24.2切线长定理的教案
- 格式:doc
- 大小:129.50 KB
- 文档页数:5
《第3课时 切线长定理》教案【教学目标】1.掌握切线长定理,初步学会运用切线长定理进行计算与证明.2.了解有关三角形的内切圆和三角形的内心的概念.3.学会利用方程思想解决几何问题,体验数形结合思想.【教学过程】一、情境导入新农村建设中,张村计划在一个三角形中建一个最大面积的圆形花园,请你设计一个建筑方案.二、合作探究探究点一:切线长定理 【类型一】利用切线长定理求三角形的周长如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB于点E 、F ,切点C 在AB ︵上.若PA 长为2,则△PEF 的周长是________.解析:因为PA 、PB 分别与⊙O 相切于点A 、B ,所以PA =PB ,因为⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点为C ,所以EA =EC ,CF =BF ,所以△PEF 的周长PE +EF +PF =PE +EC +CF +PF =(PE +EC )+(CF +PF )=PA +PB =2+2=4. 【类型二】利用切线长定理求角的大小如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上,如果∠ACB =70°,那么∠OPA 的度数是________度.解析:如图所示,连接OA、OB.∵PA、PB是⊙O的切线,切点分别为A、B,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°.又∵∠AOB=2∠ACB=140°,∴∠APB =360°-∠PAO-∠AOB-∠OBP=360°-90°-140°-90°=40°.又易证△POA≌△POB,∴∠OPA=12∠APB=20°.故答案为20.方法总结:由公共点引出的两条切线,可以运用切线长定理得到等腰三角形.另外根据全等的判定,可得到PO平分∠APB.【类型三】切线长定理的实际应用为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一把刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径.若测得PA=5cm,则铁环的半径长是多少?说一说你是如何判断的.解:过O作OQ⊥AB于Q,设铁环的圆心为O,连接OP、OA.∵AP、AQ为⊙O 的切线,∴AO为∠PAQ的平分线,即∠PAO=∠QAO.又∠BAC=60°,∠PAO+∠QAO +∠BAC=180°,∴∠PAO=∠QAO=60°.在Rt△OPA中,PA=5,∠POA=30°,∴OP=55(cm),即铁环的半径为55cm.探究点二:三角形的内切圆【类型一】求三角形的内切圆的半径如图,⊙O是边长为2的等边△ABC的内切圆,则⊙O的半径为________.解析:如图,连接OD .由等边三角形的内心即为中线,底边高,角平分线的交点.所以∠OCD =30°,OD ⊥BC ,所以CD =12BC ,OC =2OD .又由BC =2,则CD =1.在Rt △OCD 中,根据勾股定理得OD 2+CD 2=OC 2,所以OD 2+12=(2OD )2,所以OD =33.即⊙O 的半径为33. 方法总结:等边三角形的内心为等边三角形中线,底边高,角平分线的交点,它到三边的距离相等. 【类型二】求三角形的周长如图,Rt △ABC 的内切圆⊙O 与两直角边AB ,BC 分别相切于点D 、E ,过劣弧DE ︵(不包括端点D 、E )上任一点P 作⊙O 的切线MN 与AB 、BC 分别交于点M 、N .若⊙O 的半径为r ,则Rt △MBN 的周长为( )A .r B.32r C .2r D.52r 解析:连接OD ,OE ,∵⊙O 是Rt △ABC 的内切圆,∴OD ⊥AB ,OE ⊥BC .又∵MD ,MP 都是⊙O 的切线,且D 、P 是切点,∴MD =MP ,同理可得NP =NE ,∴C Rt △MBN =MB +BN +NM =MB +BN +NP +PM =MB +MD +BN +NE =BD +BE =2r ,故选C. 三、板书设计【教学反思】教学过程中,强调用切线长定理可解决有关求角度、周长的问题.明确三角形内切圆的圆心是三角形三条角平分线的交点,到三边的距离相等.《第3课时切线长定理》教案【教学目标】:1、了解切线长定义,掌握切线长定理,并利用它进行有关计算。
第3课时切线长定理教学目标1.了解切线长的概念.2.掌握切线长定理,理解三角形的内切圆和三角形的内心的概念.教学重点切线长定理及应用.教学难点切线长定理的导出及证明和综合应用.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景明确目标如图,纸上有一⊙O,PA为⊙O的一条切线,沿着直线PO对折,设圆上与点A重合的点为B.1.OB是⊙O的一条半径吗?2.PB是⊙O的切线吗?3.我们把经过圆外一点的圆的切线上,切点与圆外一点之间的线段叫做切线长,本节课主要研究切线长的有关性质.二、自主学习指向目标1.自读教材第99至100页.2.学习至此:请完成学生用书“课前预习”部分.三、合作探究达成目标探究点一切线长定理活动一:出示教材第99页“探究”.思考:在折叠的过程中,你发现了什么?【展示点评】1.经过圆外一点作圆的切线,这点和________之间的线段长叫做切线长.如右图,线段________和________的长就是切线长.2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长________,这一点和圆心的连线平分两条切线的________.如上图,P为⊙O外一点,PA、PB是⊙O的切线,A、B为切点,于是由定理可得两个结论:________=________,∠________=∠________.【小组讨论】切线和切线长的区别是什么?教材是如何证明切线长定理的?【反思小结】切线与切线长是不同的概念,切线是直线,不可度量;切线长是切线上的一条线段的长,可以度量.切线长定理包括线段相等和角相等两个结论,解题时应有选择地应用,它是证明线段相等、角相等、弧相等以及垂直关系的重要依据.【针对训练】见学生用书“当堂练习”知识点一探究点二三角形的内切圆活动二:出示教材第99页“思考”问1:与△ABC三边距离相等的点在什么地方?你能作出这个点吗?问2:以这一点为圆心,以该点到三边距离为半径作圆,这个圆与三角形的三条边是什么关系?【展示点评】与三角形各边都相切的圆叫做三角形的内切圆,这个圆的圆心叫做三角形的内心.【小组讨论】内切圆与外接圆有什么区别?[综合运用]出示教材第100页例2.学生合作交流完成,老师点评.【针对训练】见学生用书“当堂练习”知识点二四、总结梳理内化目标有关概念、定理,1.经过圆外一点作圆的切线,这点和______之间的______的长,叫做这点到圆的切线长.2.切线长定理:从圆外一点可以引圆的______条切线,它们的______相等,这一点和圆心的连线______两条切线的夹角.3.与三角形各边都相切的圆叫做三角形的________,内切圆的圆心是三角形________的交点,叫做三角形的________.方法、规律,,1.在运用切线长定理时,如左图作出辅助线,可以与等腰三角形的性质、垂径定理、勾股定理等知识产生联系.,2.三角形的内心已知时,连接顶点和内心的射线平分这个内角,从而要将内心条件和角平分线条件建立起对应关系.易错点,,如左图,若AB=AC,且AB与⊙O相切于点B,那么AC也是⊙O的切线.注意这只是真命题,而不是定理,不可当证明依据使用.五、达标检测反思目标1.如图,点O是△ABC的内切圆的圆心,若∠BAC=75°,则∠BOC的度数为( C )A.105°B.125°C.127.5°D.100°2.如图,△ABC的周长为18,其内切圆分别切三边于D、E、F三点,CE=3,BE=4,则AF的长为( A )A.2 B.3 C.4 D.5第1题图第2题图六、布置作业巩固目标1.上交作业教材第101页习题24.2第11,12题.2.课后作业见学生用书的“课后作业”部分.教学反思。
作课类别课题24.2.2.3切线长定理课型新授教学媒体多媒体教学目标知识技能1.了解切线长的概念.2.理解切线长定理,了解三角形的内切圆和三角形的内心的概念,熟练掌握并能应用.过程方法复习圆与直线的位置关系和切线的判定和性质定理,知识迁移到切长线的概念和切线长定理,根据三角形角平分线的性质给出三角形的内切圆和三角形的内心概念,并应用解决相关问题.情感态度学生经历观察、实验、猜想、证明等数学活动,发展合情推理能力和初步演绎推理能力.能有条理地,清晰地写出推理过程.教学重点切线长定理及其运用教学难点切线长定理的推导和运用教学过程设计教学程序及教学内容师生行为设计意图一、复习引入这节课我们继续来研究切线.1.作△ABC的三条角平分线,有什么结论?2.回忆切线的判定定理和性质定理?二、探究新知(一)切线长定理1.操作探究:从上面的复习,可知,过⊙O上任一点A都可以作圆的一条切线,且只能作一条,根据下面提出的问题,操作、思考、并解决问题:在纸上画⊙O,并画出过圆上点A的切线PA,•连结PO,•沿着直线PO将纸对折,设与点A重合的点为B,这时,OB是⊙O的一条半径吗?PB是⊙O的切线吗?利用圆的轴对称性,思考图中的线段PA与线段PB,∠APO与∠BPO有什么数量关系?分析:对折之后,OB与OA重合,OA是半径,OB也是半径. B 为OB•的外端,根据对折后角的度数不变,所以PB是⊙O的又一条切线,且PA=PB,∠APO=∠BPO.我们把线段PA或PB的长,即经过圆外一点作圆的切线,这点和切点之间的线段的长,•叫做这点到圆的切线长.从上面的操作及圆的对称性可得:从圆外一点可以引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.2.几何证明.如图,已知PA、PB是⊙O的两条切线.求证:PA=PB,∠OPA=∠OPB.分析:据所要证明的结论在图中分布的位置特点和已知条件,易得只要证明两个对应的三角形全等即可.得到老师在黑板上作出△ABC的三条角平分线,生口述其性质:①三条角平分线相交于一点;②交点到三条边的距离相等.学生独立按要求画图,操作,思考、并尝试解决问题,之后学生分组讨论,老师请3~4位同学回答这个问题,师生达成共识.学生理解点到圆的切线长概念,初步感知圆的切线长定理.学生观察图形,思考证明思路,书写规范的证明步骤,教师及时点拨,肯定.学生亲自动手作图,复习旧知识,为探究本节课知识做准备学生通过画图,折叠,观察获得结论,初步感知定理使学生结合图形理解概念学生运用全等知识进行几何推理证明,体会数学结论的严谨性,培养学生BA CE DOF切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. (二)三角形的内切圆如图,三角形的三条角平分线交于一点,设交点为I ,那么I 到AB 、AC 、BC 的距离相等,因此以点I 为圆心,点I 到BC 的距离ID 为半径作圆,则⊙I 与△ABC 的三条边都相切.与三角形各边都相切的圆叫做三角形的内切圆,•内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. (三)应用1.如图,已知⊙O 是△ABC 的内切圆,切点分别为D 、E 、F ,CD=1,AE=2,BF=3,且△ABC 的面积为6.求内切圆的半径r .分析:可知OD 、OE 、OE 分别垂直于BC 、AC 、AB ,由于面积是已知的,•因此转化为面积法来求.连结AO 、BO 、CO ,就可把三角形ABC 分为三块,•问题迎刃而解.2.如图,⊙O 的直径AB=12cm ,AM 、BN 是切线,DC 切⊙O 于E ,交AM 于D ,•交BN 于C ,设AD=x ,BC=y .(1)求y 与x 的函数关系式,并说明是什么函数? (2)若x 、y 是方程2t 2-30t+m=0的两根,求x ,y 的值. (3)求△COD 的面积.分析:(1)要求y 与x 的函数关系,就是求BC 与AD 的关系,根据切线长定理:DE=AD=x ,CE=CB=y ,即DC=x+y ,又因为AB=12,所以只要作DF ⊥BC 于 F ,根据勾股定理,便可求得.(2)∵x ,y 是2t 2-30t+m=0的两根,那么x 1+x 2=230=15,x 1x 2=2m ,结合(1)的结论便可求得x 、y 的值. 三、课堂训练 完成课本98页练习 四、小结归纳1.圆的切线长概念和定理; 2.三角形的内切圆及内心的概念 五、作业设计作业:复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做.教师引导学生将“三角形的三条角平分线交于一点,这点与三边距离相等”和“圆心与圆上各点距离都等于半径”结合,理解三角形的内切圆的概念. 学生审题,思考利用切线长定理求出三角形三边的长度,从题中条件“ABC 的面积为6”出发,作辅助线,再以面积为等量关系,建立以r 为未知数的方程. 理清题意,观察图形,结合题中条件思考解题思路,综合运用勾股定理、一元二次方程的根与系数的关系和切线长定理.教师组织学生进行练习,教师巡回检查,师生交流评价,教师指导学生写出解答过程,进行题后反思.让学生尝试归纳,总结,,反思,教师点评汇总应用数学的意识和能力 从旧知识出发,呼应引课问题,自然引出三角形的内切圆概念,便于学生理解 使初步运用切线长定理,根据题中关键条件,考虑所求,灵活运用面积法得出解题方法,从而解决问题.培养学生综合解题能力,能从条件和结论出发,分析解题思路,化未知为已知,体会转化思想. 运用本节知识,形成做题技巧,培养学生的应用意识和能力归纳提升,加强反思,使学生对知识的掌握系统化 巩固深化提高板 书 设 计。
切线长定理教案
教学目标:
1. 理解切线长定理的概念和含义。
2. 掌握切线长定理的推导和运用方法。
3. 能够在实际问题中灵活应用切线长定理。
教学准备:
1. 教案课件或黑板。
2. 切线长定理的相关练习题。
3. 学生计算器和直尺。
教学过程:
引入:
1. 师生互动:提问学生,你们知道什么是切线吗?切线与圆有什么关系?
2. 引出切线长定理:通过师生互动的方式,引出切线长定理的概念和含义。
讲解切线长定理:
1. 在黑板上或课件上展示切线长定理的公式:对于一个圆和它的切线,这条切线的长度是圆心到切点的距离的平方根乘以2。
2. 讲解切线长定理的推导过程:通过几何分析说明切线长定理的原理和推导过程。
示范应用:
1. 黑板上或课件上展示几个切线长定理的应用例题,并逐步解
题。
2. 学生独立解答几个切线长定理的练习题,教师逐个检查并指导。
拓展应用:
1. 提供更多的切线问题,让学生自行思考并解决。
2. 引导学生思考切线长定理在实际生活和工作中的应用,如航海导航、建筑测量等。
总结:
1. 让学生总结切线长定理的概念和公式。
2. 强调切线长定理的重要性和应用价值。
3. 鼓励学生多做切线长定理的练习题,加强对该定理的理解和掌握。
应用练习:
布置相关的练习题,让学生在课后进行巩固和拓展。
- 结束 -。
第3课时切线长定理01 教学目标1.理解并掌握切线长定理,能熟练运用所学定理来解答问题.2.了解三角形的内切圆及内心的特点,会画三角形的内切圆.02 预习反馈阅读教材P99~100,完成下列知识探究.1.经过圆外一点作圆的切线,这点和切点之间线段的长叫做这点到圆的切线长.图中的切线长为PA,PB.2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,图中相等的线段有PA,PB,这一点和圆心的连线平分两条切线的夹角,图中相等的角为∠APO=∠BPO.3.与三角形各边都相切的圆叫做三角形的内切圆.4.三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心,它到三边的距离相等.03 新课讲授例(教材P100例2)如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=9,BC=14,CA=13.求AF,BD,CE的长.【思路点拨】根据切线长定理得AE=AF,BF=BD,CE=CD,设AE=x,用含x的代数式表示出BD,CD,根据BC=14列出方程即可.【解答】设AF=x,则AE=x,CD=CE=AC-AE=13-x,BD=BF=AB-AF=9-x.由BD+CD=BC,可得(13-x)+(9-x)=14.解得x=4.因此AF=4,BD=5,CE=9.【跟踪训练】(24.2.2第3课时习题)如图,已知⊙O是Rt△ABC(∠C=90°)的内切圆,切点分别为D,E,F.(1)求证:四边形ODCE 是正方形;(2)设BC =a ,AC =b ,AB =c ,求⊙O 的半径r .解:(1)证明:∵BC ,AC 分别与⊙O 相切于D ,E , ∴∠ODC =∠OEC =∠C =90°.∴四边形ODCE 为矩形. 又∵OE =OD ,∴矩形ODCE 是正方形. (2)由(1)得CD =CE =r ,∴a +b =BD +AE +2r =BF +AF +2r =c +2r , 解得r =a +b -c2.04 巩固训练1.如图,Rt △ABC 中,∠C=90°,AC =6,BC =8,则△ABC 的内切圆半径r =2.2.如图,AD ,DC ,BC 都与⊙O 相切,且AD∥BC,则∠DOC=90°.3.如图,AB ,AC 与⊙O 相切于B ,C 两点,∠A=50°,点P 是圆上异于B ,C 的一动点,则∠BPC=65°.4.如图,点O 为△ABC 的外心,点I 为△ABC 的内心.若∠BOC=140°,则∠BIC=125°.5.如图,△ABC切⊙O于D,E,F三点,内切圆⊙O的半径为1,∠C=60°,AB=5,则△ABC的周长为(C)A.12 B.14 C.10+2 3 D.10+ 3提示:连接OE,OF,OC.05 课堂小结1.切线长定理.2.三角形的内切圆及内心.3.直角三角形内切圆半径公式.。
人教版数学九年级上册24.2《切线的判定和性质定理、切线长定理》教学设计一. 教材分析人教版数学九年级上册第24.2节《切线的判定和性质定理、切线长定理》是九年级数学的重要内容,主要让学生了解和掌握切线的判定方法、性质定理以及切线长定理。
本节内容是在学习了函数图像、直线与圆的位置关系等知识的基础上进行学习的,为后续学习解析几何和高中数学打下基础。
二. 学情分析九年级的学生已经掌握了函数图像、直线与圆的位置关系等知识,具备了一定的几何直观能力和逻辑思维能力。
但是,对于切线的判定和性质定理、切线长定理的理解和应用还需要加强。
因此,在教学过程中,要注重引导学生从实际问题中发现切线,培养学生的几何直观能力,同时,通过实例讲解,使学生理解和掌握切线的性质定理和切线长定理。
三. 教学目标1.让学生了解和掌握切线的判定方法。
2.使学生理解和掌握切线的性质定理和切线长定理。
3.培养学生运用切线知识解决实际问题的能力。
四. 教学重难点1.教学重点:切线的判定方法、性质定理和切线长定理。
2.教学难点:切线性质定理和切线长定理的理解和应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中发现和理解切线。
2.使用多媒体辅助教学,通过动画演示和实例讲解,使学生直观地理解和掌握切线的性质定理和切线长定理。
3.采用小组合作学习的方式,让学生在讨论和探究中加深对切线知识的理解。
六. 教学准备1.准备相关的多媒体教学课件和教学素材。
2.准备切线相关的实际问题,用于引导学生学习。
3.准备黑板和粉笔,用于板书。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,如:如何判断一条直线是否为圆的切线?圆的切线有什么特殊的性质?引发学生对切线的兴趣,从而导入新课。
2.呈现(10分钟)讲解切线的判定方法,通过多媒体动画演示和实例讲解,让学生直观地理解和掌握切线的判定方法。
3.操练(10分钟)让学生通过练习一些切线的判定问题,加深对切线判定方法的理解和应用。
课题:人教版九年级上册24.2.2第三课时《切线长定理》教学目标情感态度与价值观:通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.知识与技能:理解切线长的概念,掌握切线长定理;过程与方法:通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.教学重点:切线长定理是教学重点教学难点:切线长定理的灵活运用是教学难点教学过程设计:(一)复习提问:切线的性质和切线的判定。
(二)观察、猜想、证明,形成定理1、提出问题:过平面内的一点作圆的切线,可以作出几条切线?(注意分类讨论)2.切线长的概念.如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长.注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.3、观察变动点P 的位置,观察图形的特征和各量之间的关系.4、猜想引导学生直观判断,猜想图中PA是否等于PB? (PA=PB).5、证明猜想,形成定理.猜想是否正确。
需要证明.组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB.想一想:根据图形,你还可以得到什么结论?∠OPA=∠OPB(如图)等.选一名学生板演证明过程切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.6、切线长定理的基本图形研究如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AP于C(1)写出图中所有的垂直关系(2)图中有哪些线段相等(除半径外)、弧相等?说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础.7.外切圆圆心:三角形三边垂直平分线的交点。
外切圆的半径:交点到三角形任意一个定点的距离。
8.内切圆圆心:三角形三个内角平分线的交点。
内切圆的半径:交点到三角形任意一边的垂直距离。
24.2 与圆有关的位置关系(第4课时)
教学目标
了解切线长的概念.
理解切线长定理,了解三角形的内切圆和三角形的内心的概念,熟练掌握它的应用. 复习圆与直线的位置关系和切线的判定定理、性质定理知识迁移到切长线的概念和切线长定理,然后根据所学三角形角平分线的性质给出三角形的内切圆和三角形的内心概念,最后应用它们解决一些实际问题. 重难点、关键
1.重点:切线长定理及其运用.
2.•难点与关键:切线长定理的导出及其证明和运用切线长定理解决一些实际问题. 教学过程
一、复习引入
直线和圆有什么位置关系?切线的判定定理和性质定理是什么?
二、探索新知
探究一:切线长的概念
经过圆外一点作圆的切线,这点和切点之间的线段长叫做切线长.
如图,线段PA 的长就是切线长 探究二:切线长定理
从上面的复习,我们可以知道,过⊙O 上任一点A 都可以作一条切线,•并且只有一条,根据下面提出的问题操作思考并解决这个问题.
问题:在你手中的纸上画出⊙O ,并画出过A 点的唯一切线PA ,•连结PO ,•沿着直线PO 将纸对折,设圆上与点A 重合的点为B ,这时,OB 是⊙O 的一条半径吗?PB 是⊙O 的切线吗?利用图形的轴对称性,说明圆中的PA 与PB ,∠APO 与∠BPO 有什么关系? 学生分组讨论,老师抽取3~4位同学回答这个问题. 从上面的操作几何我们可以得到:
从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.
下面,我们给予逻辑证明.
例1.如图,已知PA 、PB 是⊙O 的两条切线. 求证:PA=PB ,∠OPA=∠OPB . 证明: 因此,我们得到切线长定理:
从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条
切线的夹角.
探究三:三角形的内切圆
例1 如图是一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使截下来的圆与三角形的三条边都相切?
与三角形各边都相切的圆叫做三角形的内切圆,•内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.
(1)分别作∠B,∠C的平分线BM和CN,BM与CN交于I.
(2)过点I作ID⊥BC,垂足为D.
(3)以点I为圆心,ID为半径作圆.⊙I就是所要求作的图
探究四切线长定理的应用
例2 △ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14CA=13cm,求AF,BD,CE的长.
.
三.总结梳理
四、达标测试
五、归纳小结(学生归纳,老师点评)
本节课应掌握:
1.圆的切线长概念;
2.切线长定理;
3.三角形的内切圆及内心的概念.
第三课时作业设计
一、选择题.
1.如图1,PA 、PB 分别切圆O 于A 、B 两点,C 为劣弧AB 上一点,∠APB=30°,则∠
ACB=( ).
A .60°
B .75°
C .105°
D .120°
B
P
(1) (2) (3) (4)
2.从圆外一点向半径为9的圆作切线,已知切线长为18,•从这点到圆的最短距离为
( )
. A .
.9
) C .9) D .9
3.圆外一点P ,PA 、PB 分别切⊙O 于A 、B ,C 为优弧AB 上一点,若∠ACB=a ,则∠APB=( )
A .180°-a
B .90°-a
C .90°+a
D .180°-2a 二、填空题
1.如图2,PA 、PB 分别切圆O 于A 、B ,并与圆O 的切线,分别相交于C 、D ,•已知PA=7cm ,则△PCD 的周长等于_________.
2.如图3,边长为a 的正三角形的内切圆半径是_________.
3.如图4,圆O 内切Rt △ABC ,切点分别是D 、E 、F ,则四边形OECF 是_______.
三、综合提高题
1.如图所示,EB、EC是⊙O的两条切线,B、C是切点,A、D是⊙O上两点,• 如果∠E=46°,∠DCF=32°,求∠A的度数.
E
2.如图所示,PA、PB是⊙O的两条切线,A、B为切点,
求证∠ABO=1
2
∠
APB. 。