第2章 鸽巢原理
- 格式:ppt
- 大小:498.00 KB
- 文档页数:49
六年级鸽巢原理知识点鸽巢原理,也被称为鸽洞原理,是一种用于数据通信的冲突检测与解决机制。
它模拟了鸽巢中繁殖鸽子的情况,通过对数据包进行编号,发送方根据接收方反馈的信息进行重传,以确保数据的可靠传输。
在六年级的学习中,我们将了解鸽巢原理以及它的相关知识点。
一、鸽巢原理的基本概念鸽巢原理是一种用于数据通信的技术原理,它确保了数据包的无碰撞传输。
在数据通信中,当多个设备同时发送数据时,可能会发生冲突,导致数据包丢失或损坏。
而鸽巢原理通过编号和重传机制,有效解决了这个问题。
二、鸽巢原理的工作原理1. 编号:发送方将每个数据包进行编号,接收方收到数据后会对编号进行确认。
2. 传输与接收:发送方将数据包通过信道发送给接收方,接收方收到数据后进行解码。
3. 确认与重传:接收方对数据包的编号进行确认,如果出现丢失或损坏,会要求发送方进行重传。
4. 顺序保证:接收方会根据编号对数据包进行排序,以保证数据的顺序正确。
三、鸽巢原理的应用场景1. 以太网中的冲突检测:在以太网中,多个计算机共享同一条通信线路,鸽巢原理被用于检测和解决数据冲突问题,保证数据的正常传输。
2. 无线传感器网络中的数据传输:无线传感器网络中的节点数量众多,节点之间需要进行数据的传输和接收,鸽巢原理保证了数据的可靠传输。
四、鸽巢原理的优缺点1. 优点:a. 解决了数据冲突问题,保证了数据的可靠传输。
b. 简单易懂,易于实现和应用。
c. 提高了数据传输的效率和吞吐量。
2. 缺点:a. 需要进行数据包的编号和确认,增加了通信开销。
b. 在大规模网络中,可能会导致网络拥塞。
c. 对延迟敏感的应用有一定影响。
五、总结鸽巢原理是一种用于数据通信的冲突检测与解决机制,通过编号、重传和确认等方式,实现了数据的可靠传输。
它在以太网和无线传感器网络等领域得到了广泛的应用。
但同时,我们也要认识到它的优缺点,合理地利用鸽巢原理,可以有效地提高数据通信的质量与效率。
通过学习鸽巢原理,我们能够更好地理解数据通信中的冲突与解决机制,为我们进一步学习网络通信和相关知识打下坚实基础。
组合数学讲义(内部资料,严禁商用) 第二章 鸽巢原理和Ramsey 定理 2008-2009学年第二学期第二章 鸽巢原理和Ramsey 定理一、鸽巢原理鸽巢原理是组合数学中的一个重要而又基本的原理,它可以用来解决很多日常生活和科学技术上的趣题,并且常能得到一些令人惊异的结果。
这个原理有各种称呼,最常用的名称是鸽巢原理、Dirichlet 抽屉原理和鞋盒原理。
1、问题的引入1) 366个人中必然有至少两个人生日相同。
2) 抽屉里散放着10双手套,从中任意抽取11只,其中至少有两只是成双的。
3) 某次会议有n 位代表参加,每位代表认识其他代表中某些人,则至少有两个人认识的人数是一样的。
4) 任给5个不同的整数,其中至少有3个数的和被3除尽。
这些例子的道理都很简单,以第一个例子为例,一年365天,366个人至少有一天是某两个人的生日。
最后一例子也有类似的道理,5个数中至少有3个同为奇数或同为偶数,无论哪种情况,它们的和都能被3除尽。
2、鸽巢原理的简单形式定理1、如果把1+n 只鸽子放入n 个鸽巢,则至少有一个鸽巢里含有两只或两只以上鸽子。
证明:反证法。
假设每个鸽巢里至多包含一只鸽子,则n 个鸽巢里鸽子的总数小于等于n ,这与已知矛盾。
注:此原理不能用来寻找究竟是那个鸽巢里含有两只或两只以上鸽子。
即此原理只能用来断定这种鸽巢的存在,并未指出怎样构造这种安排或怎样寻找出现这种现象的场合,除非检查所有的可能情况。
此原理的应用:例1、 已知每个人的头发根数都小于20万,对20万人以上的城市就可以断定,至少有两个人头发根数相等。
例2、在边长为1的正三角形中任意放5个点,证明至少有两个点之间的距离不大于21。
证明:构造鸽巢原理如图1,将5个点放在4个边长为21的小正三角形内,根据鸽巢原理,组合数学讲义(涉外学院数学本科用) 2008-2009学年第二学期 制作人 陈勇 必有一个小三角形内至少有两个点,这两个点的距离就小于或等于21。
第二课时鸽巢原理一、学习目标(一)学习内容本例是“鸽巢原理”的具体应用,也是运用“鸽巢原理”进行逆向思维的一个典型例子。
要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”,这样就把“摸球问题”转化为“抽屉问题”。
(二)核心能力在理解鸽巢原理的基础上,利用转化的思想,把新知转化为鸽巢问题,提高分析和推理的能力。
(三)学习目标1.进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维,解决实际问题,体会转化思想。
2.经历运用“抽屉原理”解决问题的过程,体验观察猜想,实践操作的学习方法,提高分析和推理的能力。
(四)学习重点引导学生把具体问题转化为“抽屉原理”。
(五)学习难点找出“抽屉”有几个,再应用“抽屉原理”进行反向推理。
二、学习设计(一)课堂设计1.情境导入师:同学们,你们喜欢魔术吗?今天老师给你们表演一个怎么样?看,这是一副扑克牌,去掉两张王牌,还剩下52张,请同学们任意挑出5张。
(让5名学生抽牌)好,见证奇迹的时刻到了!你们手里的牌至少有2张是同花色的。
师:神奇吧!你们想不想表演一个呢?师:现在老师这里还是刚才这副牌,请你抽牌,至少抽多少张牌才能保证至少有2张牌的点数相同呢?在学生抽的基础上揭示课题。
教师:这节课我们学习利用“鸽巢原理”解决生活中的实际问题。
(板书课题:鸽巢原理)2.探究新知(1)学习例3①猜想出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?预设:2个、3个、5个…②验证师:我们的猜想是不是正确呢?我们可以用画一画、写一写的方法来说明理由,并把验证的过程进行整理。
可以用表格进行整理,课件出示空白表格:学生独立思考填表,小组交流。
全班汇报。
汇报时,指名按猜测的不同情况逐一验证,说明理由,看看解决这个问题是否有规律可循。
课件汇总,思考:从这里你能发现什么?教师:通过验证,说说你们得出什么结论。
小结:盒子里有同样大小的红球和蓝球各4个。
第二章 鸽巢原理我们在本章考虑一个重要而又初等的组合学原理,它能够用来解决各种有趣的问题,常常得出一些令人惊奇的结论。
这个原理有许多的名字,但最普通的名字叫鸽巢原理,也叫做鞋盒原理。
有关于鸽巢的原理阐释,粗略地说就是如果有许多鸽子飞进不足够多的鸽子巢内,那么至少要有一个鸽巢被两个或多个鸽子占据。
更精确的叙述在下面给出。
2.1 鸽巢原理的简单形式鸽巢原理的简单的形式可以描述如下:定理2.1.1 如果n+1个物体被放进n 个盒子,那么至少有一个盒子包合两个或更多的物体。
证明:如果这n 个盒子中的每一个都至多含有一个物体,那么物体的总数最多是n 。
既然我们有n +1个物体,于是某个盒子就必然包含至少两个物体。
注意,无论是鸽巢原理,还是它的证明,对于找出含有两个或更多物体的盒子都没有任何帮助。
它们只是简单地断言,如果人们检查每一个盒子,那么他们会发现有的盒子里面放有多于一个的物体:鸽巢原理只是保证这样的盒子存在。
因此,无论何时鸽巢原理被用来证明一个排列或某种现象的存在性,除了考察所有可能性之外,它都不能对任何构造排列或寻找现象的例证给出任何指示。
我们可以把将物体放入盒子改为用n 种颜色中的一种颜色对每一个物体涂色:此时,鸽巢原理断言,如果n +1个物体用n 种颜色涂色,那么必然有两个物体被涂成相同的颜色。
下面是两个简单的应用。
应用1 在13个人中存在两个人,他们的生日在同一个月份里。
应用2 设有n 对已婚夫妇。
为保证能够有一对夫妇被选出,至少要从这2n 个人中选出多少人?为了在这种情形下应用鸽巢原理,考虑n 个盒子,其中一个盒子对应一对夫妇。
如果我们选择n +1个人并把他们中的每一个人放到他们对偶所在的那个盒子中去,那么就有同一个盒子含有两个人;也就是说,我们已经选择了一对已婚夫妇。
选择n 个人使他们当中一对夫妻也不没有的两种方法是选择所有的丈夫或选择所有的妻子。
因此,n +1是保证能有一对夫妇被选中的最小的人数。