/z )S.2因此三 > /n(G* A/-5) = m(G* 门 /)—加S = m(G* A /) - (ml -mE)=2mE - {ml 一 77?(G + Cl /))=加E 一 m{I 一 G* Cl /)令,F = /-G*n/,则F 是一个闭集,并且由G*n/=)S = /-E,有£o/-G*n/ = F.因此 m{E -F) = mE - mF = mE - m{I - G* A /) < - > 从而,存2在开集 G 二 E ,闭集 F = E.有 m(G - F) = m((G - E)\J (E - F)) <m{G 一 E)+ m(E -F) < — + — = £ ・2 2由£的任意性知,加*(/?'x{0}) = 0.即Fx{0}是零测集.从而,位于。
课堂点睛八年级上册数学答案2023第一章:正比例与反比例1.1 正比例关系1.$\\because y \\propto x$ $\\therefore y = kx$2.写出下列等式成立的关系式:(1)$y \\propto x$;(2)y是x的倍数;(3)y和x成正比;(4)y=kx中的k>0。
1.2 反比例关系1.$\\because y \\propto \\frac{1}{x}$ $\\therefore y = \\frac{k}{x}$2.写出下列等式成立的关系式:(1)$y \\propto \\frac{1}{x}$;(2)y是x的倒数;(3)y和x成反比;(4)$y = \\frac{k}{x}$ 中的k>0。
第二章:方程与不等式2.1 方程1.方程:左边和右边含有未知数,并通过等号连接的数学式子。
2.解方程的步骤:(1)若方程是一元一次方程,且未知数的系数不为0,则解方程可以用逆向进行的加减运算得出;(2)若方程是一元二次方程,可以通过配方法、公式法或因式分解等方法求解。
2.2 不等式1.不等式:左边和右边含有未知数,并通过不等号连接的数学式子。
2.解不等式的步骤:(1)若不等式是一元一次不等式,且未知数的系数不为0,则解不等式可以用逆向进行的加减运算得出;(2)若不等式是一元二次不等式,可以通过图像法、区间法等方法求解。
第三章:平面图形的性质3.1 点、线、面、角1.点:没有大小和形状,仅有位置的几何要素。
2.线:由无数个点组成,没有宽度和厚度。
3.面:由无数个点和线组成,具有宽度和厚度,可以平铺在平面上。
4.角:由两条射线共同端点所形成的图形。
3.2 三角形的性质1.三角形的内角和为180°。
2.根据三边长度关系可以判断三角形的形状:(1)当三边相等时,为等边三角形;(2)当两边相等时,为等腰三角形;(3)当两边之和大于第三边时,为普通三角形。
第四章:数据的处理与应用4.1 数据的整理1.频数:某个数值出现的次数。
第一讲 MATLAB 使用简介一、填空题1.双击桌面上的MATLAB 图标可启动MATLAB 、开始——程序——MA TLAB ——MATLAB7.0.1、MATLAB 的安装目录下找到MA TLAB 图标双击它即可启动。
2. 主窗口、command 窗口、current directory 窗口、workspace 窗口、history 窗口,其中current directory 窗口和workspace 窗口。
3.ones(m,n),zeros(m,n),eyes(n)4. clc5. clear x6. format long7. help log8. whos x9. y=real(x) 10 y=imag(x) 11 y=abs(x) 12. y=conj(x) 13. Matrix Laboratory 14.rank(A) 15. format long 16. pi/100:pi/100:pi 17. 矩阵中同一行元素的分隔;两个命令之间的分隔。
18.无穷大;无意义。
19.计算矩阵或向量的维数。
20.查阅、保存和编辑二、选择题1.C 2.B 3.D 4.C 5.C 6.A 7.D 8.C 9.C三、简答题1. 答:第一个命令格式指由初值、步长和终值确定数组,这里数组长度是未知的,但可以根据给定的值求出数组长度,1last first number increment-=+,这时的终值可能取不到的;而对后命令是已知初值,终值和数组长度,却不知道步长,这时反过来可以求出步长公式为1last first increment number -=-,这时终值勤始终可取到。
2. 答:1) 微积分:微分、积分、求极限、泰勒展开、级数求和2) 代数:求逆、特征值、行列式 、代数方程解的化简、数学表达式的指定精度求值3) 数值分析:插值与拟合、数值微分与积分、函数逼近、代数方程和微分方程的数值解和符号解4) 统计计算:均值、方差、概率、参数估计、假设检验、相关性和回归分析、 统计绘图、随机数产生器等5) 优化问题的求解:线性规划、非线性规划等问题的求解6) 动态系统模拟自动控制小波分析3.答:法一,由向量叉积的几何意义知叉积的模是平行四边形面积,即可利用命令norm(cross(a,b)),法二。
新课程标准数学选修2—1第二章课后习题解答第二章 圆锥曲线与方程 2.1曲线与方程 练习(P37)1、是. 容易求出等腰三角形ABC 的边BC 上的中线AO 所在直线的方程是0x =.2、3218,2525a b ==.3、解:设点,A M 的坐标分别为(,0)t ,(,)x y . (1)当2t ≠时,直线CA 斜率 20222CA k t t-==-- 所以,122CB CA t k k -=-=由直线的点斜式方程,得直线CB 的方程为 22(2)2t y x --=-. 令0x =,得4y t =-,即点B 的坐标为(0,4)t -.由于点M 是线段AB 的中点,由中点坐标公式得4,22t tx y -==.由2t x =得2t x =,代入42ty -=,得422xy -=,即20x y +-=……①(2)当2t =时,可得点,A B 的坐标分别为(2,0),(0,2) 此时点M 的坐标为(1,1),它仍然适合方程①由(1)(2)可知,方程①是点M 的轨迹方程,它表示一条直线. 习题2.1 A 组(P37)1、解:点(1,2)A -、(3,10)C 在方程2210x xy y -++=表示的曲线上;点(2,3)B -不在此曲线上2、解:当0c ≠时,轨迹方程为12c x +=;当0c =时,轨迹为整个坐标平面. 3、以两定点所在直线为x 轴,线段AB 垂直平分线为y 轴,建立直角坐标系,得点M 的轨迹方程为224x y +=.4、解法一:设圆22650x y x +-+=的圆心为C ,则点C 的坐标是(3,0). 由题意,得CM AB ⊥,则有1CM AB k k =-.所以,13y yx x⨯=--(3,0)x x ≠≠ 化简得2230x y x +-=(3,0)x x ≠≠当3x =时,0y =,点(3,0)适合题意;当0x =时,0y =,点(0,0)不合题意.解方程组 222230650x y x x y x ⎧+-=⎪⎨+-+=⎪⎩, 得5,3x y == 所以,点M 的轨迹方程是2230x y x +-=,533x ≤≤. 解法二:注意到OCM ∆是直角三角形,利用勾股定理,得2222(3)9x y x y ++-+=, 即2230x y x +-=. 其他同解法一. 习题2.1 B 组(P37)1、解:由题意,设经过点P 的直线l 的方程为1x ya b+=. 因为直线l 经过点(3,4)P ,所以341a b+= 因此,430ab a b --=由已知点M 的坐标为(,)a b ,所以点M 的轨迹方程为430xy x y --=. 2、解:如图,设动圆圆心M 的坐标为(,)x y .由于动圆截直线30x y -=和30x y +=所得弦分别为AB ,CD ,所以,8AB =,4CD =. 过点M 分别 作直线30x y -=和30x y +=的垂线,垂足分别为E ,F ,则4AE =,2CF =.ME =,MF =.连接MA ,MC ,因为MA MC =, 则有,2222AE ME CF MF +=+所以,22(3)(3)1641010x y x y -++=+,化简得,10xy =. 因此,动圆圆心的轨迹方程是10xy =.2.2椭圆 练习(P42)1、14. 提示:根据椭圆的定义,1220PF PF +=,因为16PF =,所以214PF=. 2、(1)22116x y +=; (2)22116y x +=; (3)2213616x y +=,或2213616y x +=.3、解:由已知,5a =,4b =,所以3c =. (1)1AF B ∆的周长1212AF AF BF BF =+++.由椭圆的定义,得122AF AF a +=,122BF BF a +=. 所以,1AF B ∆的周长420a ==.(2)如果AB 不垂直于x 轴,1AF B ∆的周长不变化.这是因为①②两式仍然成立,1AF B ∆的周长20=,这是定值. 4、解:设点M 的坐标为(,)x y ,由已知,得直线AM 的斜率 1AM yk x =+(1)x ≠-; 直线BM 的斜率 1BM y k x =-(1)x ≠; 由题意,得2AMBMk k =,所以211y y x x =⨯+-(1,0)x y ≠±≠ 化简,得3x =-(0)y ≠因此,点M 的轨迹是直线3x =-,并去掉点(3,0)-.练习(P48)1、以点2B (或1B )为圆心,以线段2OA (或1OA 为半径画圆,圆与x 轴的两个交点分别为12,F F . 点12,F F 就是椭圆的两个焦点.这是因为,在22Rt B OF ∆中,2OB b =,22B F OA =所以,2OF c =. 同样有1OF c =. 2、(1)焦点坐标为(8,0)-,(8,0); (2)焦点坐标为(0,2),(0,2)-.3、(1)2213632x y +=; (2)2212516y x +=.4、(1)22194x y += (2)22110064x y +=,或22110064y x +=.5、(1)椭圆22936x y +=的离心率是3,椭圆2211612x y +=的离心率是12,12>,所以,椭圆2211612x y +=更圆,椭圆22936x y +=更扁;(2)椭圆22936x y +=,椭圆221610x y +=,因为35>,所以,椭圆221610x y +=更圆,椭圆22936x y +=更扁.6、(1)8(3,)5; (2)(0,2); (3)4870(,)3737--.7、7.习题2.2 A 组(P49)1、解:由点(,)M x y 10=以及椭圆的定义得,点M 的轨迹是以1(0,3)F -,2(0,3)F 为焦点,长轴长为10的椭圆.它的方程是2212516y x +=. 2、(1)2213632x y +=; (2)221259y x +=; (3)2214940x y +=,或2214940y x +=. 3、(1)不等式22x -≤≤,44y -≤≤表示的区域的公共部分;(2)不等式x -≤≤,101033y -≤≤表示的区域的公共部分. 图略.4、(1)长轴长28a =,短轴长24b =,离心率e =焦点坐标分别是(-,,顶点坐标分别为(4,0)-,(4,0),(0,2)-,(0,2);(2)长轴长218a =,短轴长26b =,离心率3e =,焦点坐标分别是(0,-,,顶点坐标分别为(0,9)-,(0,9),(3,0)-,(3,0).5、(1)22185x y +=; (2)2219x y +=,或221819y x +=;(3)221259x y +=,或221259y x +=. 6、解:由已知,椭圆的焦距122F F =.因为12PF F ∆的面积等于1,所以,12112P F F y ⨯⨯=,解得1P y =.代入椭圆的方程,得21154x +=,解得2x =±.所以,点P的坐标是(1)2±±,共有4个. 7、解:如图,连接QA . 由已知,得QA QP =. 所以,QO QA QO QP OP r +=+==. 又因为点A 在圆内,所以OA OP <根据椭圆的定义,点Q 的轨迹是以,O A 为焦点,r 为长轴长的椭圆. 8、解:设这组平行线的方程为32y x m =+. 把32y x m =+代入椭圆方程22149x y +=,得22962180x mx m ++-=. 这个方程根的判别式 223636(218)m m ∆=-- (1)由0∆>,得m -< 当这组直线在y轴上的截距的取值范围是(-时,直线与椭圆相交. (2)设直线与椭圆相交得到线段AB ,并设线段AB 的中点为(,)M x y .则 1223x x mx +==-. 因为点M 在直线32y x m =+上,与3mx =-联立,消去m ,得320x y +=.这说明点M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上. 9、222213.525 2.875x y +=.(第7题)10、地球到太阳的最大距离为81.528810⨯km ,最下距离为81.471210⨯km. 习题2.2 B 组(P50)1、解:设点M 的坐标为(,)x y ,点P 的坐标为00(,)x y ,则0x x =,032y y =. 所以0x x =,023y y = ……①. 因为点00(,)P x y 在圆上,所以22004x y += ……②.将①代入②,得点M 的轨迹方程为22449x y +=,即22149x y +=所以,点M 的轨迹是一个椭圆与例2相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为(,)P x y ,半径为R ,两已知圆的圆心分别为12,O O .分别将两已知圆的方程 22650x y x +++=,226910x y x +--= 配方,得 22(3)4x y ++=, 22(3)100x y -+= 当P 与1O :22(3)4x y ++=外切时,有12O P R =+ ……① 当P 与2O :22(3)100x y -+=内切时,有210O P R =- ……②①②两式的两边分别相加,得1212O P O P +=12= ……③ 化简方程③.先移项,再两边分别平方,并整理,得 12x =+ ……④ 将④两边分别平方,并整理,得 22341080x y +-= ……⑤将常数项移至方程的右边,两边分别除以108,得2213627x y += ……⑥由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,12 ……①由方程①可知,动圆圆心(,)P x y 到点1(3,0)O -和点2(3,0)O 距离的和是常数12, 所以点P 的轨迹方程是焦点为(3,0)-、(3,0),长轴长等于12的椭圆.并且这个椭圆的中心与坐标原点重合,焦点在x 轴上,于是可求出它的标准方程. 因为 26c =,212a =,所以3c =,6a =(第4题)所以236927b =-=.于是,动圆圆心的轨迹方程为2213627x y +=. 3、解:设d 是点M 到直线8x =的距离,根据题意,所求轨迹就是集合12MF P M d ⎧⎫==⎨⎬⎩⎭ 由此得12=将上式两边平方,并化简,得 223448x y +=,即2211612x y +=所以,点M 的轨迹是长轴、短轴长分别为8,. 4、解:如图,由已知,得(0,3)E -,F 因为,,R S T 是线段OF ,,R S T '''是线段CF 所以,(1,0),(2,0),(3,0)R S T ;933(4,),(4,),(4,)424R S T '''.直线ER 的方程是33y x =-;直线GR '的方程是3316y x =-+.联立这两个方程,解得 3245,1717x y ==.所以,点L 的坐标是3245(,)1717.同样,点M 的坐标是169(,)55,点N 的坐标是9621(,)2525.由作图可见,可以设椭圆的方程为22221x y m n +=(0,0)m n >> ……①把点,L M 的坐标代入方程①,并解方程组,得22114m =,22113n =. 所以经过点,L M 的椭圆方程为221169x y +=. 把点N 的坐标代入22169x y +,得22196121()()11625925⨯+⨯=,所以,点N 在221169x y +=上.因此,点,,L M N 都在椭圆221169x y +=上.2.3双曲线 练习(P55)1、(1)221169x y -=. (2)2213y x -=. (3)解法一:因为双曲线的焦点在y 轴上所以,可设它的标准方程为22221y x a b -=(0,0)a b >>将点(2,5)-代入方程,得222541a b-=,即22224250a b a b +-= 又 2236a b +=解方程组 222222425036a b a b a b ⎧+-=⎪⎨+=⎪⎩ 令22,m a n b ==,代入方程组,得425036mn m n m n +-=⎧⎨+=⎩解得 2016m n =⎧⎨=⎩,或459m n =⎧⎨=-⎩第二组不合题意,舍去,得2220,16a b ==所求双曲线的标准方程为2212016y x -=解法二:根据双曲线的定义,有2a =所以,a = 又6c =,所以2362016b =-=由已知,双曲线的焦点在y 轴上,所以所求双曲线的标准方程为2212016y x -=. 2、提示:根据椭圆中222a b c -=和双曲线中222a b c +=的关系式分别求出椭圆、双曲线的焦点坐标.3、由(2)(1)0m m ++>,解得2m <-,或1m >- 练习(P61)1、(1)实轴长2a =24b =;顶点坐标为-;焦点坐标为(6,0),(6,0)-;离心率4e =. (2)实轴长26a =,虚轴长218b =;顶点坐标为(3,0),(3,0)-;焦点坐标为-;离心率e (3)实轴长24a =,虚轴长24b =;顶点坐标为(0,2),(0,2)-;焦点坐标为-;离心率e =(4)实轴长210a =,虚轴长214b =;顶点坐标为(0,5),(0,5)-;焦点坐标为;离心率5e =2、(1)221169x y -=; (2)2213628y x -=. 3、22135x y -= 4、2211818x y -=,渐近线方程为y x =±. 5、(1)142(6,2),(,)33-; (2)25(,3)4习题2.3 A 组(P61)1、把方程化为标准方程,得2216416y x -=. 因为8a =,由双曲线定义可知,点P 到两焦点距离的差的绝对值等于16. 因此点P 到另一焦点的距离是17.2、(1)2212016x y -=. (2)2212575x y -= 3、(1)焦点坐标为12(5,0),(5,0)F F -,离心率53e =; (2)焦点坐标为12(0,5),(0,5)F F -,离心率54e =;4、(1)2212516x y -=. (2)221916y x -=(3)解:因为ce a==222c a =,因此2222222b c a a a a =-=-=.设双曲线的标准方程为 22221x y a a -=,或22221y x a a -=.将(5,3)-代入上面的两个方程,得222591a a -=,或229251a a-=. 解得 216a = (后一个方程无解).所以,所求的双曲线方程为2211616x y -=.5、解:连接QA ,由已知,得QA QP =. 所以,QA QO QP QO OP r -=-==. 又因为点A 在圆外,所以OA OP >.根据双曲线的定义,点Q 的轨迹是以,O A 为焦点,r 为实轴长的双曲线.6、22188x y -=. 习题2.3 B 组(P62)1、221169x y -= 2、解:由声速及,A B 两处听到爆炸声的时间差,可知,A B 两处与爆炸点的距离的差,因此爆炸点应位于以,A B 为焦点的双曲线上.使,A B 两点在x 轴上,并且原点O 与线段AB 的中点重合,建立直角坐标系xOy . 设爆炸点P 的坐标为(,)x y ,则 34031020PA PB -=⨯=. 即 21020a =,510a =.又1400AB =,所以21400c =,700c =,222229900b c a =-=.因此,所求双曲线的方程为221260100229900x y -=. 3、22221x y a b-=4、解:设点11(,)A x y ,22(,)B x y 在双曲线上,且线段AB 的中点为(,)M x y .设经过点P 的直线l 的方程为1(1)y k x -=-,即1y kx k =+-把1y kx k =+-代入双曲线的方程2212y x -=得222(2)2(1)(1)20k x k k x k ------=(220k -≠) ……①所以,122(1)22x x k k x k +-==- 由题意,得2(1)12k k k -=-,解得 2k =. 当2k =时,方程①成为22430x x -+=.根的判别式162480∆=-=-<,方程①没有实数解.所以,不能作一条直线l 与双曲线交于,A B 两点,且点P 是线段AB 的中点.2.4抛物线 练习(P67)1、(1)212y x =; (2)2y x =; (3)22224,4,4,4y x y x x y x y ==-==-.2、(1)焦点坐标(5,0)F ,准线方程5x =-; (2)焦点坐标1(0,)8F ,准线方程18y =-;(3)焦点坐标5(,0)8F -,准线方程58x =; (4)焦点坐标(0,2)F -,准线方程2y =;3、(1)a ,2pa -. (2),(6,-提示:由抛物线的标准方程求出准线方程. 由抛物线的定义,点M 到准线的距离等于9,所以 39x +=,6x =,y =±练习(P72)1、(1)2165y x =; (2)220x y =;(3)216y x =-; (4)232x y =-. 2、图形见右,x 的系数越大,抛物线的开口越大. 3、解:过点(2,0)M 且斜率为1的直线l 的方程 为2y x =-与抛物线的方程24y x =联立 224y x y x=-⎧⎨=⎩解得1142x y ⎧=+⎪⎨=+⎪⎩2242x y ⎧=-⎪⎨=-⎪⎩ 设11(,)A x y ,22(,)B x y,则AB ===4、解:设直线AB 的方程为x a =(0)a >.将x a =代入抛物线方程24y x =,得24y a =,即y =±. 因为22AB y ==⨯==, 所以,3a =因此,直线AB 的方程为3x =.习题2.4 A 组(P73)1、(1)焦点坐标1(0,)2F ,准线方程12y =-;(2)焦点坐标3(0,)16F -,准线方程316y =;(3)焦点坐标1(,0)8F -,准线方程18x =;(4)焦点坐标3(,0)2F ,准线方程32x =-.2、(1)28y x =-; (2),或(4,-3、解:由抛物线的方程22y px =(0)p >,得它的准线方程为2px =-. 根据抛物线的定义,由2MF p =,可知,点M 的准线的距离为2p . 设点M 的坐标为(,)x y ,则 22p x p +=,解得32p x =. 将32px =代入22y px =中,得y =. 因此,点M的坐标为3()2p,3(,)2p.4、(1)224y x =,224y x =-; (2)212x y =-(图略)5、解:因为60xFM ∠=︒,所以线段FM所在直线的斜率tan60k =︒. 因此,直线FM 的方程为1)y x =-与抛物线24y x =联立,得21)142y x y x ⎧=-⎪⎨=⎪⎩将1代入2得,231030x x -+=,解得,113x =,23x =把113x =,23x =分别代入①得1y =,2y =由第5题图知1(,33-不合题意,所以点M 的坐标为.因此,4FM ==6、证明:将2y x =-代入22y x =中,得2(2)2x x -=,化简得 2640x x -+=,解得3x = 则321y =±= 因为OB k =,OA k 所以15195OB OA k k -⋅===-- 所以 OA OB ⊥7、这条抛物线的方程是217.5x y = 8、解:建立如图所示的直角坐标系,设拱桥抛物线的方程为22x py =-, 因为拱桥离水面2 m ,水面宽4 m 所以 222(2)p =--,1p =因此,抛物线方程为22x y =- ……①水面下降1 m ,则3y =-,代入①式,得22(3)x =-⨯-,x =这时水面宽为m.习题2.2 B 组(P74)1、解:设垂线段的中点坐标为(,)x y ,抛物线上相应点的坐标为11(,)x y .根据题意,1x x =,12y y =,代入2112y px =,得轨迹方程为212y px =. 由方程可知,轨迹为顶点在原点、焦点坐标为(,0)8p的抛物线.2、解:设这个等边三角形OAB 的顶点,A B 在抛物线上,且坐标分别为11(,)x y ,22(,)x y ,则 2112y px =,2222y px =.又OA OB =,所以 22221122x y x y +=+ 即221212220x x px px -+-=,221212()2()0x x p x x -+-= 因此,1212()(2)0x x x x p -++= 因为120,0,20x x p >>>,所以12x x = 由此可得12y y =,即线段AB 关于x 轴对称.(第8题)因为x 轴垂直于AB ,且30AOx ∠=︒,所以11tan303y x =︒=. 因为2112y x p=,所以1y =,因此12AB y ==.3、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+. 直线BM 的斜率 (1)1BM yk x x =≠-. 由题意,得2AM BM k k -=,所以,2(1)11y y x x x -=≠±+-,化简,得2(1)(1)x y x =--≠± 第二章 复习参考题A 组(P80)1、解:如图,建立直角坐标系,使点2,,A B F 在x 轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x 轴上,所以设它的标准方程为22221(0)x y a b a+=>>.则 22a c OA OF F A -=-=63714396810=+=,22a c OB OF F B +=+=637123848755=+=解得 7782.5a =,8755c =所以 b ===用计算器算得 7722b ≈因此,卫星的轨道方程是2222177837722x y +=. 2、解:由题意,得 12a c R r a c R r -=+⎧⎨+=+⎩, 解此方程组,得1221222R r r a r r c ++⎧=⎪⎪⎨-⎪=⎪⎩因此卫星轨道的离心率21122c r r e a R r r -==++. 3、(1)D ; (2)B .4、(1)当0α=︒时,方程表示圆.(2)当090α︒<<︒时,方程化成2211cos y x α+=. 方程表示焦点在y 轴上的椭圆. (第1题)(3)当90α=︒时,21x =,即1x =±,方程表示平行于y 轴的两条直线.(4)当90180α︒<≤︒时,因为cos 0α<,所以22cos 1x y α+=表示双曲线,其焦点在x 轴上. 而当180α=︒时,方程表示等轴双曲线. 5、解:将1y kx =-代入方程224x y -=得 2222140x k x kx -+--= 即 22(1)250k x kx -+-= ……① 222420(1)2016k k k ∆=+-=-令 0∆<,解得2k >,或2k <- 因为0∆<,方程①无解,即直线与双曲线没有公共点,所以,k 的取值范围为k >,或k <6、提示:设抛物线方程为22y px =,则点B 的坐标为(,)2p p ,点C 的坐标为(,)2pp -设点P 的坐标为(,)x y ,则点Q 的坐标为(,0)x .因为,PQ y ==2BC p =,OQ x =.所以,2PQ BC OQ =,即PQ 是BC 和OQ 的比例中项.7、解:设等边三角形的另外两个顶点分别是,A B ,其中点A 在x 轴上方.直线FA 的方程为 )32py x =-与22y px =联立,消去x ,得 220y p --=解方程,得 12)y p =,22)y p =把12)y p =代入)2py x =-,得 17(2x p =+.把22)y p =代入)32py x =-,得 27(2x p =-.所以,满足条件的点A 有两个17((2))2A p p +,27((2))2A p p -.根据图形的对称性,可得满足条件的点B 也有两个17((,2))2B p p +-,27((,2))2B p p --所以,等边三角形的边长是112)A B p =,或者222(2A B p =. 8、解:设直线l 的方程为2y x m =+.把2y x m =+代入双曲线的方程222360x y --=,得221012360x mx m +++=.1265m x x +=-,2123610m x x += ……①由已知,得 21212(14)[()4]16x x x x ++-= ……②把①代入②,解得 3m =±所以,直线l 的方程为23y x =±9、解:设点A 的坐标为11(,)x y ,点B 的坐标为22(,)x y ,点M 的坐标为(,)x y .并设经过点M 的直线l 的方程为1(2)y k x -=-,即12y kx k =+-.把12y kx k =+-代入双曲线的方程2212y x -=,得 222(2)2(12)(12)20k x k k x k ------=2(0)k -≠. ……①所以,122(12)22x x k k x k +-==- 由题意,得2(12)22k k k -=-,解得4k = 当4k =时,方程①成为 21456510x x -+=根的判别式25656512800∆=-⨯=>,方程①有实数解. 所以,直线l 的方程为47y x =-.10、解:设点C 的坐标为(,)x y .由已知,得 直线AC 的斜率 (5)5AC yk x x =≠-+ 直线BC 的斜率 (5)5BCy k x x =≠-由题意,得AC BC k k m =. 所以,(5)55y y m x x x ⨯=≠±+- 化简得,221(5)2525x y x m-=≠± 当0m <时,点C 的轨迹是椭圆(1)m ≠-,或者圆(1)m =-,并除去两点(5,0),(5,0)-; 当0m >时,点C 的轨迹是双曲线,并除去两点(5,0),(5,0)-;11、解:设抛物线24y x =上的点P 的坐标为(,)x y ,则24y x =.点P 到直线3y x =+的距离d ===当2y =时,d此时1x =,点P 的坐标是(1,2).12、解:如图,在隧道的横断面上,以拱顶为原点、拱高所在直线为y 轴 (向上),建立直角坐标系.设隧道顶部所在抛物线的方程 为22x py =-因为点(4,4)C -在抛物线上 所以 242(4)p =--解得 24p =-为24x y =-.设0.5EF h =+. 则(3, 5.5)F h -把点F 的坐标代入方程24x y =-,解得 3.25h =. 答:车辆通过隧道的限制高度为3.2 m.第二章 复习参考题B 组(P81)1、12PF F S ∆=2、解:由题意,得1PF x ⊥轴.把x c =-代入椭圆方程,解得 2b y a=±. 所以,点P 的坐标是2(,)b c a -(第12题)(第4题)直线OP 的斜率21b k ac=-. 直线AB 的斜率2b k a =-.由题意,得2b bac a =,所以,b c =,a =. 由已知及1F A a c =+,得a c +=所以(1c +=c =所以,a =,b =因此,椭圆的方程为221105x y +=. 3、解:设点A 的坐标11(,)x y ,点B 的坐标22(,)x y .由OA OB ⊥,得12120x x y y +=.由已知,得直线AB 的方程为25y x =-+. 则有 12125()250y y y y -++= ……①由25y x =-+与22y px =消去x ,得250y py p +-= ……② 12y y p +=-,125y y p =- ……③ 把③代入①,解得54p = 当54p =时,方程②成为245250y y +-=,显然此方程有实数根. 所以,54p = 4、解:如图,以连接12,F F 的直线为x 轴,线段12F F 的中点为原点,建立直角坐标系.对于抛物线,有176352922922p=+=, 所以,4584p =,29168p =.对于双曲线,有2080529c a c a +=⎧⎨-=⎩解此方程组,得775.5a =,1304.5c = 因此,2221100320b c a =-=.所以,所求双曲线的方程是221601400.31100320x y -=(775.5)x ≥.因为抛物线的顶点横坐标是 (1763)(1763775.5)987.5a --=--=- 所以,所求抛物线的方程是 29168(987.5)y x =+ 答:抛物线的方程为29168(987.5)y x =+,双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 5、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+ 直线BM 的斜率 (1)1BM yk x x =≠- 由题意,得2AM BM k k +=,所以2(1)11y y x x x +=≠±-+,化简,得21(1)xy x x =-≠± 所以,点M 轨迹方程是21(1)xy x x =-≠±.6、解:(1)当1m =时,方程表示x 轴;(2)当3m =时,方程表示y 轴;(3)当1,3m m ≠≠时,把方程写成22131x y m m +=--. ①当13,2m m <<≠时,方程表示椭圆; ②2m =时,方程表示圆;③当1m <,或3m >时,方程表示双曲线.7、以AB 为直径的圆与抛物线的准线l 相切.证明:如图,过点,A B 分别作抛物线22(0)y px p =>的准线l 的 垂线,垂足分别为,D E .由抛物线的定义,得 AD AF =,BE BF =.所以,AB AF BF AD BE =+=+.设AB 的中点为M ,且过点M 作抛物线22(0)y px p =>的准线l 的垂线,垂足为C .显然MC ∥x 轴,所以,MC 是直角梯形ADEB 的中位线. 于是,11()22MC AD BE AB =+=. 因此,点C 在以AB 为直径的圆上.又MC l ⊥,所以,以AB 为直径的圆与抛物线的准线l 相切. 类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离; 对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.(第7题)。
第三次练习题书上习题:(实验九)2,3,4,9,10,12,14,16 练习2 对⎪⎪⎭⎫ ⎝⎛=3124A ,TT x x )2,1(),()0(2)0(1=,求出}{n x 的通项. 输入:>> A=[4,2;1,3];>> A=sym('[4,2;1,3]'); >> [P,D]=eig(A);inv(P); >> Xn=P*D.^x*inv(P)*[1;2] 输出: Xn =-2^x+2*5^x 2^x+5^x练习3 对于练习1中的B ,TT x x )2,1(),()0(2)0(1=,求出}{n x 的通项. 输入:>> A=[0.4,0.2;0.1,0.3]; >> A=sym('[4,2;1,3]'); >> [P,D]=eig(A);inv(P); >> Xn=P*D.^x*inv(P)*[1;2] 输出: Xn =-2^x+2*5^x 2^x+5^x练习4 对随机给出的Txx ),()0(2)0(1,观察数列}{)(1)(2n n xx .该数列有极限吗?输入:temp.mclear all; clc; x1 = rand(1); x2 = rand(1); syms a m n x; a = sym('[4,2;1,3]'); [m, n] = eig(a); for i = 1:10b = eval(limit([x1,x2]*m*n.^x*inv(m),10*i)); b(1)/b(2)输出:ans = 1.0000ans = 1.0000ans = 1.0000ans = 1ans = 1ans = 1ans = 1ans = 1ans = 1ans = 1>>极限为1练习9对上面的例子(A=[2.1,3.4,-1.2,2.3;0.8,-0.3,4.1,2.8;2.3,7.9,-1.5,1.4;3.5,7.2,1.7,-9.0],x0=[1;2;3;4]),继续计算),2,1(,nyxnn .观察}{},{nnyx及)(nxm的极限是否存在.输入:temp.mclear all;clc;% x1 = rand(1);% x2 = rand(1);syms a p d x;x0 = [1,2,3,4];a =sym('[2.1,3.4,-1.2,2.3;0.8,-0.3,4.1,2.8;2.3,7.9,-1.5,1.4;3.5,7.2,1.7,-9.0]'); [p, d] = eig(a);for i = 1:10b = eval(limit(x0*p*d.^x*inv(p),10*i))end输出:1.0e+010 *-2.1642 -5.8793 0.6730 9.6298b =1.0e+021 *-0.7141 -1.9127 0.1887 3.0332b =1.0e+031 *-2.2616 -6.0565 0.5963 9.6004b =1.0e+042 *-0.7159 -1.9171 0.1888 3.0388b =1.0e+052 *-2.2660 -6.0681 0.5975 9.6189b =1.0e+063 *-0.7173 -1.9207 0.1891 3.0447b =1.0e+073 *-2.2703 -6.0798 0.5986 9.6374b =1.0e+084 *-0.7186 -1.9244 0.1895 3.0505b =1.0e+094 *-2.2747 -6.0915 0.5998 9.6559b =1.0e+105 *-0.7200 -1.9281 0.1898 3.0564>> >>极限不存在练习10求出A的所有特征值与特征向量,并与练习9的结论作对比. 输入:>> [P,D]=eig(A)输出:P =-0.3779 -0.8848 -0.0832 -0.3908-0.5367 0.3575 -0.2786 0.4777-0.6473 0.2988 0.1092 -0.7442-0.3874 -0.0015 0.9505 0.2555D =7.2300 0 0 00 1.1352 0 00 0 -11.2213 00 0 0 -5.8439>>)0( ,对问题2求出若干天之后的天气状态,并找出其特点练习12设T.0,5.0(25.0,p)25(取4位有效数字).输入:clear all;clc;A2=sym('[3/4,1/2,1/4;1/8,1/4,1/2;1/8,1/4,1/4]');syms a b p p0;p0=[0.5;0.25;0.25];for i=1:10ip=eval(A2^i*p0)p0=p;endi =1p =0.56250.25000.1875i =2p =0.60350.22070.1758i =3p =0.60850.21750.1740i =4p =0.60870.21740.1739i =5p =0.60870.21740.1739i =6p =0.60870.21740.1739i =7p =0.60870.21740.1739i =8p =0.60870.21740.1739i =9p =0.60870.21740.1739i =10p =0.60870.21740.1739>>所以,稳定下的概率为 0.6087,0.2174,0.1739。
2023五年级下册数学实验班提优训练答案
2023五年级下册数学实验班提优训练帮助学生们熟悉基本数学知识,培养学生们的分析思维,全面提高学生数学能力。
为了更好地开展提优训练,我们整理了2023年五年级下册数学实验班提优训练答案:
一、课前练:
1. 已知直角三角形的两条直角边分别为10米与8米,求其斜边长。
答案:此直角三角形的斜边长为10.4米。
2. 已知直角三角形的两条直角边分别为10.4米与20米,求其斜边长。
答案:此直角三角形的斜边长为22米。
3. 求下列函数y=3x^2 的导数。
答案:y=3x^2 的导数为dy/dx=6x。
二、课堂练:
1. 已知x+2y=4,求y的值。
答案:y=2-x/2。
2. 求3x^2+4x+7的导数。
答案:3x^2+4x+7的导数为d(3x^2+4x+7)/dx=6x+4。
3. 已知直角三角形的两条斜边分别为5米与12米,求其直角边长。
答案:此直角三角形的直角边长为13米。
通过以上的提优训练,学生们不仅掌握了基本的数学知识,而且掌握了从实际问题中积累经验和解决问题的能力,进一步提高了他们的数学素养。
同时,这些提优训练能帮助学生学以致用,树立信心,养成独立学习思考的习惯。
2.1.3 方程组的解集必备知识基础练1.如果方程组{x -y =a ,3x +2y =4的解是正数,那么a 的取值范围是( ) A.(-∞,2) B.(-43,+∞)C.(-2,43)D.(-∞,-43)2.若(a+b+5)2+|2a-b+1|=0,则(b-a)2 020=( ) A.-1 B.1C.52 020D.-52 0203.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”,设绳子长x 尺,木条长y 尺,根据题意所列方程组正确的是( )A.{x -y =4.512x -y =1 B.{x -y =4.5y -12x =1C.{x +y =4.5y -12x =1 D .{x -y =4.5x -12y =14.关于x,y 的二元一次方程组{2ax +by =3,ax -by =1的解集为{(1,-1)},则a-2b的值为 ,ab 的值为 .5.方程组{x +y =a ,xy =b 的一个解为{x =2,y =3,则这个方程组的另一个解是 . 6.解下列方程组:(1){x +2y =0,3x +4y =6;(2){y+14=x+23,2x -3y =1.关键能力提升练7.(多选题)给出以下说法,其中正确的为( ) A.关于x 的方程x+1x=c+1c 的解是x=c(c≠0)B.方程组{xy +yz =63,xz +yz =23的正整数解有2组C.已知关于x,y 的方程组{x +3y =4-a ,x -y =3a ,其中-3≤a≤1,当a=1时,方程组的解也是方程x+y=4-a 的解D.以方程组{y -2x =2,2x +y =3的解为坐标的点(x,y)在第二象限8.若方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2的解集是{(3,4)},则方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2的解集是( ) A.{(4,8)}B.{(9,12)}C.{(15,20)}D.{(95,85)}9.已知x,y,z 满足方程组{4x -3y -6z =0,x +2y -7z =0,则2x 2+3y 2-6z 2x 2+5y 2-4z 2的值为 .10.若关于x,y 的二元一次方程组{3x -my =5,2x +ny =6的解是{x =1,y =2,则关于a,b的二元一次方程组{3(a +b )-m (a -b )=5,2(a +b )+n (a -b )=6的解集是 .11.在y=ax 2+bx+c 中,当x=0时y=-7,当x=1时y=-9,当x=-1时y=-3,求a,b,c 的值.12.设a ∈R,已知关于x,y 的方程组{ax +2y =1+a ,2x +2(a -1)y =3,分别求出当a 为何值时,方程组有唯一解;无解;有无穷多解.学科素养创新练13.为了保护环境,某公交公司决定购买10台全新的混合动力公交车,现有A,B 两种型号,其中每台的价格、年省油量如下表:经调查,购买一台A 型车比购买一台B 型车多花20万元,购买2台A 型车比购买3台B 型车少花60万元. (1)请求出a 和b;(2)若购买这批混合动力公交车每年能节省22.4万升汽油,求购买这批混合动力公交车需要多少万元?参考答案2.1.3 方程组的解集1.C 由{x -y =a ,3x +2y =4,解得{x =4+2a5,y =4-3a 5.由{x >0,y >0,即{4+2a >0,4-3a >0, 解得-2<a<43.2.B ∵(a+b+5)2+|2a-b+1|=0, ∴{a +b +5=0,2a -b +1=0,解得{a =-2,b =-3,则原式=(-3+2)=(-1)=1,故选B. 3.B 依题意有{x -y =4.5,y -12x =1.故选B.4.2 -4 由题意,得{2a -b =3,a +b =1,解得{a =43,b =-13,∴a-2b=43-2×-13=2,a b=43×(-3)=-4.5.{x =3,y =2 ∵{x +y =a ,xy =b 的一个解为{x =2,y =3,∴a=2+3=5,b=2×3=6.原方程组为{x +y =5, ①xy =6,②由①得y=5-x.③把③代入②得x(5-x)=6,x 2-5x+6=0,(x-2)(x-3)=0,x 1=2,x 2=3. ∴{x 1=2,y 1=3或{x 2=3,y 2=2.∴这个方程组的另一个解是{x =3,y =2.6.解(1){x +2y =0,3x +4y =6,①②①×3-②得(3x+6y)-(3x+4y)=0-6,∴2y=-6, ∴y=-3,将y=-3代入①得x=6, ∴该方程组的解集为{(6,-3)}.(2)方程可化为{-4x +3y =5, ①2x -3y =1,②①+②得-2x=6,∴x=-3,将x=-3代入①中,得y=-73.∴该方程组的解集为-3,-73.7.BC 对于A,关于x 的方程x+1x=c+1c的解是x=c 或x=1c(c≠0),A 错误; 对于B,方程组{xy +yz =63, ①xz +yz =23,②∵x,y,z 是正整数,∴x+y≥2.∵23只能分解为23×1,又方程②为(x+y)z=23,∴z=1,x+y=23.将z=1代入原方程组可得{xy +y =63, ③x +y =23,④解得{x =2,y =21或{x =20,y =3.∴这个方程组的正整数解是(2,21,1)和(20,3,1),B 正确;对于C,关于x,y 的方程组{x +3y =4-a ,x -y =3a ,解得{x =1+2a ,y =1-a ,∴x+y=2+a.当a=1时,x+y=3,∴方程组的解也是方程x+y=4-a=3的解,C 正确;对于D,解方程组{y -2x =2,2x +y =3,得{x =14,y =52,∴点14,52在第一象限,∴D 错误.8.D ∵方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2的解集是{(3,4)},∴{9a 1+8b 1=5c 1,9a 2+8b 2=5c 2,等式两边都除以5得{95a 1+85b 1=c 1,95a 2+85b 2=c 2,对照方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2,可得{x =95,y =85.可得方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2的解集为{(95,85)}.9.2425 {4x -3y -6z =0,x +2y -7z =0,①②②×4-①得11y-22z=0,解得y=2z.将y=2z 代入②得x=3z.将x=3z,y=2z 代入所求式子得2x 2+3y 2-6z 2x 2+5y 2-4z 2=2×(3z )2+3×(2z )2-6z 2(3z )2+5×(2z )2-4z 2=24z 225z 2=2425.10.{(32,-12)} (方法一)∵关于x,y 的二元一次方程组{3x -my =5,2x +ny =6的解是{x =1,y =2,∴{3-2m =5,2+2n =6,解得{m =-1,n =2.∴关于a,b 的二元一次方程组{3(a +b )-m (a -b )=5,2(a +b )+n (a -b )=6可整理为{4a +2b =5,4a =6,解得{a =32,b =-12.即{(32,-12)}. (方法二)根据方程组的形式,对比可得{a +b =1,a -b =2,解得{a =32,b =-12.即{(32,-12)}.11.解把(0,-7),(1,-9),(-1,-3)分别代入y=ax 2+bx+c,得{-7=c ,-9=a +b +c ,-3=a -b +c ,解得{a =1,b =-3,c =-7. 12.解{ax +2y =1+a ,2x +2(a -1)y =3,①②由①得2y=(1+a)-ax,将其代入②得(a-2)(a+1)x=(a-2)(a+2). 当a≠2且a≠-1时,该方程有唯一解x=a+2a+1,则y=12(a+1),故原方程组的解集为a+2a+1,12(a+1);当a=-1时,该方程无解,故原方程组的解集为⌀; 当a=2时,该方程有无穷多个解,且x ∈R. 13.解(1)根据题意得{a -b =20,3b -2a =60,解得{a =120,b =100.(2)设A 型车购买x 台,B 型车购买y 台,根据题意得{x+y=10,2.4x+2y=22.4,解得{x=6,y=4,则120×6+100×4=1120(万元).故购买这批混合动力公交车需要1120万元.。
第二章习题参考解答1:证明:有理数全体是R '中可测集,且测度为0.证:(1)先证单点集的测度为0.R x '∈∀,令}{x E =.0>∀ε,N n ∈∀)2,2(11+++-=n n n x x I εεε,因为E I I E m n n n n ⊃=∞=∞=∑11||inf{* ε,n I 为开区间≤}∑∑∞=∞===112||n n n n I εεε.故0*=E m .所以E 可测且0=mE .(2)再证:R '中全体有理数全体Q 测度为0.设∞=1}{n n r 是R '中全体有理数,N n ∈∀,令}{n n r E =.则}{n E 是两两不相交的可测集列,由可测的可加性有:∑∑∞=∞=∞=====11100)(*n n n n n mE E m Q m .法二:设∞==1}{n n r Q ,N n ∈∀,令)2,2(11+++-=n n n n n r r I εεε,其中ε是预先给定的与n 无关的正常数,则:∑∑∑∞=∞=∞=∞===≤⊃=11)(112||}||inf{*i i nin i i nIQ I IQ m εεε .由ε得任意性,0*=Q m .2.证明:若E 是nR 有界集,则+∞<E m *.证明:若E 是nR 有界.则∃常数0>M ,使E x x x x n ∈=∀),,(21 ,有=EM x x ni i ni i ≤=-∑∑==1212)0(,即)1(n i i <≤∀,有M x i ≤,从而],[1M x M x E i n i i +-⊂∏=.所以+∞<=≤+-≤∑∏==nni ini i M M M x M x m E m )2(2],[**113.至少含有一个内点的集合的外测度能否为零?解:不能.事实上,设nR E ⊂,E 中有一个内点 E x x x n ∈=),(1 .0>∃δ,使得E x x x O i ni i ⊂+-=∏=)2,2(),(1δδδ.则0)]2,2([**1>=+-≥∏=n i ni i x x m E m δδδ所以0*≠E m . 4.在],[b a 上能否作一个测度为a b -,但又异于],[b a 的闭集? 解:不能事实上,如果有闭集],[b a F ⊂使得a b mF -=.不失一般性,可设F a ∈且F b ∈.事实上,若F a ∉,则可作F a F }{*=,],[*b a F ⊂.且mF mF a m mF =+=}{*.这样,我们可记*F 为新的F ,从而),(),(),(],[b a F b a F b a F b a -=-=-.如果∅≠-F b a ],[,即F b a F b a x -=-∈∃),(],[,而F b a -),(是开集,故x 是F b a -],[的一个内点,由3题,0),()],([)],([*≠-=-=-mF b a m F b a m F b a m .这与a b mF -=矛盾.故不存在闭集],[b a F ⊂且a b mF -=5.若将§1定理6中条件")("0∞<≥n k n E m 去掉,等式∀n n n n mE E m ∞→∞→<lim )lim (是否仍成立? 解:§1定理6中条件")("0∞<≥n k n E m 是不可去掉的.事实上,N n ∈∀,令),1[n n E n --,则∞=1}{n n E 是两两相交的可测集列,由习题一得15题:∅==∞→∞→n n n n E E lim lim .故0)lim (=∞→n n E m ,但N n ∈∀,1),1[=-=n n m mE n .所以1lim =∞→n n mE .从而)lim (lim n n n n E m mE ∞→∞→≠.6.设1E , ,2E 是)1,0[中具有下述性质的可测集列:0>∀ε,N k ∈∃使ε->1k mE ,证明:1)(1=∞=i i E m证:事实上,0>∀ε,因为N k ∈∃,ε->1k mEε->≥≥≥∞=1)(]1,0[11k i i mE E m m7.证明:对任意可测集B A ,,下式恒成立.mB mA B A m B A m +=+)()( .证明:A A B A B A )(-=且∅=-A A B A )(故 mA A B A m B A m +-=)()( .即)()()(A B m A B A m mA B A m -=-=-又因为)()(A B A B B -=.且∅=-)()(A B A B ,所以=mB)()(A B m A B m +-故)()(B A m mB mA B A m -=-,从而mB mA B A m B A m +=+)()( 8.设是1A ,2A 是]1,0[中的两个可测集且满足121>+mA mA ,证明:0)(21>A A m .证:212121)()(mA mA A A m A A m +=+ .又因为1])1,0([)(21=≤m A A m所以01)()(21212121>-+≥-+=mA mA A A m mA mA A A m9.设1A ,2A ,3A 是]1,0[中的两个可测集,且2321>++mA mA mA ,证明:0)(321>A A A m证:321321321)(])[()(mA A A m A A A m A A A m +=+ =)()()()(21321A A m A m A m A m -++.所以)()()()()][()(32132132121A A A m A m A m A m A A A m A A m -++=+又因为)]()()[(133221A A A A A A m =)]()[(32121A A A A A m =)][()(32121A A A m A A m +)][()[(32121A A A A A m -=)(21A A m + 321)[(A A A m ]][(321A A A m -.所以=)(321A A A m -+)][()(32121A A A m A A m )]()()[(133221A A A A A A m =)]()()[()()()()(133221321321A A A A A A m A A A m A m A m A m --++因为1]1,0[)(321=≤m A A A m1]1,0[)]()()[(133221=≤m A A A A A A m .所以02)()()(11)()()()(321321321>-++=--++≥A m A m A m A m A m A m A A A m .10.证明:存在开集G ,使mG G m >证明:设∞=1}{n n r 是]1,0[闭区间的一切有理数,对于N n ∈∀,令)21,21(22+++-=n n n n n r r I ,并且n n I G ∞==1是R '中开集2121121212111=-==≤∑∑∞=+∞=n n n n mI mG .而,]1,0[⊃G ,故mG m G m =>=≥211]1,0[.11.设E 是R '中的不可测集,A 是R '中的零测集,证明:CA E 不可测.证明:若CA E 可测.因为A A E ⊂ ,所以0*)(*=≤A m A E m .即0)(*=A E m .故A E 可测.从而)()(CA E A E E =可测,这与E 不可测矛盾.故CA E 不可测. 12.若E 是]1,0[中的零测集,若闭集E 是否也是零测集.解:不一定,例如: E 是]1,0[中的有理数的全体.]1,0[=E .0=mE ,但1]1,0[==m E m .13.证明:若E 是可测集,则0>∀ε,存在δG 型集E G ⊃,σF 型集E F ⊃,使ε<-)(F E m ,ε<-)(F G m证明:由P51的定理2,对于nR E ⊂,存在δG 型集E G ⊃,使得E m mG *=.由E得可测性,mE E m =*.则0>∀ε.0)(=-=-mE mG E G m .即0>∀ε,ε<-)(F G m . 再由定理3,有σF 型集F 使得E F ⊃.且ε<=-=-0)(mF mE F E m15.证明:有界集E 可测当且仅当0>∀ε,存在开集E G ⊃,闭集E F ⊃,使得ε<-)(F G m .证明:)(⇐N n ∈∀,由已知,存在开集E G n ⊃,闭集E F n ⊃使得nF G m n n 1)(<-. 令n n G G ∞==1,则E G ⊃.N n ∈∀,)(*)(*)(*n n n F G m E G m E G m -≤-≤-)(01∞→→<n n.所以,0)(*=-E G m .即E G -是零测集,可测. 从而,)(E G G E --=可测)(⇒设E 是有界可测集因为E I IE m n n n n⊃=∞=∞=∑11||inf{* ,n I 为开长方体+∞<}.故,0>∀ε,存在开长方体序列∞=1}{n n I ,使得E I n n ⊃∞=1.有2*||*1ε+<≤∑∞=E m IE m n n.另一方面,由E 得有界性,存在nR 中闭长方体E I ⊃.记E I S -=,则S 是nR中有界可测集.并且mE mI mS -=.由S 得有界可测性,存在开集S G ⊃*有2)(*ε<-S G m .因为E I ⊃,故S I G ⊃ *.因此mS I G m S I G m -=->)()(2** ε==--)()(*mE mI I G m))((*I G m mI mE --)(*I G I m mE --=令,I G I F *-=,则F 是一个闭集,并且由E I S I G -=⊃ *,有F IG I E =-⊃ *.因此2)()(*ε<--=-=-I G I m mE mF mE F E m ,从而,存在开集E G ⊃,闭集E F ⊃.有))()(()(F E E G m F G m --=- )(E G m -≤)(F E m -+εεε=+<22.由ε的任意性知,0})0{(*=⨯'R m .即}0{⨯'R 是零测集.从而,位于ox 轴上的任意集}0{⨯'⊆R E ,因此,E 为零测集.16.证明:若nm R E ⊂是单调增加集列(不一定可测)且m n E ∞=1,则m m m n E m E m *lim )(*1∞→∞==证明:m n E E ∞==1,即,E 有界并且E E E E E n ⊂⊂⊂⊂⊂⊂ 321故+∞<≤≤≤≤≤≤E m E m E m E m E m n *****321 ,即∞=1}*{m m E m 单调递增有上界.所以,m m E m *lim ∞→存在并且E m E m m m **lim ≤∞→下证:E m E m m m **lim ≥∞→.由于E 有界,可作一个开长方体),(1∏==∆ni iiβα,有N n ∈∀,∆⊂⊂E En.0>∀ε,因为n i n i i n E I I E m ⊃=∞=∞=∑11||inf{* ,i I 为开长方体}.故,存在开长方体序列}{i I 使得n i n E I ⊃∞=1,且ε+<=≤≤∑∑∞=∞=∞=111*||*)(**i n i i i i n n E m I I m I m E m .令∆=∞= )(1i n n I G ,则nG 为有界开集,且∆⊂⊂n n G E ,ε+<≤≤∞=n n i n n E m I m G m E m *)(***1.N n ∈∀,又令=n A k n G ∞=1),2,1( =n .且n n A A ∞==1,则由∆⊂⊂n n A E 知,}{n A 是单调递增的可测序列,由P46的定理4,n n n n mA A m mA E m ∞→∞→==≤lim lim *.又由,)(N n G A n n ∈∀⊂,有ε+<≤n n n E m mG mA *.从而ε+≤∞→∞→n n n n E m mA *lim lim .故ε+≤∞→n n E m E m *lim *.由ε得任意性,即得n n n E m mA *lim ∞→≤.从而,n n n m n E m E m mA *lim )(*1∞→∞=== .17.证明:n R 中的Borel 集类具有连续势.证明:为了叙述方便,我们仅以1=n 为例进行证明:用[,]b a 表示R '上的开区间,用),(b a 表示上的一个点.A 表示R '上的所有开区间的集合;Q 表示R '所有闭集;σρ和δϑ分别表示所有的σF 型集,所有δG 型集.因为R R b a R b a b a R b a b a A '⨯'⊂<'∈'∈=},,|),{(~},[,{],又因为A R a b a R ⊂'∈'}[,{]~.故C R R A R ='⨯'≤≤'.所以C A =.又因为|{O A ⊆存在可数个开区间}{k I ,有}1k k I O ∞== .所以Q A ≤.又定义映射Q A →∞:ϕ,∞=∈∀∏A I ni i 1,有Q I I k k ni i ∈=∞==∏11)( ϕ.故ϕ是一个满射.所以C A A Q A C =≤=≤=∞∞)(ϕ. 故C A =.又定义:→∞Q:ψδϑ,→∞Q :τσρ,i i ni i O O ∞===∏11)( ψ,ci i ni i O O ∞===∏11)( τ则ψ与τ都是满射.所以 C Q Q Q C =≤==≤∞∞)(ψϑδ.即,C =δϑ.同理,C =σρ.记β时R '上的Borel 集的全体.因集合的“差”运算可以化成“交”运算,例如:c B A B A =- .因此,β中的每个元都是δσϑρ 中可数元的并,交后而成.故C C =≤≤=∞)(δσδσϑρβϑρ .∆⊂=⊂=∞=∞=A A E E n n n n 11从而,C =β.即,R '上Borel 集的全体的势为C .18.证明对任意的闭集F ,都可找到完备集F F ⊂1,使得mF mF =1.19.证明:只要0>mE ,就一定可以找到E x ∈,使对0>∀δ,有0)),((>δx O E m .证明:设n R E ⊂,0>mE .首先将n R 划分成可数边长为21的左开右闭的n 维长方体 }|)21,2({1Z m m m i i ni i ∈+= .则}|)21,2({11Z m m m E i i ni i ∈+== β互不相交且至多可数.不妨记为1}{)1(1A k k E ∈=β,N A ⊂1.因)1(1k k E E ==β,则0)1(>=∑kkE m mE .故N k ∈∃1,有0)1(1>k mE .又因}|)21,2({212)1(2Z m m m E i i ni i k∈+== β互不相交且至多可数.故可记2}{)2(2A k k E ∈=β,其中 N A ⊂2,又由,)2(2)1(k k k E E ==β.故0)2()1(>=∑k kk E mE ,所以, N A k ⊂∈∃22,有0)2(>k mE .这样下去得一个单调递减的可测集列 ⊃⊃⊃=)2()1()0(210k k k E E E E ,其中:N j >∀,)]21,2([)]21,2([{111j i n i j i j i ni j i j k jk m m E m m EE j j+=+===- .记)]21,2([1j i ni ji j m m E F +== ,故闭集列∞=1}{j j F 单调递减且N j >∀,)(0)21(21)(0)(+∞→→=≤≤<j mF E m jn nj j k jj . 由闭集套定理,j j F x ∞=∈∃1! .对于0>∀δ,因j nj mF )21(≤,取N j >0,使δ<0)21(j n .则 E x O m m E F x j i ni j i j ),()]21,2([0001δ⊂+=∈=,故0)),((0>≥j mF x O E m δ .20.如果nR E ⊂可测,0>α,记}),,(|),,{(11E x x x x E n n ∈= ααα.证明:E α也可测,且mE E m n⋅=αα)(.证明:(1)先证:E m E m n*)(*⋅=αα因为E I IE m i i i iαα⊃=∞=∞=∑11||inf{)(* ,i I 为开长方体},对于开长方体序列∞=1}{i n I ,若E I i i α⊃∞=1,则E I i i ⊃∞=α11,E I i i ⊃∞=α11也是开长方体序列,且∑∞=≤1|1|*i i I E m α=∑∞=1||1i inIα.即∑∞=≤⋅1||*i i nI E m α.因此≤⋅E m n*αE I I i i i i α⊃∞=∞=∑11||inf{ ,i I 为开长方体}.另一方面,0>∀ε,因为E I IE m i i i i⊃=∞=∞=∑11||inf{* ,i I 为开长方体}.故存在开长方体序列n i i E m I αε+<∑∞=*||1*.所以E I i i αα⊃∞=*1 ,故εαααα+<==∑∑∞=∞=E m I I E m n i i n i i *||||)(*1*1*.由ε得任意性,知E m E m n *)(*αα≤.从而E m E m n *)(*αα=(2)再证:E α可测事实上,nR T ⊂∀,n R T ⊂α1,由E 得可测性,=)1(T m α+)1(*E T m α)1(*CE T m α.故,=)(1T m n α+)(*1E T m n αα )(*1CE T m n αα.因此=T m *+)(*E T m α )(*CE T m α .E α可测. 因此,当E 可测时,mE E m nαα=*.下面是外测度的平移不变性定理.定理(平移不变性)设nR E ⊂,nR x ∈0,记}|{}{00E x x x x E ∈+=+.则E m x E m *}){(*0=+证明:当E 是nR 中开长方体时}{0x E +也是一个开长方体,且其相应的边均相同,故E m E x E x E m *|||}{|}){(*00==+=+.如果E 是nR 中的任意点集,对于E 德任意由开长方体序列∞=1}{i i I 构成的覆盖,∞=+10}}{{i i x I 也是覆盖}{0x E +,且仍是开长方体序列,故≤+}){(*0x E m∑∑∞=∞==+110|||}{|i i i iI x I.所以≤+}){(*0x E m E I I i i i i ⊃∞=∞=∑11||inf{ ,i I 为开长方体}=E m *.即≤+}){(*0x E m E m *.下证:E m *≤}){(*0x E m +令}{01x E E +=,由上面的证明知,}){(*01x E m -+≤1*E m .所以=E m *}){(**}){(*0101x E m E m x E m +=≤-+.从而,E m x E m *}){(*0=+.21.设2)(x x f =,R E '⊂.是零测集,证明:}|)()(2E x x x f E f ∈==也是零测集.证明:设R E '⊂,0=mE(1)当)1,0(⊂E 时,0>∀ε,当0*=E m ,则存在开区间到∞==1)},({i i i i I βα使得)1,0(),(1⊂⊂∞=i i i E βα ,且2)(||11εαβ<-=∑∑∞=∞=i i i i iI.故==∞=)),(()(1i i i f E f βα)1,0(),(221⊂∞=iii βα .))(()(|)(|)(*12211i i i i i iii i i I f E f m αβαβαβ+-=-=≤∑∑∑∞=∞=∞=εεαβ=-=-≤∑∞=22)(21i i i .所以0)(*=E f m .。
数学实验课后习题解答配套教材:王向东戎海武文翰编著数学实验王汝军编写实验一曲线绘图【练习与思考】画出下列常见曲线的图形。
以直角坐标方程表示的曲线:1.立方曲线3x y=clear;x=-2:0.1:2; y=x.^3; plot(x,y)2.立方抛物线3x y=clear;y=-2:0.1:2; x=y.^3; plot(x,y) grid on3.高斯曲线2xe y-=clear;x=-3:0.1:3;y=exp(-x.^2); plot(x,y); grid on%axis equal以参数方程表示的曲线4. 奈尔抛物线)(,3223x y t y t x ===clear;t=-3:0.05:3; x=t.^3;y=t.^2; plot(x,y) axis equal grid on5. 半立方抛物线2323,()x t y t y x ===clear;t=-3:0.05:3; x=t.^2;y=t.^3; plot(x,y) %axis equal grid on6.迪卡尔曲线2332233,(30)11at at x y x y axy t t==+-=++ clear;a=3;t=-6:0.1:6; x=3*a*t./(1+t.^2); y=3*a*t.^2./(1+t.^2); plot(x,y)7.蔓叶线233222,()11at at x x y y t t a x===++- clear;a=3;t=-6:0.1:6;x=3*a*t.^2./(1+t.^2); y=3*a*t.^3./(1+t.^2); plot(x,y)8. 摆线)cos 1(),sin (t b y t t a x -=-=clear;clc; a=1;b=1;t=0:pi/50:6*pi; x=a*(t-sin(t)); y=b*(1-cos(t)); plot(x,y); axis equal grid on9. 内摆线(星形线))(sin ,cos 32323233a y x t a y t a x =+==clear;a=1;t=0:pi/50:2*pi; x=a*cos(t).^3; y=a*sin(t).^3; plot(x,y)10. 圆的渐伸线(渐开线))cos (sin ),sin (cos t t t a y t t t a x -=+=clear; a=1;t=0:pi/50:6*pi;x=a*(cos(t)+t.*sin(t)); y=a*(sin(t)+t.*cos(t)); plot(x,y) grid on11. 空间螺线ct z t b y t a x ===,sin ,coscleara=3;b=2;c=1; t=0:pi/50:6*pi; x=a*cos(t); y=b*sin(t); z=c*t;plot3(x,y,z) grid on以极坐标方程表示的曲线:12. 阿基米德线0,≥=r a rϕclear; a=1;phy=0:pi/50:6*pi; rho=a*phy;polar(phy,rho,'r-*')13. 对数螺线ϕa e r =clear; a=0.1;phy=0:pi/50:6*pi; rho=exp(a*phy); polar(phy,rho) 14. 双纽线))()((2cos 22222222y x a y x a r -=+=ϕclear; a=1;phy=-pi/4:pi/50:pi/4; rho=a*sqrt(cos(2*phy)); polar(phy,rho)hold onpolar(phy,-rho)15. 双纽线)2)((2sin 222222xy a y x a r =+=ϕclear; a=1;phy=0:pi/50:pi/2;rho=a*sqrt(sin(2*phy)); polar(phy,rho) hold onpolar(phy,-rho)16. 四叶玫瑰线0,2sin ≥=r a r ϕclear;close a=1;phy=0:pi/50:2*pi; rho=a*sin(2*phy); polar(phy,rho)17. 三叶玫瑰线0,3sin ≥=r a r ϕclear;close a=1;phy=0:pi/50:2*pi; rho=a*sin(3*phy); polar(phy,rho)18. 三叶玫瑰线0,3cos ≥=r a r ϕclear;close a=1;phy=0:pi/50:2*pi; rho=a*cos(3*phy); polar(phy,rho)实验二 极限与导数【练习与思考】1. 求下列各极限(1)nn n)11(lim -∞→ (2)n nn n 3lim 3+∞→ (3))122(lim n n n n ++-+∞→clear;syms ny1=limit((1-1/n)^n,n,inf)y2=limit((n^3+3^n)^(1/n),n,inf)y3=limit(sqrt(n+2)-2*sqrt(n+1)+sqrt(n),n,inf)y1 =1/exp(1) y2 =3 y3 =0(4))1112(lim 21---→x x x (5)x x x 2cot lim 0→ (6))3(lim 2x x x x -+∞→clear; syms x ;y4=limit(2/(x^2-1)-1/(x-1),x,1) y5=limit(x*cot(2*x),x,0)y6=limit(sqrt(x^2+3*x)-x,x,inf)y4 =-1/2 y5 =1/2 y6 =3/2(7)x x x m )(cos lim ∞→ (8))111(lim 1--→x x e x (9)x x x 11lim30-+→ clear;syms x my7=limit(cos(m/x),x,inf)y8=limit(1/x-1/(exp(x)-1),x,1) y9=limit(((1+x)^(1/3)-1)/x,x,0)y7 =1y8 =(exp(1) - 2)/(exp(1) - 1) y9 =1/32. 考虑函数22),sin(3)(32<<-=x x x x f作出图形,并说出大致单调区间;使用diff 求)('x f ,并求)(x f 确切的单调区间。
clear;close; syms x;f=3*x^2*sin(x^3); ezplot(f,[-2,2]) grid on大致的单调增区间:[-2,-1.7],[-1.3,1.2],[1.7,2]; 大致的单点减区间:[-1.7,-1.3],[1.2,1.7];f1=diff(f,x,1) ezplot(f1,[-2,2]) line([-5,5],[0,0]) grid onaxis([-2.1,2.1,-60,120])f1 =6*x*sin(x^3) + 9*x^4*cos(x^3)用fzero 函数找)('x f 的零点,即原函数)(x f 的驻点 x1=fzero('6*x*sin(x^3) + 9*x^4*cos(x^3)',[-2,-1.7]) x2=fzero('6*x*sin(x^3) + 9*x^4*cos(x^3)',[-1.7,-1.5]) x3=fzero('6*x*sin(x^3) + 9*x^4*cos(x^3)',[-1.5,-1.1]) x4=fzero('6*x*sin(x^3) + 9*x^4*cos(x^3)',0)x5=fzero('6*x*sin(x^3) + 9*x^4*cos(x^3)',[1,1.5]) x6=fzero('6*x*sin(x^3) + 9*x^4*cos(x^3)',[1.5,1.7]) x7=fzero('6*x*sin(x^3) + 9*x^4*cos(x^3)',[1.7,2])x1 =-1.9948 x2 =-1.6926 x3 =-1.2401 x4 = 0 x5 =1.2401 x6 =1.6926 x7 =1.9948确切的单调增区间:[-1.9948,-1.6926],[-1.2401,1.2401],[1.6926,1.9948]确切的单调减区间:[-2,-1.9948],[-1.6926,-1.2401],[1.2401,1.6926],[1.9948,2]3. 对于下列函数完成下列工作,并写出总结报告,评论极值与导数的关系, (i) 作出图形,观测所有的局部极大、局部极小和全局最大、全局最小值点的粗略位置;(iI) 求)('x f 所有零点(即)(x f 的驻点); (iii) 求出驻点处)(x f 的二阶导数值;(iv) 用fmin 求各极值点的确切位置; (v) 局部极值点与)("),('x f x f 有何关系?(1) ]2,2[),2sin()(22-∈--=x x x x x f (2) ]3,3[,10203)(35-∈+-=x x x x f (3)]3,0[,2)(23∈---=x x x x x fclear;close; syms x;f=x^2*sin(x^2-x-2) ezplot(f,[-2,2]) grid onf =x^2*sin(x^2 - x - 2)局部极大值点为:-1.6,局部极小值点为为:-0.75,-1.6 全局最大值点为为:-1.6,全局最小值点为:-3 f1=diff(f,x,1) ezplot(f1,[-2,2]) line([-5,5],[0,0]) grid onaxis([-2.1,2.1,-6,20])f1 =用fzero 函数找)('x f 的零点,即原函数)(x f 的驻点x1=fzero('2*x*sin(x^2-x-2)+x^2*cos(x^2-x-2)*(2*x-1)',[-2,-1.2]) x2=fzero('2*x*sin(x^2-x-2)+x^2*cos(x^2-x-2)*(2*x-1)',[-1.2,-0.5]) x3=fzero('2*x*sin(x^2-x-2)+x^2*cos(x^2-x-2)*(2*x-1)',[-0.5,1.2]) x4=fzero('2*x*sin(x^2-x-2)+x^2*cos(x^2-x-2)*(2*x-1)',[1.2,2])x1 =-1.5326 x2 =-0.7315 x3 =-3.2754e-027 x4 =1.5951ff=@(x) x.^2.*sin(x.^2-x-2) ff(-2),ff(x1),ff(x2),ff(x3),ff(x4),ff(2)ff =@(x)x.^2.*sin(x.^2-x-2) ans =-3.0272 ans =2.2364ans =-0.3582 ans =-9.7549e-054 ans =-2.2080 ans = 0实验三 级数【练习与思考】1. 用taylor 命令观测函数)(x f y =的Maclaurin 展开式的前几项, 然后在同一坐标系里作出函数)(x f y =和它的Taylor 展开式的前几项构成的多项式函数的图形,观测这些多项式函数的图形向)(x f y =的图形的逼近的情况(1) x x f arcsin )(=clear; syms x y=asin(x);y1=taylor(y,0,1) y2=taylor(y,0,5) y3=taylor(y,0,10) y4=taylor(y,0,15) x=-1:0.1:1; y=subs(y,x); y1=subs(y1,x); y2=subs(y2,x); y3=subs(y3,x); y4=subs(y4,x);plot(x,y,x,y1,':',x,y2,'-.',x,y3,'--',x,y4,':','linewidth',3)y1 = 0 y2 =x^3/6 + x y3 =(35*x^9)/1152 + (5*x^7)/112 + (3*x^5)/40 + x^3/6 + x y4 =(231*x^13)/13312 + (63*x^11)/2816 + (35*x^9)/1152 + (5*x^7)/112 + (3*x^5)/40(2) x x f arctan )(= clear; syms xy=atan(x);y1=taylor(y,0,3)y2=taylor(y,0,5),y3=taylor(y,0,10),y4=taylor(y,0,15) x=-1:0.1:1;y=subs(y,x);y1=subs(y1,x);y2=subs(y2,x);y3=subs(y3,x);y4=subs(y4,x);plot(x,y,x,y1,':',x,y2,'-.',x,y3,'--',x,y4,':','linewidth',3) y1 =xy2 =x - x^3/3y3 =x^9/9 - x^7/7 + x^5/5 - x^3/3 + xy4 =(3)2)(x e xfclear;syms xy=exp(x^2);y1=taylor(y,0,3)y2=taylor(y,0,5)y3=taylor(y,0,10)y4=taylor(y,0,15)x=-1:0.1:1;y=subs(y,x);y1=subs(y1,x);y2=subs(y2,x);y3=subs(y3,x);y4=subs(y4,x);plot(x,y,x,y1,':',x,y2,'-.',x,y3,'--',x,y4,':','linewidth',3)y1 =x^2 + 1y2 =x^4/2 + x^2 + 1y3 =x^8/24 + x^6/6 + x^4/2 + x^2 + 1y4 =x^14/5040 + x^12/720 + x^10/120 + x^8/24 + x^6/6 + x^4/2 + x^2 + 1(4) x x f 2sin )(= clear; syms x y=sin(x)^2; y1=taylor(y,0,1) y2=taylor(y,0,5) y3=taylor(y,0,10) y4=taylor(y,0,15) x=-pi:0.1:pi; y=subs(y,x); y1=subs(y1,x); y2=subs(y2,x); y3=subs(y3,x); y4=subs(y4,x);plot(x,y,x,y1,':',x,y2,'-.',x,y3,'--',x,y4,':','linewidth',3)y1 = 0 y2 =x^2 - x^4/3 y3 =- x^8/315 + (2*x^6)/45 - x^4/3 + x^2 y4 =(4*x^14)/42567525 - (2*x^12)/467775 + (2*x^10)/14175 - x^8/315 + (2*x^6)/45(5)xe xf x-=1)(clear; syms xy=exp(x)/(1-x); y1=taylor(y,0,3) y2=taylor(y,0,5) y3=taylor(y,0,10) y4=taylor(y,0,15)x=-1:0.1:0; y=subs(y,x); y1=subs(y1,x); y2=subs(y2,x); y3=subs(y3,x); y4=subs(y4,x);plot(x,y,x,y1,':',x,y2,'-.',x,y3,'--',x,y4,':','linewidth',3)y1 =(5*x^2)/2 + 2*x + 1 y2 =(65*x^4)/24 + (8*x^3)/3 + (5*x^2)/2 + 2*x + 1 y3 =(98641*x^9)/36288 + (109601*x^8)/40320 + (685*x^7)/252 + (1957*x^6)/720 + (163*x^5)/60 + (65*x^4)/24 + (8*x^3)/3 + (5*x^2)/2 + 2*x + 1 y4 =(47395032961*x^14)/17435658240 + (8463398743*x^13)/3113510400 +(260412269*x^12)/95800320 + (13563139*x^11)/4989600 + (9864101*x^10)/3628800 + (98641*x^9)/36288 + (109601*x^8)/40320 + (685*x^7)/252 + (1957*x^6)/720 +(6) )1ln()(2x x x f ++= clear; syms xy=log(x+sqrt(1+x^2)); y1=taylor(y,0,3) y2=taylor(y,0,5) y3=taylor(y,0,10) y4=taylor(y,0,15) x=-1:0.1:1; y=subs(y,x); y1=subs(y1,x); y2=subs(y2,x); y3=subs(y3,x); y4=subs(y4,x);plot(x,y,x,y1,':',x,y2,'-.',x,y3,'--',x,y4,':','linewidth',3)y1 = x y2 =x - x^3/6 y3 =(35*x^9)/1152 - (5*x^7)/112 + (3*x^5)/40 - x^3/6 + x y4 =(231*x^13)/13312 - (63*x^11)/2816 + (35*x^9)/1152 - (5*x^7)/112 + (3*x^5)/40 - x^3/6 + x2. 求公式,,2,1,1212 ==∑∞=k m n kkn k π中的数8,7,6,5,4,=k m k 的值. k=[4 5 6 7 8];syms nsymsum(1./n.^(2*k),1,inf)ans =[ pi^8/9450, pi^10/93555, (691*pi^12)/638512875, (2*pi^14)/18243225, (3617*pi^16)/325641566250]3. 利用公式e n n =∑∞=0!1来计算e 的近似值。