关于勾股定理的论文
- 格式:pdf
- 大小:198.84 KB
- 文档页数:3
摘要:勾股定理是几何学中一颗光彩熠熠的明珠,充满着魅力。
它被世人称为“几何学的基石”,是人类最伟大的十个科学发现之一.它是我们全人类共同的财富,不论是古埃及人,古巴比伦,亦或是我们中国人最早发现了它,显然不是任何一个民族的私有财产。
勾股定理在高等数学和其他学科中有着极为广泛的应用.总之,在勾股定理的探索上,我们走向了数学科学的殿堂。
关键词:勾股定理,应用Abstract:Pythagorean theorem in geometry is a gleaming pearl, full of charm. It is the world known as ”the cornerstone of geometry, ”is humanity's greatest scientific discoveries of the ten. It is our common wealth of mankind, whether ancient Egyptian, Babylonian, or we Chinese people have first discovered it, is clearly not the private property of any nation。
Pythagorean theorem in higher mathematics and other disciplines has a very wide range of applications。
In short, the exploration of the Pythagorean theorem, we went to the temple of Mathematical Sciences.Key words:Pythagoras Theorem,application目录1 引言 (4)2 内容 (4)3 证明 (4)3.1 赵爽弦图法 (5)3。
有关勾股定理的⼩论⽂有关勾股定理的⼩论⽂ 勾股定理或勾股弦定理,⼜称毕达哥拉斯定理或毕⽒定理。
是⼀个基本的⼏何定理,传统上认为是由古希腊的毕达哥拉斯所证明。
下⾯是有关勾股定理的⼩论⽂的内容,欢迎阅读! 有关勾股定理的⼩论⽂1 在初⼆上学期我们学习了⼀种很实⽤并且很容易理解的定理——勾股定理。
勾股定理就是把直⾓三⾓形的两直⾓边的平⽅和等于斜边的平⽅这⼀特性,⼜称毕达哥拉斯定理或毕⽒定理。
我脑海中印象最深的就是那棵毕达哥拉斯树,它是由勾股定理不断的连接从⽽构成的⼀个树状的⼏何图形。
两个相邻的⼩正⽅形⾯积的和等于相邻的⼀个⼤正⽅形的⾯积。
它看起来⾮常别致、漂亮,因为勾股定理是数学史上的⼀颗明珠,它将会使⼈们再算⼀些问题时变得更⽅便。
你如果把勾股定理倒过来,它还是勾股定理逆定理,它最⼤的好处就在于它能够证明某些三⾓形是直⾓三⾓形。
这⼀点在我们⼏何问题中是有很⼤价值的。
我国古代的《周髀算经》就有关于勾股定理的记载::“若求邪⾄⽇者,以⽇下为句,⽇⾼为股,句股各⾃乘,并⽽开⽅除之,得邪⾄⽇”,⽽且它还记载了有关勾股定理的证明:昔者周公问于商⾼⽈:“窃闻乎⼤夫善数也,请问昔者包牺⽴周天历度——夫天可不阶⽽升,地不可得尺⼨⽽度,请问数安从出?” 商⾼⽈:“数之法出于圆⽅,圆出于⽅,⽅出于矩,矩出于九九⼋⼗⼀。
故折矩,以为句⼴三,股修四,径隅五。
既⽅之,外半其⼀矩,环⽽共盘,得成三四五。
两矩共长⼆⼗有五,是谓积矩。
故禹之所以治天下者,此数之所⽣也。
” 同时发现勾股定理的还有古希腊的毕达哥拉斯。
但是从很多泥板记载表明,巴⽐伦⼈是世界上最早发现“勾股定理”的。
由此可见古代的⼈们是多么的聪明、细⼼和善于发现! 法国和⽐利时称勾股定理为驴桥定理,埃及称为埃及三⾓形。
我国古代把直⾓三⾓形中较短的直⾓边叫做勾,较长的直⾓边叫做股,斜边叫做弦,所以它⼜叫勾股弦定理。
勾股定理流长深远,我们不能败给古⼈,我们⼀定要善于发现,将勾股定理灵活地运⽤在⽣活中,将勾股定理发扬光⼤!常见的勾股数按“勾股弦”顺序:3,4,5 ;6,8,10;5,12,13 ;7,24,25;8,15,17 ;9,40,41……经过计算表明,勾、股、弦的⽐例为1:√3:2 。
(a + b)x(Q +b)S^AEC +S ACDB +ab ab• —+ —…2 2c2+厂(“以—a1 +b22《勾股定理小抡文》勾股定畏是一个基本的几何定理.直角三角形两直角也(即“勾” ■ •股* )血长平方和等于即) ffl长的平方。
也就是说,投言角三角形两直角也为a«b,斜边为S那么贰+1沧0 o勾股定理现发现约有400 1♦证明方法,是数学定理中证明方法最多的定32-0勾股的正整数组(a,b,c)o (3,4,5)»是勾股敛。
勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几河阿JS的量重耍的工具之一,也是数形结合的纽帝之一。
“勾三.股四,弦五”是勾般定理的一个最著名的例子。
当整fi a,b,c »足a"bW这个条件B,(a,b,c)Bi|«^88数组。
也窮是規,投直角三角形两直角边为a和b,斜边为c,那么a2+bJc2。
”常见勾股数有(3,4,5) (5,12,13) (6,8,10) o玩在公元甫约三干年的古巴比伦人就知道和应用勾股定理,催<]还知道弃多勾股数组。
古埃及人在建貌宏伟的金字塔和尼罗S&SMiNI 土堆时,也应用过勾股定理。
在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特僧。
在西方.量早提出并证明此定理的方公元前6世纪古希腊的毕迭哥竝斯学源,他用演绎法11明了直角三角形铺屯平方等于两宜角址平方之和。
中国记教勾股定理的古籍有《周II算经》,《九章算术》。
《九章算术》中,赵爽描述it 图:“勾股各自乘,并之为玄实。
开方険之,即亥。
案玄图有可以勾股相乘为朱实二,倍之为朱实囚。
以勾般之差自相乗为中黄实。
J1差实亦成玄实。
以差实X玄实,半其余。
以差为从法,开方除之.复得勾矣。
JD差于勾即股/用现代的数学语言描述就是黄实的面积等于大正方形的面81械去四个朱实的面«o 2002年第24 届国牍数学家大会(ICM)的会标即为垓图。
勾股定理证明小论文[5篇模版]第一篇:勾股定理证明小论文勾股定理勾股定理,指的是“在直角三角形中,两条直角边的平方和等于斜边的平方。
”这个定理虽然只是简单的一句话,但是它却有着十分悠久的历史,尤其是它那种“形数结合”的方法,影响到了不计其数的人。
勾股定理一直是几何学中的明珠,充满了无限的魅力。
早在很久以前,我们的前辈们就已经开始研究勾股定理了。
而中国则是发现和研究勾股定理最古老的国家之一。
中国古代数学家将直角三角形称为勾股形,西周数学家商高曾在《九章算术》中说过:“若勾三,股四,则弦五。
”较短的直角边称为勾,另一直角边称为股,斜边则称为弦,所以勾股定理也称为勾股弦定理。
并且勾股定理又称作毕达哥拉斯定理或毕氏定理。
数学公式中常写作据考证,人类对这条定理的认识,少说也有4000年,并且勾股定理大概共有几百个证明方法,也是数学定理中证明方法最多的定理之一。
接下来我们便介绍几种较有名气的证明方法。
1.】这是传说中毕达哥拉斯的证明方法:左图中是由2个正方形和4个相等的三角形拼成的,而右图则是由一个正方形和四个相等的三角形拼成,又因为两幅图中正方形的边长都是(a+b),面积相等,所以可以列出等式——证明了勾股定理。
2】下面就是中国古代数学家赵爽的证法:这个图形可以用两种不一样的方法列出两个不一样的等式,且都可以证明出勾股定理。
第一种方法是将这个正方形分成4个相同大小的三角形和一个大正方形,根据面积的相等,可以列出等式——式子为化简后的,最后得出。
第二种方法则是将图形看成4个大小相同的长方形和一个小正方形,即可列出等式以证明勾股定理。
这两种不同的方法非常简便,直观,充分体现了中国古代人们的聪明机智。
化简后也可3】欧几里得的勾股定理证明方法:如图,过 A 点画一直线 AL 使其垂直于 DE,并交 DE 于 L,交 BC 于M。
通过证明△BCF≌△BDA,利用三角形面积与长方形面积的关系,得到正方形ABFG与矩形BDLM等积,同理正方形ACKH与矩形MLEC也等积,于是推得AB²+AC²=BC².除了这些,证明勾股定理的方法还有许许多多种。
数学勾股定理论文勾股定理是数学史上一个伟大的定理,同时也是一个历史悠久的定理.下面店铺给你分享数学勾股定理论文,欢迎阅读。
数学勾股定理论文篇一数学思想是数学知识的精髓,又是把知识转化为能力的桥梁.灵活运用数学思想,能够有效地提高分析问题和解决问题的能力,增强应用数学知识的意识.在《勾股定理》这一章中,蕴含着许多重要的数学思想,现举例介绍如下.一、方程思想在含有直角三角形的图形中,求线段的长往往要使用勾股定理,如果无法直接用勾股定理来计算,则需要列方程解决.二、化归思想化归思想就是通过一定的方法或途径,把需要解决的问题变换形式,变化成另一类已经解决或易于解决的问题,从而使原来的问题得到解决.例3如图3,长方体的长为15cm,宽为10cm,高为20cm.点B 与点C的距离为5cm,一只蜗牛如果要沿着长方体的表面从点A爬到点B,需爬行的最短路程是多少?分析:由于蜗牛是沿着长方体的表面爬行的,故需把长方体展开成平面图形.根据两点之间线段最短,蜗牛爬行的较短路程有两种可能,如图4、图5所示.利用勾股定理容易求出两种图中AB的长度,比较后即可求得蜗牛爬行的最短路程是25cm.说明:这里通过长方体的展开图,把立体图形转化为平面图形,把求蜗牛爬行的最短路程问题化归成利用勾股定理求两点间的距离问题.例4如图6,是一块四边形的草地ABCD,其中∠A = 60O,∠B =∠D = 90O,AB = 20m,CD = 10m,求AD、BC的长(精确到0.1m,≈1.732).(2004年天津市中考题)分析:图中无直角三角形,怎么办?联想到含30O角的直角三角形,因而延长AD、BC交于点E,则∠E = 30O,AE = 2AB = 40m,CE = 2CD = 20m. 由勾股定理得DE == m,BE == m,所以AD = 40≈22.7m,BC = 20≈14.6m.说明:本题充分利用已知图形的特点,通过构造新图形,将四边形问题巧妙地转化成了直角三角形问题.三、数形结合思想数形结合,就是抓住数与形之间本质上的联系,将抽象的数学语言与直观的图形结合起来,通过“以形助数”或“以数解形”,使复杂问题简单化、抽象问题具体化,从而达到迅速解题的目的.例5在一棵树的10m高处有两只猴子,其中一只爬下树直奔离树20m的池塘,而另一只爬到树顶后直扑池塘,如果两只猴子经过的距离相等,问这棵树有多高?(2005年福建省龙岩市中考题)分析:依题意画出示意图7,D为树顶,AB = 10m,C为池塘,AC = 20m. 设BD = (m),则树高AD = ( +10)m.因为AC + AB = BD + DC,所以DC = (30)m. 在Rt△ACD中,由勾股定理可得方程202 + ( + 10)2 = (30)2,解得 = 5,所以 +10 = 15,即树高15m.说明:勾股定理本身就是数形结合的一个典范,它把直角三角形有一个直角的“形”的特点,转化为三边“数”的关系.利用勾股定理解决实际问题,关键是利用数形结合思想将实际问题转换成直角三角形模型,再利用方程来解决.四、分类讨论思想在解题过程中,当条件或结论不确定或不惟一时,往往会产生几种可能的情况,这就需要依据一定的标准对问题进行分类,再针对各种不同的情况分别予以解决.最后综合各类结果得到整个问题的结论.分类讨论实质上是一种“化整为零,各个击破,再积零为整”的数学方法.例6 一直角三角形的两边长分别为3cm、4cm,则第三边的长为______.分析:此题中已知一个直角三角形的两边长,并没有指明是直角边还是斜边,因此要分类讨论,答案是5cm或cm.例7“曙光中学”有一块三角形形状的花圃ABC,现可直接测量到∠A = 30O,AC = 40米,BC = 25米,请你求出这块花圃的面积. (2003年黑龙江省中考题)分析:由于题目中没有明确告诉我们△ABC的形状,故需分两种情况讨论.在图8中,S△ABC=10 (20 + 15)米2;在图9中,S△ABC= 10(2015)米2.说明:此类问题由于题目中没有图形,常需分类讨论,解答时极易因考虑不周而导致漏解,希望同学们用心体会.五、整体思想对于某些数学问题,如果拘泥常规,从局部着手,则难以求解;如果把问题的某个部分或几个部分看成一个整体进行思考,就能开阔思路,较快解答题目.例8已知一个直角三角形的周长为30cm,斜边长为13cm,那么这个三角形的面积为______.分析:设这个直角三角形的两条直角边长为,斜边为,则= 3013 = 17,于是( + )2 = 2 + 2 + 2 = 172 = 289,由勾股定理知2 + 2 = 289,即132+ 2 = 289,所以 = 60,故所求三角形面积S == 30cm2.说明:我们要求的是面积,即,不一定要分别求出和的值,只要从整体上求出即可.例9 如图10所示,在直线上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1 + S2 + S3 + S4 = ______.(2005年浙江省温州市中考题)分析:根据已知条件可知AC = EC,∠ABC = ∠CDE = 90O,由角的互余关系易证∠ACB =∠CED,这样可得△ABC ≌△CDE,所以BC = ED,在Rt△ABC中,由勾股定理,得AC2 = AB2 + BC2 = AB2 + DE2.由S1 = AB2,S2 = DE2,AC2 = 1,有S1 + S2 = 1,同理可得S3 + S4 = 3,所以S1+ S2 + S3 + S4 = 1+3 = 4.说明:本题不是直接求出S1,S2,S3,S4,而是借助勾股定理求得S1 + S2,S3 +S4,体现了整体思想在解决问题中的灵活应用.数学勾股定理论文篇二数学思想方法是以具体数学内容为载体,又高于具体数学内容的一种指导思想和普遍适用的方法.它能使人领悟到数学的真谛,并对人们学习和应用数学知识解决问题的思维活动起着指导和调控的作用.日本数学教育家米山国藏认为,学生在进入社会以后,如果没有什么机会应用数学,那么作为知识的数学,通常在出校门后不到一两年就会忘掉,然而不管他们从事什么业务工作,那种铭刻在人脑中的数学精神和数学思想方法,会长期地在他们的生活和工作中发挥重要作用.灵活运用数学思想方法解决问题,往往可以化难为易、化腐朽为神奇,事半功倍.下面以勾股定理中渗透的数学思想为例说明.一、分类思想例1.(2013年贵州黔西南州)一直角三角形的两边长分别为3和4,则第三边的长为( )点评:本题的易错点是受“勾三股四弦五”的影响,直接把边长为4的边当作直角边,从而误选A,犯了考虑问题不全面的错误.二、方程思想例2.(2013年山东济南)如图1,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度(滑轮上方的部分忽略不计)为()A.12mB.13mC.16mD.17m分析:观察图形,当绳子末端拉到距离旗杆8m处,可过绳子末端向旗杆作垂线,这样可以得到一个直角三角形,然后设旗杆的高度为未知数,进而运用勾股定理列方程求解.解:如图2,设旗杆的高度为x,则AC=AD=x,AB=x-2,BC=8.在Rt△ABC中,由勾股定理,得(x-2)2+82=x2.解得x=17m,即旗杆的高度为17m,答案选D.三、整体思想例3.(2013年江苏扬州)矩形的两邻边长的差为2,对角线长为4,则矩形的面积为____________.分析:设矩形的两邻边长分别为a、b(a>b),则依据题意有a-b=2,a2+b2=16.而矩形的面积等于ab,关键要设法将两个等式转化为含有ab的式子.解:设矩形的两邻边长分别为a、b (a>b),则a-b=2.五、数形结合思想例5.(2013年湖南张家界)如图4,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0)、(0,4),点D是OA的中点,点P在BC上运动.当△ODP是腰长为5的等腰三角形时,点P的坐标为________.分析:易知OD=5,要使△ODP为腰长为5的等腰三角形,可以点O为圆心,OD为半径作圆;也可以点D为圆心,OD为半径作圆.解:由C(10,0)可知OD=5.(1)以点O为圆心,OD为半径作圆交边六、构造思想例6.同例3分析:根据已知条件,联想到证明勾股定理的弦图,本例便有如下巧妙解法.数学勾股定理论文篇三正确的数学思想是成功解题的关键所在.在运用勾股定理解题时,若能正确把握数学思想,则可使思路开阔,方法简便快捷.下面列举在应用勾股定理时经常用到的数学思想,供同学们参考.一、方程思想◆例1如图1,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且点C落到E点,则CD等于( ).A.2cmB.3cmC.4cmD.5cm分析:由题意可知,ΔACD 和ΔAED关于直线AD对称,因而有ΔACD ≌ΔAED .进一步则有AE=AC=6cm,CD=ED,DE⊥AB.设CD=ED=xcm,则在ΔDEB中,由勾股定理可得DE2+BE2=BD2.又因在ΔABC中,AB2=AC2+BC2=62+82=100,得AB=10.所以有x2+(10- 6) 2=(8- x)2,解得x=3.故选B.二、转化思想◆例2如图2,长方体的高为3cm,底面是正方形,边长为2cm.现有一小虫从A出发,沿长方体表面爬行,到达C处,问小虫走的路程最短为多少厘米?分析:求几何体表面最短距离问题,通常可将几何体表面展开,把立体图形转化为平面图形.对于此题,可将该长方体的右表面翻折至前表面,使A、C两点共面,连结AC,线段AC的长度即为最短路程(如图3).由勾股定理可知AC2=32+42=52,即小虫所走的最短路程为5cm.三、分类讨论思想◆例3在ΔABC中,AB=15,AC=20,BC边上的高AD=12,试求BC的长.分析:三角形中某边上的高既可在三角形内部,也可在三角形的外部,故此题应分两种情况来考虑.当BC边上的高AD在ΔABC的内部时,如图4,由勾股定理得BD2=AB2-AD2,得BD=9;CD2=AC2-AD2,得CD=16,则BC=BD+CD=9+16=25;当BC上的高AD在ΔABC的外部时,如图5,同样由勾股定理可求得CD=16,BD=9,这时,BC=CD-BD=16- 9=7,故BC的长为25或7.四、数形结合思想勾股定理本身就是数形结合的定理,它的验证和应用,都体现了数形结合的思想.这里不再举例,请同学们在平时的练习中仔细体会.。
勾股定理论文勾股定理是数学中的一个重要定理,它是解决直角三角形问题的基本工具。
勾股定理最早出现在古代中国的《周髀算经》中,其中记载了一种求直角三角形边长的方法。
勾股定理的数学表述是:在一个直角三角形中,两直角边的平方和等于斜边的平方,即a² + b² = c²。
勾股定理有着广泛的应用,不仅在数学中有重要作用,还应用于物理、工程等各个领域。
物理中常用勾股定理来解决力学和动力学问题,工程中常用勾股定理来计算建筑和桥梁的尺寸。
此外,勾股定理还可以应用于计算机图形学中的三维旋转和变换问题。
在数学证明中,勾股定理有多种证明方法。
其中最著名的是毕达哥拉斯的证明,他使用了几何构造的方法。
此外,还有代数证明、几何相似性证明等。
这些证明方法各有特点,但都能很好地解释为什么勾股定理成立。
勾股定理的应用广泛且重要,因此在数学教育中被广泛教授。
学生通常在初中阶段开始学习勾股定理,并通过求解直角三角形的问题来实践这个定理。
通过勾股定理的学习,学生能够培养逻辑思维、分析问题和解决问题的能力。
在我看来,勾股定理是数学中的一颗明珠,不仅有着深远的数学意义,也对现实生活有重要的实用价值。
勾股定理的出现,不仅丰富了数学的内容,也为其他学科的发展提供了重要的工具。
我相信勾股定理在未来仍然会发挥更大的作用,并且可能会有更多新的应用领域被发现。
总之,勾股定理是一个重要的数学定理,它在解决直角三角形问题和其他领域中具有广泛的应用。
通过学习勾股定理,不仅可以培养学生的数学思维能力,还可以帮助他们解决实际生活中的问题。
我相信勾股定理在数学研究和应用中的地位将会越来越重要。
千古第一定理——勾股定理[优秀范文五篇]第一篇:千古第一定理——勾股定理千古第一定理——勾股定理我们已学过勾股定理,即若直角三角形的三条边长分别为a,b,c,则a2+b2=c2.反过来,若三角形的三条边a,b,c满足a2十b2=c2,则它是个直角三角形.在古代,许多民族都发现了这个事实.我国的算书《周髀算经》中,就有关于勾股定理的记载,为了纪念我国古人的伟大成就,就把这个定理定名为“勾股定理”.在西方,这个定理被称为毕达哥拉斯定理.之所以被称为毕达哥拉斯定理,是因为现代的数学和科学来源于西方,而西方的数学及科学又来源于古希腊,古希腊流传下来的最古老的著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,就落在毕达哥拉斯的头上.不管怎么说,勾股定理是数学中一个伟大的定理,它的重要性怎么说也不为过:(1)勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理;(2)勾股定理导致无理数的发现,这就是所谓第一次数学危机;(3)勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学;(4)勾股定理中的公式是第一个不定方程,有许许多多组数满足这个方程,也是最早得出完整解答的不定方程,它一方面引导出各式各样的不定方程,包括著名的费马大定理,另一方面也为不定方程的解题程序树立了一个范式.第二篇:用余弦定理证明勾股定理并非循环论证用余弦定理证明勾股定理并非循环论证大家都知道,勾股定理不过是余弦定理的一种特例,所以用余弦定理证明勾股定理就很容易;但是长期以来,有一种观点认为,余弦定理不能用来证明勾股定理,原因是余弦定理是用勾股定理证明出来的,然后用余弦定理又来证明勾股定理就是循环论证,说到这里,我就纳闷了,难道证明余弦定理非要直接或者间接的用到勾股定理?NO !简直是谬论,出于兴趣,偶在网上找到了一种证明余弦定理的方法,证明的过程和勾股定理扯不上一点关系。
据说是伟大的科学家爱因斯坦在12岁时, 在未学过平面几何的情况下, 基于三角形的相似性, 找到的这一巧妙和简单的证明余弦定理的方法。
哈尔滨师范大学学年论文题目勾股定理的表述及多种证明学生王永然指导教师白薇年级2007级专业数学系系别数学与应用数学学院数学科学学院哈尔滨师范大学2010年4月28日论文提要勾股定理有十分悠久的历史,几乎所有文明古国对此都有研究。
中华民族是最早了解和发现勾股定理的民族之一。
在中国最早的记载出现在《周髀算经》中。
在国外,人们把勾股定理称为毕达哥拉斯定理。
有关勾股定理的发现问题,各民族都有不同的记载,根据不同的理解,给出三种不同的表述。
中国古代的教学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。
赵爽的证明可谓独具匠心,极富创新意识。
他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性。
为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。
后来的很多数学家继承了这一风格并且有所发展,都是用以形证数的方法证明了勾股定理,只是具体图形的分合移补略有不同而已。
西方欧几里得的证明是纯几何式的逻辑演绎,而婆什迦罗的相似三角形证法和加菲尔德的梯形面积法证法则简单明了,非常直观。
还有很多其它的证明方法,也很好的证明了勾股定理。
勾股定理的表述及多种证明王永然摘 要:勾股定理是初等几何中的一个基本定理。
本文简要叙述了勾股定理的来历和表述方法,并且详细的阐述了中国多位数学家运用几何图形割补法和数形结合的思想证明勾股定理的方法,和外国不同数学家的逻辑推理法、相似三角形法、梯形面积法等证明勾股定量的方法。
关键词:勾股定理 几何图形割补法 数形结合 逻辑推理法有关勾股定理的发现问题,各国各民族都有不同的记载,我们中华民族是最早了解和发现勾股定理的民族之一。
目前已知,勾股定理在中国最早的记载出现在《周髀算经》中。
该书卷上头记载了周公和商高的一段问答,商高指出夏代大禹治水时已经知道用“勾广三,股修四,径隅五”的办法来构成直角三角形,“求斜至目者,以日下为勾,日高为股,勾股各自乘,并以开方除之,得斜至日”。
关于勾股定理的论文勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。
勾股定理是数学知识里面的一个定理,本文提供几篇优秀勾股定理论文供大家学习。
第一篇勾股定理论文:《勾股定理投影片的制作》勾股定理的内容是aZ+bZ=eZ(a、b、e是直角三角形的三条边)。
我们以三角形的三条边组成三个正方形,通过割补移位,使两个正方形面积之和等于第三个正方形面积的形式,制作一幅投影片,用来配合勾股定理的推导,对教学十分有益。
一、片型抽拉旋转片二、制作方法1、底片。
画一个直角三角形,标出三条边a、b、“。
以“、b、“为稗长画三个正方形,其中“边组成的正方形用实线画出,均匀地涂上蓝色。
其他两个正方形用虚线画出,不涂色彩。
见图1。
图12、抽片(一)。
取一条长胶片,长约等于底片长的一倍半,宽等于底片宽的一半。
以b为边长,用实线画一个正方形,均匀涂上红色,见图2。
图23、抽片(二)。
取一条长胶片,长等于底片长的2倍,宽等于底片的宽。
以c为边长,用实线画一个正方形,在正方形内留出两个直角三角形的空白,三角形的大小与图l中的直角三角形相同,其余部分均匀涂上黄色,见图3。
图34、转片(一)。
用胶片剪一个直角三角形,大小与图1中的直角三角形相同,涂上黄色,以斜边和长直角边的交点为轴心打孔,准备装旋转铆钉,见图4。
图45、转片(二)。
同4所述,剪一个直角三角形,涂上黄色,以斜边和短直角边的交点为轴心打孔,准备装铆钉,见图5。
图56、将图4、图5所示的两个三角形,放在图3所示的正方形内,用铆钉分别将两个三角形固定在正方形的两个顶角上,使之能转动。
注意两个三角形的黄色与正方形内黄色一致,看上去是一个完整的正方形,见图6。
勾股定理论文勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。
也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。
下面,就让我们开始认识勾股定理吧学习目标了解勾股定理的历史,探索勾股定理的应用价值了解证明勾股定理的方法,学会应用勾股定理获得一些研究数学问题的经验和方法一.勾股定理的历史及应用价值赵爽与勾股定理赵爽的这个证明可谓别具匠心,极富创新意识。
他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。
以后的数学家大多继承了这一风格并且代有发展。
例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。
中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。
尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。
事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。
毕达哥拉斯定理在国外,相传勾股定理是公元前500多年时古希腊数学家毕达哥拉斯首先发现的。
因此又称此定理为“毕达哥拉斯定理”。
法国和比利时称它为“驴桥定理”,埃及称它为“埃及三角形”等。
但他们发现的时间都比我国要迟得多。
《周髀算经》中还有“陈子测日”的记载:根据勾股定理,周子可以测出日高及日远.我们的先辈们还根据勾股定理发明了一种由互相垂直的勾尺和股尺构成的测量工具矩.对于勾股定理,我国古代的数学家没有把主要精力放在仅仅给出严格的逻辑推理证明上,也没有在不可通约量究竟是什么性质的数上面做文章,而是立足于对由此可以解决的一类实际问题算法的深入研究.通过在直角三角形范围内讨论与勾股定理、相似直角三角形性质定理有关的命题,他们推出了一种组合比率算法勾股术.勾股术把相似直角三角形的概念作为基本概念,把相似直角三角形的性质作为基本性质,使相似直角三角形之间的相似比率构成了勾股的核心.勾股术用比率表达相似勾股对应边成比例的原理,勾股整数和勾股两容(容圆、容方)问题的求解;建立了勾股测量的理论基础.后来,刘徽实际上把相似勾股形理论确定为勾股比率论,并明确提出了“不失本率原理”,又把这个原理与比例算法结合起来,去论证各种各样的勾股测量原理,从而为我国古代的勾股测望术建立了坚实的理论基础。