第二章鸽巢原理习题课
- 格式:ppt
- 大小:420.00 KB
- 文档页数:30
第2章 鸽巢原理2.4 练习题1、关于本节中的应用4,证明对于每一个=k 1,2,…,21存在连续若干天,在此期间国际象棋大师将恰好下完k 局棋(情形=k 21是在应用4中处理的情况)。
能否判断:存在连续若干天,在此期间国际象棋大师将恰好下完22局棋?证明:设i a 表示在前i 天下棋的总数若正好有i a =k ,则命题得证。
若不然,如下:∵共有11周,每天至少一盘棋,每周下棋不能超过12盘∴有 771≤≤i ,且13217721≤<<<≤a a a {}21,,2,1 ∈∀k 有kk a k a k a k +≤+<<+<+≤+13217721 观察以下154个整数:ka k a k a a a a +++77217721,,,,,,, 每一个数是1到k +132之间的整数,其中153132≤+k 由鸽巢原理,这154个数中至少存在两个相等的数∵7721,,,a a a 都不相等,k a k a k a +++7721,,, 都不相等∴j i ,∃,使i a =ka j +即这位国际象棋大师在第1+j ,2+j ,…,i 天总共下了k 盘棋。
综上所述,对于每一个=k 1,2,…,21存在连续若干天,在此期间国际象棋大师将恰好下完k 局棋。
□当k =22时,132+k =154,那么以下154个整数22,,22,22,,,,77217721+++a a a a a a在1到154之间。
ⅰ)若这154个数都不相同则它们能取到1到154的所有整数,必然有一个数是22∵2222>+i a ,771≤≤i ∴等于22的数必然是某个i a ,771≤≤i则在前i 天,这位国际象棋大师总共下了22盘棋。
ⅱ)若这154个数中存在相同的两个数∵7721,,,a a a 都不相等,k a k a k a +++7721,,, 都不相等∴j i ,∃,使i a =ka j +即这位国际象棋大师在第1+j ,2+j ,…,i 天总共下了k 盘棋。
鸽巢问题(二)教学目标:1.通过观察、猜测、实验、推理等活动,寻找隐藏在实际问题背后的“鸽巢问题”的一般模型。
体会如何对一些简单的实际问题“模型化”,并运用鸽巢原理加以解决。
2.在经历将具体问题“数学化”的过程中,发展数学思维能力和解决问题的能力,感受数学的魅力。
同时积累数学活动的经验与方法,在灵活应用中,进一步理解鸽巢原理。
3.在解决问题的过程中,感受鸽巢原理在日常生活中的各种应用,体会数学知识与日常生活的紧密联系。
教学重点:运用鸽巢原理进行逆向思维。
教学难点:将日常生活中的实际问题和鸽巢问题建立起联系,运用鸽巢原理解决问题。
教学过程:一、复习1、把15个球放进4个箱子里,至少有()个球要放进同一个箱子里。
2、把红、黄两种颜色的球个6个放到一个袋子里,任意取出5个,至少有()个同色。
课件一一出示上述两道复习题。
要求:(1)学生口答,并说出思路;(2)找出题中的“物体数”“抽屉数”和“至少数”。
3、小结:已知“物体数”和“抽屉数”求“至少数”课件出示:物体数÷抽屉数+1=至少数二、谈话导入师:前面我们已经初步了解了鸽巢原理,今天这节课我们继续来探究这个问题。
师板书课题:鸽巢原理(二)三、互动新授1.教学例3课件出示例3:盒子里有同样大小的红球和篮球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?师:今天我们首先通过摸球游戏来解决这个问题。
请同学们拿出桌子里的盒子,根据以下的要求来进行游戏。
课件出示:活动(一)摸球游戏摸出两个球,会有哪几种情况,摸出的球()是2个同色的(填“可能”和“一定”)学生分组动手摸球,展示摸出的球的几种不同情况,然后在填空。
思考:摸出2个球时,我们摸出的球可能有2个同色的,那么为了确保我们一定要摸出2个同色球,对于这三种情况,我们应该怎么办?又应该着重考虑哪种情况?为什么?(让学生口答)师:刚才这位同学的回答非常精彩,前面两种情况是非常幸运的,所以我们将它称为“最幸运的情况”;第三种情况是最倒霉、最不好的情况,因此我们将它称为“最不利的情况”。
鸽巢原理(2)【夯实基础】1.填空。
(1)10只鸽子飞回9个鸽舍,至少有()只鸽子要飞进同一个鸽舍里。
(2)10只鸽子飞回3个鸽舍,至少有()只鸽子要飞进同一个鸽舍里。
(3)121只鸽子飞回20个鸽舍,至少有()只鸽子要飞进同一个鸽舍里。
2.有红、黄、蓝、白珠子各10粒,装在一个袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出()粒。
A.3B.4C.5D.63.有一副去掉大、小王的扑克牌,至少抽出()张牌才能保证至少6张牌的花色相同。
A.21B.22C.23D.244.把25个苹果最多放进()个抽屉中才能保证至少有一个抽屉中放进7个苹果。
A.1B.2C.3D.45.有4个运动员练习投篮,一共投进了30个球,一定有1个运动员至少投进几个球?6.红、黄、黑、白、绿五种颜色大小相同的球各4个放到一个袋子里,若要保证取到的两个球颜色相同,至少要取多少个球?【思维拓展】7.在一次竞赛中有10道题,评分标准为:基础分10分,答对1题得3分,答错1题扣1分,不答不得分,要保证至少有4人得分相同,至少要几人参赛?【参考答案】1.(1)2(2)4(3)72.C3.A4.D5.30÷4=7……27+1=8(个)6.6个7.最高得分:10+3×10=40(分),最低得分:10-10×1=0(分),共有40+1=41(种)不同分数,而39分,38分,35分这三个分数是不可能得到的,所以只有41-3=38(种)不同分数。
38×3+1=115(人)答:至少要115人参赛。
鸽巢原理的应用课后题答案问题一:什么是鸽巢原理?鸽巢原理(Pigeonhole Principle)也被称为抽屉原理或鸽笼原理,是组合数学中的基本原理之一。
它基于鸽巢和鸽子的类比,以描述一种基本现象:当将更多的物体放入较少的容器中时,至少会有一个容器放入多个物体。
在数学中,该原理指出,如果有n+1个物体放入n个容器中,那么至少会有一个容器中放入超过一个物体。
问题二:鸽巢原理的应用有哪些?鸽巢原理在计算机科学和信息技术领域中有许多重要的应用。
以下是一些常见的应用:1.密码学:在密码学中,鸽巢原理可用于处理碰撞问题。
当使用一个较小的空间存储大量信息时,碰撞(collision)是不可避免的。
利用鸽巢原理,我们可以预测到在一定数量的数据中,存在相同的hash值,这在密码学中是重要的。
2.计算机网络:在计算机网络中,鸽巢原理有助于理解和解释数据包丢失的问题。
当数据包发送的数量超过网络容量或处理速度时,就会发生数据丢失。
鸽巢原理可以帮助我们理解这种现象。
3.调度算法:在资源调度和任务分配的问题中,鸽巢原理也有重要应用。
当有更多的任务需要分配给较少的资源时,鸽巢原理表明必然会出现资源冲突或负载不均衡的情况。
4.数据压缩和信息编码:在数据压缩和信息编码中,鸽巢原理可以用来证明,对于一组不同的编码,存在至少一个编码结果长度相同的情况。
这可以用于压缩和编码算法的优化。
5.数据库和搜索算法:在数据库和搜索算法中,鸽巢原理可用于解决数据重复和冗余问题。
通过鸽巢原理,我们可以检测到在一组数据中存在重复的记录,并进行合适的处理和优化。
6.逻辑和证明:在数理逻辑和证明中,鸽巢原理可以用来证明存在性。
通过构造合适的鸽巢和鸽子的类比,我们可以证明某个条件必定存在。
问题三:请举例说明鸽巢原理的应用。
例子一:选课冲突假设学校有15门选修课程,但是每个学生只能选修10门课。
根据鸽巢原理,即使每个学生选修10门不同的课程,仍然会有至少一个课程有多个学生选修。
鸽巢原理练习题一、填空1.箱子中有5个红球,4个白球,至少要取出()个才能保证两种颜色的球都有,至少要取()个才能保证有2个白球。
2.“六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种水果,那么至少要有()个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有()个小朋友才能保证两人拿的水果是相同的。
3.将红、黄、蓝三种颜色的帽子各5顶放入一个盒子里,要保证取出的帽子有两种颜色,至少应取出()顶帽子;要保证三种颜色都有,则至少应取出()顶;要保证取出的帽子中至少有两顶是同色的,则至少应取出()顶。
二、选择1.把25枚棋子放入下图的三角形内,那么一定有一个小三角形中至少放入()枚。
A.6B.7C.8D.92.某班有男生25人,女生18人,下面说法正确的是()。
A.至少有2名男生是在同一个月出生的B.至少有2名女生是在同一个月出生的C.全班至少有5个人是在同一个月出生的D.以上选项都有误三、解答1.某班同学为地震灾区小朋友捐献图书,所捐图书共分为故事书、科技树和教辅资料书三类,捐书的情况是:有捐一本的,有捐两本的,还有捐三本的。
问至少要有几位同学来捐书才能保证一定有两位同学所捐书的类型相同?(每种类型的书最多捐一本)2.在如下图的盒子中,小华蒙着眼睛往外摸球,至少要摸出多少个,才能保证摸出的球至少有3种不同的颜色?3.扑克牌里学数学:一副扑克牌(取出两张王牌)。
(1)在剩下的52张牌中任意抽出9张,至少有多少张是同花色的?(2)扑克牌一共有4种花色,每种花色都有13张牌,问至少要抽出几张牌才能保证有一张是红桃?(3)至少要抽出多少张才能保证有5张牌是同一花色的?4.在下面的方格中,将每一个方格涂上红色或黄色,不论怎么涂,至少有几列的颜色是完全相同的?5.小花猫钓到了鲤鱼、草鱼、鲫鱼三种鱼共12条,放在桶里提回家去,路上遇见了小白猫,小花猫问小白猫:“你最爱吃什么鱼?”小白猫说:“我最爱吃的是鲤鱼。