勾股定理证明方法及论文
- 格式:doc
- 大小:151.00 KB
- 文档页数:10
勾股定理的证明论文写勾股定理是数学史上的一颗明珠,有的大学的毕业论文就是关于勾股定理的,下面是给大家关于勾股定理的证明论文怎么写的信息,希望对大家有所帮助!勾股定理的证明论文范文一关于勾股定理勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统.也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证.1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法.实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法.这是任何定理无法比拟的.在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名.在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500).实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库.证明方法:先拿四个一样的直角三角形.拼入一个(a+b)的正方形中,中央米色正方形的面积:c2.图(1)再改变三角形的位置就会看到两个米色的正方形,面积是(a2,b2).图(2)四个三角形面积不变,所以结论是:a2+b2=c2勾股定理的历史:商高是公元前十一世纪的中国人.当时中国的朝代是西周,是奴隶社会时期.在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话.商高说:"…故折矩,勾广三,股修四,经隅五."商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5.以后人们就简单地把这个事实说成"勾三股四弦五".这就是著名的勾股定理.关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也.""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的.赵爽:?东汉末至三国时代吴国人?为《周髀算经》作注,并著有《勾股圆方图说》.赵爽的这个证明可谓别具匠心,极富创新意识.他用几何图形的截,割,拼,补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数,形数统一,代数和几何紧密结合,互不可分的独特风格树立了一个典范.以后的数学家大多继承了这一风格并且代有发展.例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是其中体现出来的"形数统一"的思想方法,更具有科学创新的重大意义.事实上,"形数统一"的思想方法正是数学发展的一个极其重要的条件.正如当代中国数学家吴文俊所说:"在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的.十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续."中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?"商高回答说:"数的产生对方和圆这些形体的认识.其中有一条原理:当直角三角形'矩'得到的一条直角边'勾'等于3,另一条直角边'股'等于4的时候,那么它的斜边'弦'就必定是5.这个原理是大禹在治水的时候就总结出来的.勾股定理的证明论文范文二勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名.首先介绍勾股定理的两个最为精彩的证明,据说分别中国和希腊.1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边.这两个正方形全等,故面积相等.左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等.从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等.左图剩下两个正方形,分别以a、b为边.右图剩下以c为边的正方形.于是a^2+b^2=c^2.这就是我们几何教科书中所介绍的方法.既直观又简单,任何人都看得懂.2.希腊方法:直接在直角三角形三边上画正方形,如图.容易看出,△ABA’≌△AA'C.过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’.△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半.由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积.同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积.于是,S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC, 即a2+b2=c2.至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明).这里只用到简单的面积关系,不涉及三角形和矩形的面积公式.这就是希腊古代数学家欧几里得在其《几何原本》中的证法.以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:⑴全等形的面积相等;⑵一个图形分割成几部分,各部分面积之和等于原图形的面积.这是完全可以接受的朴素观念,任何人都能理解.我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明.采用的是割补法:如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的.即“勾股各自乘,并之为弦实,开方除之,即弦也”.赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观.西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的.据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺.故西方亦称勾股定理为“百牛定理”.遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法.下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明.如图,S梯形ABCD=(a+b)2=(a2+2ab+b2),①又S梯形ABCD=S△AED+S△EBC+S△CED=ab+ba+c2=(2ab+c2).②比较以上二式,便得a2+b2=c2.这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁.1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明.5年后,伽菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话.在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似.如图,Rt△ABC中,∠ACB=90°.作CD⊥BC,垂足为D.则△BCD∽△BAC,△CAD∽△BAC.由△BCD∽△BAC可得BC2=BD?BA,①由△CAD∽△BAC可得AC2=AD?AB.②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有BC2+AC2=AB2,这就是a2+b2=c2.这也是一种证明勾股定理的方法,而且也很简洁.它利用了相似三角形的知识.在对勾股定理为数众多的证明中,人们也会犯一些错误.如有人给出了如下证明勾股定理的方法:设△ABC中,∠C=90°,由余弦定理c2=a2+b2-2abcosC,因为∠C=90°,所以cosC=0.所以a2+b2=c2.这一证法,看来正确,而且简单,实际上却犯了循环证论的错误.原因是余弦定理的证明勾股定理.人们对勾股定理感兴趣的原因还在于它可以作推广.欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”.从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”.勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和.若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和.勾股定理的证明论文范文三最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。
勾股定理的十六种证明方法【证法1】此主题相关图片如下:做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即a^2+b^2+4*(ab/2)=c^2+4*(ab/2)整理得到:a^2+b^2=c^2。
【证法2】以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 ab/2.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.∵ RtΔHAE ≌ RtΔEBF,∴∠AHE = ∠BEF.∵∠AEH + ∠AHE = 90º,∴∠AEH + ∠BEF = 90º.∴∠HEF = 180º―90º= 90º.∴四边形EFGH是一个边长为c的正方形. 它的面积等于c^2.∵ RtΔGDH ≌ RtΔHAE,∴∠HGD = ∠EHA.∵∠HGD + ∠GHD = 90º,∴∠EHA + ∠GHD = 90º.又∵∠GHE = 90º,∴∠DHA = 90º+ 90º= 180º.∴ ABCD是一个边长为a + b的正方形,它的面积等于(a+b)^2.∴(a+b)^2=c^2+4*(ab/2),∴ a^2+b^2=c^2。
此主题相关图片如下:【证法3】以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab/2. 把这四个直角三角形拼成如图所示形状.∵ RtΔDAH ≌ RtΔABE,∴∠HDA = ∠EAB.∵∠HAD + ∠HAD = 90º,∴∠EAB + ∠HAD = 90º,∴ ABCD是一个边长为c的正方形,它的面积等于c^2.∵EF = FG =GH =HE = b―a ,∠HEF = 90º.∴ EFGH是一个边长为b―a的正方形,它的面积等于(b-a)^2.∴(b-a)^2+4*(ab/2)=c^2,∴ a^2+b^2=c^2。
摘要:勾股定理是几何学中一颗光彩熠熠的明珠,充满着魅力。
它被世人称为“几何学的基石”,是人类最伟大的十个科学发现之一.它是我们全人类共同的财富,不论是古埃及人,古巴比伦,亦或是我们中国人最早发现了它,显然不是任何一个民族的私有财产。
勾股定理在高等数学和其他学科中有着极为广泛的应用.总之,在勾股定理的探索上,我们走向了数学科学的殿堂。
关键词:勾股定理,应用Abstract:Pythagorean theorem in geometry is a gleaming pearl, full of charm. It is the world known as ”the cornerstone of geometry, ”is humanity's greatest scientific discoveries of the ten. It is our common wealth of mankind, whether ancient Egyptian, Babylonian, or we Chinese people have first discovered it, is clearly not the private property of any nation。
Pythagorean theorem in higher mathematics and other disciplines has a very wide range of applications。
In short, the exploration of the Pythagorean theorem, we went to the temple of Mathematical Sciences.Key words:Pythagoras Theorem,application目录1 引言 (4)2 内容 (4)3 证明 (4)3.1 赵爽弦图法 (5)3。
有关勾股定理的⼩论⽂有关勾股定理的⼩论⽂ 勾股定理或勾股弦定理,⼜称毕达哥拉斯定理或毕⽒定理。
是⼀个基本的⼏何定理,传统上认为是由古希腊的毕达哥拉斯所证明。
下⾯是有关勾股定理的⼩论⽂的内容,欢迎阅读! 有关勾股定理的⼩论⽂1 在初⼆上学期我们学习了⼀种很实⽤并且很容易理解的定理——勾股定理。
勾股定理就是把直⾓三⾓形的两直⾓边的平⽅和等于斜边的平⽅这⼀特性,⼜称毕达哥拉斯定理或毕⽒定理。
我脑海中印象最深的就是那棵毕达哥拉斯树,它是由勾股定理不断的连接从⽽构成的⼀个树状的⼏何图形。
两个相邻的⼩正⽅形⾯积的和等于相邻的⼀个⼤正⽅形的⾯积。
它看起来⾮常别致、漂亮,因为勾股定理是数学史上的⼀颗明珠,它将会使⼈们再算⼀些问题时变得更⽅便。
你如果把勾股定理倒过来,它还是勾股定理逆定理,它最⼤的好处就在于它能够证明某些三⾓形是直⾓三⾓形。
这⼀点在我们⼏何问题中是有很⼤价值的。
我国古代的《周髀算经》就有关于勾股定理的记载::“若求邪⾄⽇者,以⽇下为句,⽇⾼为股,句股各⾃乘,并⽽开⽅除之,得邪⾄⽇”,⽽且它还记载了有关勾股定理的证明:昔者周公问于商⾼⽈:“窃闻乎⼤夫善数也,请问昔者包牺⽴周天历度——夫天可不阶⽽升,地不可得尺⼨⽽度,请问数安从出?” 商⾼⽈:“数之法出于圆⽅,圆出于⽅,⽅出于矩,矩出于九九⼋⼗⼀。
故折矩,以为句⼴三,股修四,径隅五。
既⽅之,外半其⼀矩,环⽽共盘,得成三四五。
两矩共长⼆⼗有五,是谓积矩。
故禹之所以治天下者,此数之所⽣也。
” 同时发现勾股定理的还有古希腊的毕达哥拉斯。
但是从很多泥板记载表明,巴⽐伦⼈是世界上最早发现“勾股定理”的。
由此可见古代的⼈们是多么的聪明、细⼼和善于发现! 法国和⽐利时称勾股定理为驴桥定理,埃及称为埃及三⾓形。
我国古代把直⾓三⾓形中较短的直⾓边叫做勾,较长的直⾓边叫做股,斜边叫做弦,所以它⼜叫勾股弦定理。
勾股定理流长深远,我们不能败给古⼈,我们⼀定要善于发现,将勾股定理灵活地运⽤在⽣活中,将勾股定理发扬光⼤!常见的勾股数按“勾股弦”顺序:3,4,5 ;6,8,10;5,12,13 ;7,24,25;8,15,17 ;9,40,41……经过计算表明,勾、股、弦的⽐例为1:√3:2 。
勾股定理证明(精选多篇)第一篇:勾股定理的证明方法这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为的等腰直角三角形拼成的。
因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式化简得,。
第二篇:勾股定理的证明勾股定理的证明一、基本情况组长:曾烨秋组员:邱丽璇、李锐、陈应飞、黄富荣、贾雪梅指导老师:何建荣相关课程:数学一、问题提出1、背景:初中时就学习了直角三角形的勾股定理,我们对此很感兴趣,便想探究勾股定理的证明方法。
2、目的:3、意义:探究出勾股定理的证明方法二、研究过程1、查阅资料:利用课间等休息时间在图书室或计算机室查阅资料。
2、整理资料:在网上下载部分第三篇:勾股定理证明勾股定理证明直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理中国是发现和研究勾股定理最古老的国家之一。
中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。
在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。
既方之,外半其一矩,环而共盘,得成三四五。
两矩共长二十有五,是谓积矩。
”因此,勾股定理在中国又称“商高定理”。
在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。
以下即为一种证明方法:如图,这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为的等腰直角三角形拼成的。
∵△abe+△aed+△ced=梯形abcd∴(ab+ab+c2)÷2=(a+b)(a+b)/2 ∴∴c2=a2+b2,即在直角三角形中,斜边长的平方等于两直角边的平方和初二十四班秦煜暄第四篇:奇特的勾股定理的证明如图所示,正方形abcd连接ac,bd.因为四边形abcd是正方形所以ac垂直于bd图中的每个三角形都是直角三角形解:设ao为a,bo 为b,ab为c所以正方形的面积就是a*b/2*4=2a*b=2ab正方形的面积也可以表示为c所以2ab=cab+ab=c因为此图是正方形所以ao=bo所以a=b所以把第一个ab中的b换成a.把第二个a换成b.所以a*a+b*b=c 所以a +b =c第五篇:勾股定理专题证明勾股定理专题证明1.我们给出如下定义:若一个四边形中存在一组相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边。
关于勾股定理的研究性论文关于勾股定理的研究性论文第一篇勾股定理论文:勾股定理的内容是aZ+bZ=eZ(a、b、e是直角三角形的三条边)。
我们以三角形的三条边组成三个正方形,通过割补移位,使两个正方形面积之和等于第三个正方形面积的形式,制作一幅投影片,用来配合勾股定理的推导,对教学十分有益。
一、片型抽拉旋转片二、制作方法1、底片。
画一个直角三角形,标出三条边a、b、“。
以“、b、“为稗长画三个正方形,其中“边组成的正方形用实线画出,均匀地涂上蓝色。
其他两个正方形用虚线画出,不涂色彩。
见图1。
图12、抽片(一)。
取一条长胶片,长约等于底片长的一倍半,宽等于底片宽的一半。
以b为边长,用实线画一个正方形,均匀涂上红色,见图2。
图23、抽片(二)。
取一条长胶片,长等于底片长的2倍,宽等于底片的宽。
以c为边长,用实线画一个正方形,在正方形内留出两个直角三角形的空白,三角形的大小与图l中的直角三角形相同,其余部分均匀涂上黄色,见图3。
图34、转片(一)。
用胶片剪一个直角三角形,大小与图1中的直角三角形相同,涂上黄色,以斜边和长直角边的交点为轴心打孔,准备装旋转铆钉,见图4。
图45、转片(二)。
同4所述,剪一个直角三角形,涂上黄色,以斜边和短直角边的交点为轴心打孔,准备装铆钉,见图5。
图56、将图4、图5所示的两个三角形,放在图3所示的正方形内,用铆钉分别将两个三角形固定在正方形的两个顶角上,使之能转动。
注意两个三角形的黄色与正方形内黄色一致,看上去是一个完整的正方形,见图6。
图67、将图2所示的抽片(一)水平插入图1所示的片框内,使图2中的正方形与图l中的b边组成的虚线正方形重合,能向右抽动,见图7下部。
图7将图6所示的抽片(二)按与底片直角三角形的斜边c垂直的方向,插人图1所示的片框内,使图6中的正方形与底片。
边组成的正方形重合,并能向右下方抽动,见图7。
三、使用方法1.如图7所示,讲直龙三角形的三条边分别是a、b、“,以氛b、c、为边一长的蓝色、红色、黄色三个正方形分别代表aZ、bZ、eZ。
勾股定理再回首——十证勾股定理摘要:勾股定理(毕达哥拉斯定理)的简单表述为:直角三角形两条直角边的平方和等于斜边的平方。
这样一个十分简单的定理,却被誉为最伟大的定理之一,它用拥有着悠久的历史,并且被广泛地运用到生活中各个领域。
本文从勾股定理的起源谈起,对勾股定理采用10种方法证明,并对勾股定理的最新研究及其影响进行简要介绍。
关键词:起源;勾股定理;证明;影响引言勾股定理是历史上最为古老的定理之一,对其的研究可以追溯到公元前3000多年。
它有400多种证明方法,是三角形边角关系的重要表现形式。
本文将取其中10种特色证明方法证明三角形勾股定理。
数学源于生活又应用、服务于生活,勾股定理在测算、物理、航天、地质勘探等生活中的诸多领域都有所应用。
本文从勾股定理的起源、历史、证明、应用及勾股数进行综合论述。
一、勾股定理的起源和历史背景世界各国对勾股定理研究背景各不相同。
公元前3000年前,古巴比伦人就已经对勾股定理有所了解与运用,古埃及人在建筑金字塔时也应用到了勾股定理。
中国对与勾股定理的研究可以追溯到周朝时期,商高提出了“广三,股修四,径隅五。
”的概念,记载于《周髀算经》中。
中国自古作为农业大国,对数学的研究也多源于农业生产。
出于农业生产的需要,中国古代对天文、历法和算数有着精深的研究。
对勾股定理的研究,就出于这样的背景。
(1)商高指出:夏代大禹治水时已经知道用“勾广三,股修四,径隅五”的办法来构成直角三角形。
商高以“半之一矩,环而共盘”的方法来构造弦图(见图 1)。
图1商高对勾股定理的描述,是中国古代最早关于勾股定理的记载,故而勾股定理又称作“商高定理”。
这一发现,在当时即得到了广泛运用,古人用勾股定理进行日高测算,从而对农业生产时间进行掌控。
在西方,勾股定理被称作“毕达哥拉斯定理”,他们认为是毕达哥拉斯最早发现的勾股定理。
公元前2世纪,希腊学者阿波罗多罗斯《希腊编年史》(1),其中提到“毕达哥拉斯为了庆祝他发现了那个著名的定理,宰牛来作祭神的牺牲。
勾股定理证明小论文[5篇模版]第一篇:勾股定理证明小论文勾股定理勾股定理,指的是“在直角三角形中,两条直角边的平方和等于斜边的平方。
”这个定理虽然只是简单的一句话,但是它却有着十分悠久的历史,尤其是它那种“形数结合”的方法,影响到了不计其数的人。
勾股定理一直是几何学中的明珠,充满了无限的魅力。
早在很久以前,我们的前辈们就已经开始研究勾股定理了。
而中国则是发现和研究勾股定理最古老的国家之一。
中国古代数学家将直角三角形称为勾股形,西周数学家商高曾在《九章算术》中说过:“若勾三,股四,则弦五。
”较短的直角边称为勾,另一直角边称为股,斜边则称为弦,所以勾股定理也称为勾股弦定理。
并且勾股定理又称作毕达哥拉斯定理或毕氏定理。
数学公式中常写作据考证,人类对这条定理的认识,少说也有4000年,并且勾股定理大概共有几百个证明方法,也是数学定理中证明方法最多的定理之一。
接下来我们便介绍几种较有名气的证明方法。
1.】这是传说中毕达哥拉斯的证明方法:左图中是由2个正方形和4个相等的三角形拼成的,而右图则是由一个正方形和四个相等的三角形拼成,又因为两幅图中正方形的边长都是(a+b),面积相等,所以可以列出等式——证明了勾股定理。
2】下面就是中国古代数学家赵爽的证法:这个图形可以用两种不一样的方法列出两个不一样的等式,且都可以证明出勾股定理。
第一种方法是将这个正方形分成4个相同大小的三角形和一个大正方形,根据面积的相等,可以列出等式——式子为化简后的,最后得出。
第二种方法则是将图形看成4个大小相同的长方形和一个小正方形,即可列出等式以证明勾股定理。
这两种不同的方法非常简便,直观,充分体现了中国古代人们的聪明机智。
化简后也可3】欧几里得的勾股定理证明方法:如图,过 A 点画一直线 AL 使其垂直于 DE,并交 DE 于 L,交 BC 于M。
通过证明△BCF≌△BDA,利用三角形面积与长方形面积的关系,得到正方形ABFG与矩形BDLM等积,同理正方形ACKH与矩形MLEC也等积,于是推得AB²+AC²=BC².除了这些,证明勾股定理的方法还有许许多多种。
数学勾股定理论文勾股定理是数学史上一个伟大的定理,同时也是一个历史悠久的定理.下面店铺给你分享数学勾股定理论文,欢迎阅读。
数学勾股定理论文篇一数学思想是数学知识的精髓,又是把知识转化为能力的桥梁.灵活运用数学思想,能够有效地提高分析问题和解决问题的能力,增强应用数学知识的意识.在《勾股定理》这一章中,蕴含着许多重要的数学思想,现举例介绍如下.一、方程思想在含有直角三角形的图形中,求线段的长往往要使用勾股定理,如果无法直接用勾股定理来计算,则需要列方程解决.二、化归思想化归思想就是通过一定的方法或途径,把需要解决的问题变换形式,变化成另一类已经解决或易于解决的问题,从而使原来的问题得到解决.例3如图3,长方体的长为15cm,宽为10cm,高为20cm.点B 与点C的距离为5cm,一只蜗牛如果要沿着长方体的表面从点A爬到点B,需爬行的最短路程是多少?分析:由于蜗牛是沿着长方体的表面爬行的,故需把长方体展开成平面图形.根据两点之间线段最短,蜗牛爬行的较短路程有两种可能,如图4、图5所示.利用勾股定理容易求出两种图中AB的长度,比较后即可求得蜗牛爬行的最短路程是25cm.说明:这里通过长方体的展开图,把立体图形转化为平面图形,把求蜗牛爬行的最短路程问题化归成利用勾股定理求两点间的距离问题.例4如图6,是一块四边形的草地ABCD,其中∠A = 60O,∠B =∠D = 90O,AB = 20m,CD = 10m,求AD、BC的长(精确到0.1m,≈1.732).(2004年天津市中考题)分析:图中无直角三角形,怎么办?联想到含30O角的直角三角形,因而延长AD、BC交于点E,则∠E = 30O,AE = 2AB = 40m,CE = 2CD = 20m. 由勾股定理得DE == m,BE == m,所以AD = 40≈22.7m,BC = 20≈14.6m.说明:本题充分利用已知图形的特点,通过构造新图形,将四边形问题巧妙地转化成了直角三角形问题.三、数形结合思想数形结合,就是抓住数与形之间本质上的联系,将抽象的数学语言与直观的图形结合起来,通过“以形助数”或“以数解形”,使复杂问题简单化、抽象问题具体化,从而达到迅速解题的目的.例5在一棵树的10m高处有两只猴子,其中一只爬下树直奔离树20m的池塘,而另一只爬到树顶后直扑池塘,如果两只猴子经过的距离相等,问这棵树有多高?(2005年福建省龙岩市中考题)分析:依题意画出示意图7,D为树顶,AB = 10m,C为池塘,AC = 20m. 设BD = (m),则树高AD = ( +10)m.因为AC + AB = BD + DC,所以DC = (30)m. 在Rt△ACD中,由勾股定理可得方程202 + ( + 10)2 = (30)2,解得 = 5,所以 +10 = 15,即树高15m.说明:勾股定理本身就是数形结合的一个典范,它把直角三角形有一个直角的“形”的特点,转化为三边“数”的关系.利用勾股定理解决实际问题,关键是利用数形结合思想将实际问题转换成直角三角形模型,再利用方程来解决.四、分类讨论思想在解题过程中,当条件或结论不确定或不惟一时,往往会产生几种可能的情况,这就需要依据一定的标准对问题进行分类,再针对各种不同的情况分别予以解决.最后综合各类结果得到整个问题的结论.分类讨论实质上是一种“化整为零,各个击破,再积零为整”的数学方法.例6 一直角三角形的两边长分别为3cm、4cm,则第三边的长为______.分析:此题中已知一个直角三角形的两边长,并没有指明是直角边还是斜边,因此要分类讨论,答案是5cm或cm.例7“曙光中学”有一块三角形形状的花圃ABC,现可直接测量到∠A = 30O,AC = 40米,BC = 25米,请你求出这块花圃的面积. (2003年黑龙江省中考题)分析:由于题目中没有明确告诉我们△ABC的形状,故需分两种情况讨论.在图8中,S△ABC=10 (20 + 15)米2;在图9中,S△ABC= 10(2015)米2.说明:此类问题由于题目中没有图形,常需分类讨论,解答时极易因考虑不周而导致漏解,希望同学们用心体会.五、整体思想对于某些数学问题,如果拘泥常规,从局部着手,则难以求解;如果把问题的某个部分或几个部分看成一个整体进行思考,就能开阔思路,较快解答题目.例8已知一个直角三角形的周长为30cm,斜边长为13cm,那么这个三角形的面积为______.分析:设这个直角三角形的两条直角边长为,斜边为,则= 3013 = 17,于是( + )2 = 2 + 2 + 2 = 172 = 289,由勾股定理知2 + 2 = 289,即132+ 2 = 289,所以 = 60,故所求三角形面积S == 30cm2.说明:我们要求的是面积,即,不一定要分别求出和的值,只要从整体上求出即可.例9 如图10所示,在直线上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1 + S2 + S3 + S4 = ______.(2005年浙江省温州市中考题)分析:根据已知条件可知AC = EC,∠ABC = ∠CDE = 90O,由角的互余关系易证∠ACB =∠CED,这样可得△ABC ≌△CDE,所以BC = ED,在Rt△ABC中,由勾股定理,得AC2 = AB2 + BC2 = AB2 + DE2.由S1 = AB2,S2 = DE2,AC2 = 1,有S1 + S2 = 1,同理可得S3 + S4 = 3,所以S1+ S2 + S3 + S4 = 1+3 = 4.说明:本题不是直接求出S1,S2,S3,S4,而是借助勾股定理求得S1 + S2,S3 +S4,体现了整体思想在解决问题中的灵活应用.数学勾股定理论文篇二数学思想方法是以具体数学内容为载体,又高于具体数学内容的一种指导思想和普遍适用的方法.它能使人领悟到数学的真谛,并对人们学习和应用数学知识解决问题的思维活动起着指导和调控的作用.日本数学教育家米山国藏认为,学生在进入社会以后,如果没有什么机会应用数学,那么作为知识的数学,通常在出校门后不到一两年就会忘掉,然而不管他们从事什么业务工作,那种铭刻在人脑中的数学精神和数学思想方法,会长期地在他们的生活和工作中发挥重要作用.灵活运用数学思想方法解决问题,往往可以化难为易、化腐朽为神奇,事半功倍.下面以勾股定理中渗透的数学思想为例说明.一、分类思想例1.(2013年贵州黔西南州)一直角三角形的两边长分别为3和4,则第三边的长为( )点评:本题的易错点是受“勾三股四弦五”的影响,直接把边长为4的边当作直角边,从而误选A,犯了考虑问题不全面的错误.二、方程思想例2.(2013年山东济南)如图1,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度(滑轮上方的部分忽略不计)为()A.12mB.13mC.16mD.17m分析:观察图形,当绳子末端拉到距离旗杆8m处,可过绳子末端向旗杆作垂线,这样可以得到一个直角三角形,然后设旗杆的高度为未知数,进而运用勾股定理列方程求解.解:如图2,设旗杆的高度为x,则AC=AD=x,AB=x-2,BC=8.在Rt△ABC中,由勾股定理,得(x-2)2+82=x2.解得x=17m,即旗杆的高度为17m,答案选D.三、整体思想例3.(2013年江苏扬州)矩形的两邻边长的差为2,对角线长为4,则矩形的面积为____________.分析:设矩形的两邻边长分别为a、b(a>b),则依据题意有a-b=2,a2+b2=16.而矩形的面积等于ab,关键要设法将两个等式转化为含有ab的式子.解:设矩形的两邻边长分别为a、b (a>b),则a-b=2.五、数形结合思想例5.(2013年湖南张家界)如图4,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0)、(0,4),点D是OA的中点,点P在BC上运动.当△ODP是腰长为5的等腰三角形时,点P的坐标为________.分析:易知OD=5,要使△ODP为腰长为5的等腰三角形,可以点O为圆心,OD为半径作圆;也可以点D为圆心,OD为半径作圆.解:由C(10,0)可知OD=5.(1)以点O为圆心,OD为半径作圆交边六、构造思想例6.同例3分析:根据已知条件,联想到证明勾股定理的弦图,本例便有如下巧妙解法.数学勾股定理论文篇三正确的数学思想是成功解题的关键所在.在运用勾股定理解题时,若能正确把握数学思想,则可使思路开阔,方法简便快捷.下面列举在应用勾股定理时经常用到的数学思想,供同学们参考.一、方程思想◆例1如图1,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且点C落到E点,则CD等于( ).A.2cmB.3cmC.4cmD.5cm分析:由题意可知,ΔACD 和ΔAED关于直线AD对称,因而有ΔACD ≌ΔAED .进一步则有AE=AC=6cm,CD=ED,DE⊥AB.设CD=ED=xcm,则在ΔDEB中,由勾股定理可得DE2+BE2=BD2.又因在ΔABC中,AB2=AC2+BC2=62+82=100,得AB=10.所以有x2+(10- 6) 2=(8- x)2,解得x=3.故选B.二、转化思想◆例2如图2,长方体的高为3cm,底面是正方形,边长为2cm.现有一小虫从A出发,沿长方体表面爬行,到达C处,问小虫走的路程最短为多少厘米?分析:求几何体表面最短距离问题,通常可将几何体表面展开,把立体图形转化为平面图形.对于此题,可将该长方体的右表面翻折至前表面,使A、C两点共面,连结AC,线段AC的长度即为最短路程(如图3).由勾股定理可知AC2=32+42=52,即小虫所走的最短路程为5cm.三、分类讨论思想◆例3在ΔABC中,AB=15,AC=20,BC边上的高AD=12,试求BC的长.分析:三角形中某边上的高既可在三角形内部,也可在三角形的外部,故此题应分两种情况来考虑.当BC边上的高AD在ΔABC的内部时,如图4,由勾股定理得BD2=AB2-AD2,得BD=9;CD2=AC2-AD2,得CD=16,则BC=BD+CD=9+16=25;当BC上的高AD在ΔABC的外部时,如图5,同样由勾股定理可求得CD=16,BD=9,这时,BC=CD-BD=16- 9=7,故BC的长为25或7.四、数形结合思想勾股定理本身就是数形结合的定理,它的验证和应用,都体现了数形结合的思想.这里不再举例,请同学们在平时的练习中仔细体会.。
勾股定理的证明论文写勾股定理是数学史上的一颗明珠,有的大学的毕业论文就是关于勾股定理的,下面是给大家关于勾股定理的证明论文怎么写的信息,希望对大家有所帮助!勾股定理的证明论文范文一关于勾股定理勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统.也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证.1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法.实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法.这是任何定理无法比拟的.在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名.在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500).实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库.证明方法:先拿四个一样的直角三角形.拼入一个(a+b)的正方形中,中央米色正方形的面积:c2.图(1)再改变三角形的位置就会看到两个米色的正方形,面积是(a2,b2).图(2)四个三角形面积不变,所以结论是:a2+b2=c2勾股定理的历史:商高是公元前十一世纪的中国人.当时中国的朝代是西周,是奴隶社会时期.在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话.商高说:"…故折矩,勾广三,股修四,经隅五."商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5.以后人们就简单地把这个事实说成"勾三股四弦五".这就是著名的勾股定理.关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也.""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的.赵爽:?东汉末至三国时代吴国人?为《周髀算经》作注,并著有《勾股圆方图说》.赵爽的这个证明可谓别具匠心,极富创新意识.他用几何图形的截,割,拼,补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数,形数统一,代数和几何紧密结合,互不可分的独特风格树立了一个典范.以后的数学家大多继承了这一风格并且代有发展.例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是其中体现出来的"形数统一"的思想方法,更具有科学创新的重大意义.事实上,"形数统一"的思想方法正是数学发展的一个极其重要的条件.正如当代中国数学家吴文俊所说:"在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的.十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续."中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?"商高回答说:"数的产生对方和圆这些形体的认识.其中有一条原理:当直角三角形'矩'得到的一条直角边'勾'等于3,另一条直角边'股'等于4的时候,那么它的斜边'弦'就必定是5.这个原理是大禹在治水的时候就总结出来的.勾股定理的证明论文范文二勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名.首先介绍勾股定理的两个最为精彩的证明,据说分别中国和希腊.1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边.这两个正方形全等,故面积相等.左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等.从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等.左图剩下两个正方形,分别以a、b为边.右图剩下以c为边的正方形.于是a^2+b^2=c^2.这就是我们几何教科书中所介绍的方法.既直观又简单,任何人都看得懂.2.希腊方法:直接在直角三角形三边上画正方形,如图.容易看出,△ABA’≌△AA'C.过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’.△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半.由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积.同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积.于是,S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC, 即a2+b2=c2.至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明).这里只用到简单的面积关系,不涉及三角形和矩形的面积公式.这就是希腊古代数学家欧几里得在其《几何原本》中的证法.以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:⑴全等形的面积相等;⑵一个图形分割成几部分,各部分面积之和等于原图形的面积.这是完全可以接受的朴素观念,任何人都能理解.我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明.采用的是割补法:如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的.即“勾股各自乘,并之为弦实,开方除之,即弦也”.赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观.西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的.据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺.故西方亦称勾股定理为“百牛定理”.遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法.下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明.如图,S梯形ABCD=(a+b)2=(a2+2ab+b2),①又S梯形ABCD=S△AED+S△EBC+S△CED=ab+ba+c2=(2ab+c2).②比较以上二式,便得a2+b2=c2.这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁.1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明.5年后,伽菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话.在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似.如图,Rt△ABC中,∠ACB=90°.作CD⊥BC,垂足为D.则△BCD∽△BAC,△CAD∽△BAC.由△BCD∽△BAC可得BC2=BD?BA,①由△CAD∽△BAC可得AC2=AD?AB.②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有BC2+AC2=AB2,这就是a2+b2=c2.这也是一种证明勾股定理的方法,而且也很简洁.它利用了相似三角形的知识.在对勾股定理为数众多的证明中,人们也会犯一些错误.如有人给出了如下证明勾股定理的方法:设△ABC中,∠C=90°,由余弦定理c2=a2+b2-2abcosC,因为∠C=90°,所以cosC=0.所以a2+b2=c2.这一证法,看来正确,而且简单,实际上却犯了循环证论的错误.原因是余弦定理的证明勾股定理.人们对勾股定理感兴趣的原因还在于它可以作推广.欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”.从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”.勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和.若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和.勾股定理的证明论文范文三最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。
勾股定理的证明方法【证法1】做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于(a +∴ ()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +. ∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD, ∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD .∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法6】做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P . 过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ ,∴ ∠BMP = 90º, ∴ BCPM 是一个矩形,即∠MBC = 90∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】.【证法7】做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B三点在一条直线上,连结BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L . ∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB 的面积等于221aΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a 同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB . AD ∶AC = AC ∶AB , 即 AB AD AC •=2.同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC •=2. ∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+. 【证法9】做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º,∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c , ∴ Rt ΔDHA ≌ Rt ΔBCA .∴ DH = BC = a ,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+.【证法10】设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE . 又∵ ∠BTH = ∠BEA = 90º, BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a . ∴ GH = GT ―HT = b ―a .又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c , 即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC •=2=()()BD AB BE AB -+=()()a c a c -+= 22a c -,即222a cb -=,∴ 222c b a =+.【证法12】(利用多列米定理证明)多列米定理:圆内接四边形对角线的乘积等于两对边乘积之和在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•,∵ AB = DC = c ,AD = BC = a ,AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42, 又∵ AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+.【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中,∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B , ∴ 若BD :BC ≠BC :AB ,则∠CDB ≠∠ACB . 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a 2222++=+;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图). 在EH = b 上截取ED = a ,连结DA 、则 AD = c .∵ EM = EH + HM = b + a , ED = a ∴ DM = EM ―ED = ()a b +―a = b .又∵ ∠CMD = 90º,CM = a , ∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC .∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.D∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中,∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c ∴ 222c b a =+.勾股定理的论文勾股定理是数学中极其重要的一个定理,是几何学中的明珠,充满了魅力,它揭示了直角三角形中三条边之间的关系,而且应用十分广泛。