组合数学-鸽巢原理讲义
- 格式:ppt
- 大小:1.01 MB
- 文档页数:38
组合数学讲义(内部资料,严禁商用) 第二章 鸽巢原理和Ramsey 定理 2008-2009学年第二学期第二章 鸽巢原理和Ramsey 定理一、鸽巢原理鸽巢原理是组合数学中的一个重要而又基本的原理,它可以用来解决很多日常生活和科学技术上的趣题,并且常能得到一些令人惊异的结果。
这个原理有各种称呼,最常用的名称是鸽巢原理、Dirichlet 抽屉原理和鞋盒原理。
1、问题的引入1) 366个人中必然有至少两个人生日相同。
2) 抽屉里散放着10双手套,从中任意抽取11只,其中至少有两只是成双的。
3) 某次会议有n 位代表参加,每位代表认识其他代表中某些人,则至少有两个人认识的人数是一样的。
4) 任给5个不同的整数,其中至少有3个数的和被3除尽。
这些例子的道理都很简单,以第一个例子为例,一年365天,366个人至少有一天是某两个人的生日。
最后一例子也有类似的道理,5个数中至少有3个同为奇数或同为偶数,无论哪种情况,它们的和都能被3除尽。
2、鸽巢原理的简单形式定理1、如果把1+n 只鸽子放入n 个鸽巢,则至少有一个鸽巢里含有两只或两只以上鸽子。
证明:反证法。
假设每个鸽巢里至多包含一只鸽子,则n 个鸽巢里鸽子的总数小于等于n ,这与已知矛盾。
注:此原理不能用来寻找究竟是那个鸽巢里含有两只或两只以上鸽子。
即此原理只能用来断定这种鸽巢的存在,并未指出怎样构造这种安排或怎样寻找出现这种现象的场合,除非检查所有的可能情况。
此原理的应用:例1、 已知每个人的头发根数都小于20万,对20万人以上的城市就可以断定,至少有两个人头发根数相等。
例2、在边长为1的正三角形中任意放5个点,证明至少有两个点之间的距离不大于21。
证明:构造鸽巢原理如图1,将5个点放在4个边长为21的小正三角形内,根据鸽巢原理,组合数学讲义(涉外学院数学本科用) 2008-2009学年第二学期 制作人 陈勇 必有一个小三角形内至少有两个点,这两个点的距离就小于或等于21。
鸽巢原理(抽屉原理)的详解抽屉原理百科名⽚桌上有⼗个苹果,要把这⼗个苹果放到九个抽屉⾥,⽆论怎样放,我们会发现⾄少会有⼀个抽屉⾥⾯放两个苹果。
这⼀现象就是我们所说的“抽屉原理”。
抽屉原理的⼀般含义为:“如果每个抽屉代表⼀个集合,每⼀个苹果就可以代表⼀个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定⾄少有⼀个集合⾥有两个元素。
” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽⼦笼,养鸽⼈养了6只鸽⼦,那么当鸽⼦飞回笼中后,⾄少有⼀个笼⼦中装有2只鸽⼦”)。
它是组合数学中⼀个重要的原理。
第⼀抽屉原理原理1:把多于n+1个的物体放到n个抽屉⾥,则⾄少有⼀个抽屉⾥的东西不少于两件。
证明(反证法):如果每个抽屉⾄多只能放进⼀个物体,那么物体的总数⾄多是n,⽽不是题设的n+k(k≥1),故不可能。
抽屉原理原理2 :把多于mn(m乘以n)个的物体放到n个抽屉⾥,则⾄少有⼀个抽屉⾥有不少于m+1的物体。
证明(反证法):若每个抽屉⾄多放进m个物体,那么n个抽屉⾄多放进mn个物体,与题设不符,故不可能。
原理3 :把⽆穷多件物体放⼊n个抽屉,则⾄少有⼀个抽屉⾥有⽆穷个物体。
原理1 、2 、3都是第⼀抽屉原理的表述。
第⼆抽屉原理把(mn-1)个物体放⼊n个抽屉中,其中必有⼀个抽屉中⾄多有(m—1)个物体。
证明(反证法):若每个抽屉都有不少于m个物体,则总共⾄少有mn个物体,与题设⽭盾,故不可能。
应⽤基本介绍应⽤抽屉原理解题抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作⽤。
许多有关存在性的证明都可⽤它来解决。
例1:同年出⽣的400⼈中⾄少有2个⼈的⽣⽇相同。
解:将⼀年中的365天视为365个抽屉,400个⼈看作400个物体,由抽屉原理1可以得知:⾄少有2⼈的⽣⽇相同. 400/365=1…35,1+1=2 ⼜如:我们从街上随便找来13⼈,就可断定他们中⾄少有两个⼈属相相同。
“从任意5双⼿套中任取6只,其中⾄少有2只恰为⼀双⼿套。
第五章 抽屉原理和Ramsey 理论抽屉原理又称鸽巢原理或重叠原理,是组合数学中两大基本原理之一,是一个极其初等而又应用较广的数学原理。
其道理并无深奥之处,且正确性也很明显。
但若能灵活运用,便可能得到一些意料不到的结果。
抽屉原理要解决的是存在性问题,即在具体的组合问题中,要计算某些特定问题求解的方案数,其前提就是要知道这些方案的存在性。
1930年英国逻辑学家F. P. Ramsey 将这个简单原理作了深刻推广,即Ramsey 定理,也被称为广义抽屉原理。
它是一个重要的组合定理,有许多应用。
5.1 抽屉原理(一)基本形式定理5.1.1 (基本形式)将n +1个物品放入n 个抽屉,则至少有一个抽屉中的物品数不少于两个。
证 反证之。
将抽屉编号为:1,2, …,n ,设第i 个抽屉放有i q 个物品,则 121+=+++n q q q n但若定理结论不成立,即1≤iq ,即有n q q q +++ 21≤n ,从而有 n q q q n n ≤+++=+ 211矛盾。
例 5.1.1 一年365天,今有366人,那么,其中至少有两人在同一天过生日。
注:与概率的区别:抽屉原理讲的是所给出的结论是必然成立的,即100%成立。
而概率反映的是不确定性现象发生的可能性问题,不讨论100%成立的确定性概率问题。
生日悖论:随机选出n 个人,则其中至少有二人同一天出生的概率为()A P n =n n P 3651365-特例:()A P 23=50.73%,()A P 100=99.99997%例 5.1.2 箱子中放有10双手套,从中随意取出11只,则至少有两只是完整配对的。
(二)推广形式定理5.1.2 (推广形式)将121+-+++n q q q n 个物品放入n 个抽屉,则下列事件至少有一个成立:即第i 个抽屉的物品数不少于i q 个。
(证)反证。
不然,设第i 个抽屉的物品数小于i q (i =1,2, …,n )(即该抽屉最多有1-i q 个物品),则有11+-∑=n q n i i =物品总数≤()n q q ni i n i i -=-∑∑==111与假设矛盾。
第1章鸽巢原理鸽巢原理〔又叫抽屉原理〕指是一件简单明了事实:为数众多一群鸽子飞进不多巢穴里,那么至少有一个巢穴飞进了两只或更多鸽子。
这个原理并无深奥之处,其正确性也是显而易见,但利用它可以解决许多有趣组合问题,得到一些很重要结论,它在数学历史上起了很重要作用。
1.1 鸽巢原理简单形式鸽巢原理简单形式可以描述为:定理1.1.1 如果把个物品放入个盒子中,那么至少有一个盒子中有两个或更多物品。
证明如果每个盒子中至多有一个物品,那么个盒子中至多有个物品,而我们共有个物品,矛盾。
故定理成立。
鸽巢原理只断言存在一个盒子,该盒中有两个或两个以上物品,但它并没有指出是哪个盒子,要想知道是哪一个盒子,那么只能逐个检查这些盒子。
所以,这个原理只能用来证明某种安排存在性,而对于找出这种安排却毫无帮助。
例1 共有12个属相,今有13个人,那么必有两人属相一样。
例2 在边长为1正方形内任取5点,那么其中至少有两点,它们之间距离不超过。
证明把边长为1正方形分成4个边长为小正方形,如图1.1.1所示,在大正方形内任取5点,那么这5点分别落在4个小正方形中。
由鸽巢原理知,至少有两点落在某一个小正方形中,从而这两点间距离小于或等于小正方形对角线长度。
例3 给出个整数,证明:必存在整数,使得证明构造局部与序列那么有如下两种可能:〔i〕存在整数,使得,此时,取即满足题意。
〔ii〕对任一整数i,均有,令,那么有,这样,个余数均在1到m-1之间。
由鸽巢原理知,存在整数,使得。
不妨设,那么综合〔i〕与〔ii〕,即知题设结论成立。
例4 一个棋手有11周时间准备锦标赛,他决定每天至少下一盘棋,一周中下棋次数不能多于12次,证明:在此期间连续一些天中他正好下棋21次。
证明令分别为这11周期间他每天下棋次数,并作局部与根据题意,有且所以有〔1.1.1〕考虑数列它们都在1与之间,共有154项,由鸽巢原理知,其中必有两项相等,由〔1.1.1〕式知这77项互不相等,从而这77项也互不相等,所以一定存在,使得因此这说明从第天到第天这连续天中,他刚好下了21盘棋。