人教版初三数学上册切线长定理教学设计
- 格式:docx
- 大小:72.98 KB
- 文档页数:4
切线长定理教案(优秀教案)-(含多款)教案切线长定理教案一、教学目标1.让学生理解切线长定理的概念和意义,掌握切线长定理的证明和应用方法。
2.培养学生的几何思维能力,提高学生的空间想象力和逻辑推理能力。
3.培养学生运用切线长定理解决实际问题的能力,增强学生的数学应用意识。
二、教学内容1.切线长定理的概念和意义2.切线长定理的证明方法3.切线长定理的应用三、教学重点与难点1.教学重点:切线长定理的概念、证明和应用。
2.教学难点:切线长定理的证明过程,以及如何运用切线长定理解决实际问题。
四、教学方法1.采用启发式教学方法,引导学生自主探究切线长定理的证明和应用。
2.利用多媒体教学手段,展示切线长定理的直观图形,帮助学生理解定理。
3.设计丰富的例题和练习题,让学生在实践操作中掌握切线长定理的应用。
五、教学过程1.导入新课通过生活中的实例,如圆规作图等,引出切线长定理的概念,激发学生的学习兴趣。
2.讲解切线长定理的概念和意义(1)切线的定义:与圆相切,且与圆的半径垂直的直线。
(2)切线长定理:从圆外一点引圆的两条切线,切线长相等。
3.证明切线长定理(1)构造图形,连接圆心与切点,利用圆的半径相等,证明切线长相等。
(2)通过几何画板演示证明过程,让学生直观感受定理的正确性。
4.切线长定理的应用(1)讲解切线长定理在几何作图中的应用,如求圆的切线、等分弦等。
(2)讲解切线长定理在解决实际问题中的应用,如求圆的直径、周长等。
5.课堂练习设计不同难度的练习题,让学生独立完成,巩固切线长定理的应用。
6.总结与拓展(1)总结切线长定理的概念、证明和应用方法。
(2)拓展切线长定理的相关知识,如圆的切线方程、切线长定理的推广等。
7.课后作业布置适量的课后作业,让学生巩固所学知识,提高解题能力。
六、教学评价1.课堂参与度:观察学生在课堂上的发言和讨论情况,了解学生的学习兴趣和积极性。
2.作业完成情况:检查学生的作业,了解学生对切线长定理的掌握程度。
第3课时 切线长定理1.掌握切线长定理,初步学会运用切线长定理进行计算与证明.2.了解有关三角形的内切圆和三角形的内心的概念.3.学会利用方程思想解决几何问题,体验数形结合思想.一、情境导入新农村建设中,张村计划在一个三角形中建一个最大面积的圆形花园,请你设计一个建筑方案.二、合作探究探究点一:切线长定理 【类型一】利用切线长定理求三角形的周长如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在AB ︵上.若PA 长为2,则△PEF 的周长是________.解析:因为PA 、PB 分别与⊙O 相切于点A 、B ,所以PA =PB ,因为⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点为C ,所以EA =EC ,CF =BF ,所以△PEF 的周长PE +EF +PF =PE +EC +CF +PF =(PE +EC)+(CF +PF)=PA +PB =2+2=4. 【类型二】利用切线长定理求角的大小如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上,如果∠ACB =70°,那么∠OPA 的度数是________度.解析:如图所示,连接OA、OB.∵PA、PB是⊙O的切线,切点分别为A、B,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°.又∵∠AOB=2∠ACB=140°,∴∠APB=360°-∠PAO-∠AOB-∠OBP=360°-90°-140°-90°=40°.又易证△POA≌△POB,∴∠OPA=12∠APB=20°.故答案为20.方法总结:由公共点引出的两条切线,可以运用切线长定理得到等腰三角形.另外根据全等的判定,可得到PO平分∠APB.【类型三】切线长定理的实际应用为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一把刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径.若测得PA=5cm,则铁环的半径长是多少?说一说你是如何判断的.解:过O作OQ⊥AB于Q,设铁环的圆心为O,连接OP、OA.∵AP、AQ为⊙O的切线,∴AO为∠PAQ的平分线,即∠PAO=∠QAO.又∠BAC=60°,∠PAO+∠QAO+∠BAC=180°,∴∠PAO=∠QAO=60°.在Rt△OPA中,PA=5,∠POA=30°,∴OP=55(cm),即铁环的半径为55cm.探究点二:三角形的内切圆【类型一】求三角形的内切圆的半径如图,⊙O是边长为2的等边△ABC的内切圆,则⊙O的半径为________.解析:如图,连接OD.由等边三角形的内心即为中线,底边高,角平分线的交点.所以∠OCD=30°,OD⊥BC,所以CD=12BC,OC=2OD.又由BC=2,则CD=1.在Rt△OCD中,根据勾股定理得OD 2+CD 2=OC 2,所以OD 2+12=(2OD)2,所以OD =33.即⊙O 的半径为33. 方法总结:等边三角形的内心为等边三角形中线,底边高,角平分线的交点,它到三边的距离相等. 【类型二】求三角形的周长如图,Rt △ABC 的内切圆⊙O 与两直角边AB ,BC 分别相切于点D 、E ,过劣弧DE ︵(不包括端点D 、E)上任一点P 作⊙O 的切线MN 与AB 、BC 分别交于点M 、N.若⊙O 的半径为r ,则Rt △MBN 的周长为( )A .r B.32r C .2r D.52r 解析:连接OD ,OE ,∵⊙O 是Rt △ABC 的内切圆,∴OD ⊥AB ,OE ⊥BC.又∵MD ,MP 都是⊙O 的切线,且D 、P 是切点,∴MD =MP ,同理可得NP =NE ,∴C Rt △MBN =MB +BN +NM =MB +BN+NP +PM =MB +MD +BN +NE =BD +BE =2r ,故选C.三、板书设计教学过程中,强调用切线长定理可解决有关求角度、周长的问题.明确三角形内切圆的圆心是三角形三条角平分线的交点,到三边的距离相等.学生励志寄语:同学们,通过这节课的学习,你们学到了哪些知识?要珍惜时间好好学习,要明白时间就像日历一样,撕掉一张就不会再回来。
切线长定理
【教学目标】
1.切线长定理的探究,通过设计让学生经历观察、猜想、验证、最后归纳得出切线长定理,使学生的直观操作与逻辑推理有机的整合到一起,让学生在探究的过程中体验数学活动充满着探索性和创造性,感受证明的必要性,证明过程的严谨性以及结论的确定性。
2.应用了“实验几何——论证几何”的探究方法,并初步建立了由动手操作抽象出数学条件进而解决问题的意识。
3.让学生的思维能够经历一个从模糊到清晰,从具体到抽象,从直觉到逻辑的过程,再由直观、粗糙的向严格、精确的追求过程中,使学生体验数学发展的过程。
【教学重点】
1.使学生理解切线长定义。
生,从而使每个学生都能达标。
第五环节:延伸思考,提升层次。
这节课我们所探索的有关切线长的知识是在给出圆的两条切线的情况下得出的,那么要是圆的三条切线两两相交,又会有什么样的结论呢?如果有四条切线呢?这些问题有待于我们课后去研究。
切线长定理的教学设计教学设计:切线长定理一、教学目标:1.理解切线长定理的概念和公式。
2.掌握应用切线长定理计算相关问题的方法。
3.培养学生的思维逻辑能力和数学推理能力。
二、教学准备:1.教师准备黑板、粉笔、投影仪等教学工具。
2.学生准备纸笔等学习工具。
三、教学过程:第一部分:导入新知1. 教师用一道具体问题引入切线长定理的概念,如:请思考,一个半径为5cm的圆,有一条线段与圆相切,线段长度为8cm,那么这条线段是圆的什么部分?学生思考后回答切线。
教师引导学生思考切线与圆的关系。
2.教师用黑板上的图形向学生展示切线的定义,并引导学生回答切线与圆的关系。
然后,教师引入切线长定理,并对定理进行介绍与解释。
3.教师向学生展示定理的证明过程,以加深学生对定理的理解。
第二部分:切线长定理的公式推导1.教师向学生讲解切线长定理的公式推导过程。
教师用黑板或投影仪展示推导过程,并引导学生一起完成。
2.学生逐步推导切线长定理的公式,教师进行指导和纠正。
3.学生站起来,互相核对答案,并与教师进行讨论。
第三部分:切线长定理的应用1. 教师通过实例向学生展示切线长定理的应用。
例如,给出一个半径为6cm的圆,线段与圆相切,线段长为10cm,让学生计算切线长。
2.学生用纸和笔在课本或练习册上计算问题。
教师巡视教室,指导学生解决问题。
3.学生互相核对答案并与教师讨论。
第四部分:练习与拓展1.教师提供一些练习题,学生在纸上进行计算。
2.教师引导学生思考一些拓展问题,如:当线段与圆相交、两个圆相切等情况下,如何应用切线长定理。
3.学生讨论解决拓展问题。
教师对解决方法进行总结和点评,引导学生发现问题的普遍解法。
第五部分:课堂小结1.教师对切线长定理进行小结,强调定理的重要性和应用范围。
2.教师提醒学生预习下一课时的内容。
四、教学反思:切线长定理是中学数学中的一个重要定理,教师在课堂上需要通过一道具体问题引入切线的概念,并引导学生之间的互动与讨论,以培养学生的思维能力和数学推理能力。
人教版数学九年级上册24.2.2.3《切线长定理》教学设计一. 教材分析人教版数学九年级上册24.2.2.3《切线长定理》是九年级数学中的一个重要知识点。
切线长定理是指:圆的切线长等于半径的长度。
这个定理在几何学中有着广泛的应用,对于培养学生的逻辑思维能力和空间想象力有重要作用。
二. 学情分析九年级的学生已经具备了一定的几何知识,对圆的相关概念和性质有所了解。
但是,对于切线长定理的证明和应用,学生可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解切线长定理的证明过程,并通过例题让学生掌握切线长定理的应用。
三. 教学目标1.让学生理解切线长定理的定义和证明过程。
2.培养学生运用切线长定理解决实际问题的能力。
3.提高学生的逻辑思维能力和空间想象力。
四. 教学重难点1.切线长定理的证明过程。
2.切线长定理在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生通过探究问题来理解切线长定理。
2.使用多媒体课件,直观展示切线长定理的证明过程。
3.通过例题和练习题,让学生巩固切线长定理的应用。
六. 教学准备1.多媒体课件。
2.练习题和测试题。
3.黑板和粉笔。
七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些与圆和切线有关的图片,引发学生的兴趣。
然后提出问题:“圆的切线长和半径有什么关系?”让学生思考。
2.呈现(10分钟)讲解切线长定理的定义和证明过程。
首先,解释切线的概念,然后说明切线与半径的关系,最后证明切线长等于半径的长度。
3.操练(10分钟)让学生分组讨论,每组尝试证明一个圆的切线长等于半径的长度。
每组派代表进行讲解,老师点评并给予指导。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
题目包括判断题、选择题和解答题,涵盖切线长定理的证明和应用。
5.拓展(10分钟)让学生思考:切线长定理在实际生活中有哪些应用?可以举例说明。
鼓励学生发表自己的观点和想法。
6.小结(5分钟)对本节课的内容进行简要回顾,强调切线长定理的定义和证明过程,以及其在实际问题中的应用。
切线长定理教案
教学目标:1、了解切线长定义,掌握切线长定理,并利用它进行有关计算。
2、在运用切线长定理的解题过程中,进一步渗透方程的思想,熟悉用代数
的方法解几何题。
教学重点:理解切线长定理。
教学难点:灵活应用切线长定理解决问题。
学情分析:上节课我们共同学习了切线的定义以及与切线相关的定理,同学们掌握的不错,整体不错,为这节课的学习打下了良好的基础。
教学过程:
一、复习引入:
1. 切线的判定定理和性质定理.
2. 过圆上一点可作圆的几条切线?过圆外一点呢?过圆内一点呢?
二、合作探究
1、切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这
点到圆的切线长
2、切线长定理
(1)操作:纸上一个。
0, PA是OO的切线,?连结PQ ?沿着直线PO将纸对折, 设与点A重合的点为B。
0B是O 0的半径吗?PB是OO的切线吗?猜一猜PA 与PB的关系?/ AP0与/ BP0呢?
从上面的操作及圆的对称性可得:
从圆外一点可以引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.
(2)几何证明.
如图,已知PA PB是OO的两条切线.求证:PA=PB Z AP(=Z BPO
证明:
B
切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.
(1) 图中共有几对相等的线段
(2) 若 AF=4 BD=5 CE=9 则厶 ABC 周长为 _______
例 如图,△ ABC 的内切圆。
0与BC,CA,AB 分别相切于点D,E,F,且AB=9cm BC=14cm,CA=13cm 求 AF,BD,CE 的长。
若 S ^ABC = 18 10 ,求OO 的半径。
三、巩固练习
1、如图1, PA PB 是OO 的两条切线、A 、B 为切点。
PO 交OO 于E 点
(1) 若 PB=12 PO=13 贝U AO= ___
(2) 若 PO=1Q AO=6 J 则 PB= ____
(3) 若 PA=4 AO=3 贝U PO= ___ ; PE= ___ .
(4) 若 PA=4 PE=2 贝U AO= ___ .
(1) 若PA=12则厶PCD 周长为 ______ 。
(2) 若厶 PCD 周长=1Q ,贝U PA= __ 。
(3) __________________________ 若/ APB=3Q ,则/AOB= ___________ , M 是OO 上一动点,则/ AMB= _______ 3、如图Rt △ ABC 的内切圆分别与 AB AC BC 相切于点E 、D F ,且/ ACB=9Q ,
AC=3、BC=4,求OO 的半径。
2、如图2 ,
于C D 两点。
PB
0 4、如图 Rt △ ABC 中,/ ACB=90 , AC=6、BC=8 , O 为 BC 上一点,以 0 为圆 心,OC 为半径作圆与AB 切于D 点,求。
0的半径。
5、如图,。
0与厶ADE 各边所在直线都相切,切点分别为 M 、P 、N ,且DE 丄 AE ,AE=8,AD=10,求OO 的半径
&如图,AB 是OO 的直径,AE BF 切OO 于A 、B ,EF 切OO 于C. 求证:
OEL OF
7、如图,00的直径AB=12cm AM BN是切线,DC切OO于E,交AM于D, ?交BN 于C,设AD=x BC=y
(1)求y与x的函数关系式,并说明是什么函数?
(2)若x、y是方程2t2-30t+m=0的两根,求x,y的值.
(3)求厶COD勺面积.
四、小结归纳
圆的切线长概念和定理五、作业设计。