高中数学-集合间的基本关系教案
- 格式:doc
- 大小:114.96 KB
- 文档页数:3
§1.1.2集合間的基本關係一. 教學目標:1.知識與技能(1)瞭解集合之間包含與相等的含義,能識別給定集合的子集。
(2)理解子集.真子集的概念。
(3)能使用venn圖表達集合間的關係,體會直觀圖示對理解抽象概念的作用.2. 過程與方法讓學生通過觀察身邊的實例,發現集合間的基本關係,體驗其現實意義.3.情感.態度與價值觀(1)樹立數形結合的思想.(2)體會類比對發現新結論的作用.二.教學重點.難點重點:集合間的包含與相等關係,子集與其子集的概念.難點:難點是屬於關係與包含關係的區別.三.學法與教學用具1.學法:讓學生通過觀察.類比.思考.交流.討論,發現集合間的基本關係.2.學用具:投影儀.四.教學思路(—)創設情景,揭示課題問題l:實數有相等.大小關係,如5=5,5<7,5>3等等,類比實數之間的關係,你會想到集合之間有什麼關係呢?讓學生自由發言,教師不要急於做出判斷。
而是繼續引導學生;欲知誰正確,讓我們一起來觀察.研探.(二)研探新知投影問題2:觀察下面幾個例子,你能發現兩個集合間有什麼關係了嗎?(1){1,2,3},{1,2,3,4,5}A B ==;(2)設A 為一中高一(3)班男生的全體組成的集合,B 為這個班學生的全體組成的集合;(3)設{|},{|};C x x D x x ==是两条边相等的三角形是等腰三角形(4){2,4,6},{6,4,2}E F ==.組織學生充分討論.交流,使學生發現兩個集合所含元素範圍存在各種關係,從而類比得出兩個集合之間的關係:①一般地,對於兩個集合A ,B ,如果集合A 中任意一個元素都是集合B 中的元素,我們就說這兩個集合有包含關係,稱集合A 為B 的子集.記作:()A B B A ⊆⊇或讀作:A 含於B(或B 包含A).②如果兩個集合所含的元素完全相同,那麼我們稱這兩個集合相等.教師引導學生類比表示集合間關係的符號與表示兩個實數大小關係的等號之間有什麼類似之處,強化學生對符號所表示意義的理解。
1.1.2集合间的基本关系数学必修1第一章第二节第1小节《集合间的基本关系》说课稿.一、教学内容分析集合概念及其理论是近代数学的基石,集合语言是现代数学的基本语言,通过学习、使用集合语言,有利于学生简洁、准确地表达数学内容,高中课程只将集合作为一种语言来学习,学生将学会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力.本章集合的初步知识是学生学习、掌握和使用数学语言的基础,是高中数学学习的出发点。
本小节内容是在学习了集合的概念以及集合的表示方法、元素与集合的从属关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合之间的运算的基础,因此本小节起着承上启下的重要作用.本节课的教学重视过程的教学,因此我选择了启发式教学的教学方式。
通过问题情境的设置,层层深入,由具体到抽象,由特殊到一般,帮助学生的逐步提升数学思维。
二、学情分析本节课是学生进入高中学习的第3节数学课,也是学生正式学习集合语言的第3节课。
由于一切对于学生来说都是新的,所以学生的学习兴趣相对来说比较浓厚,有利于学习活动的展开。
而集合对于学生来说既熟悉又陌生,熟悉的是在初中就已经使用数轴求简单不等式(组)的解,用图示法表示四边形之间的关系,陌生的是使用集合的语言来描述集合之间的关系。
而从具体的实例中抽象出集合之间的包含关系的本质,对于学生是一个挑战。
根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标和教学重、难点如下:三、教学目标:知识与技能目标:(1)理解集合之间包含和相等的含义;(2)能识别给定集合的子集;(3)能使用Venn图表达集合之间的包含关系过程与方法目标:(1)通过复习元素与集合之间的关系,对照实数的相等与不相等的关系联系元素与集合之间的从属关系,探究集合之间的包含和相等关系;(2)初步经历使用最基本的集合语言表示有关的数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力;情感、态度、价值观目标:(1)了解集合的包含、相等关系的含义,感受集合语言在描述客观现实和数学问题中的意义;(2)探索利用直观图示(Venn图)理解抽象概念,体会数形结合的思想。
诚西郊市崇武区沿街学校第一零九中学高中数学必修一教案:第一章集合间的根本关系一.教学目的:1.知识与技能(1)理解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
(3)能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用.2.过程与方法让学生通过观察身边的实例,发现集合间的根本关系,体验其现实意义.3.情感.态度与价值观(1)树立数形结合的思想.(2)体会类比对发现新结论的作用.二.教学重点.难点重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.三.学法1.学法:让学生通过观察.类比.考虑.交流.讨论,发现集合间的根本关系.教学过程:一、复习准备:1.提问:集合的两种表示方法?如何用适当的方法表示以下集合?〔1〕10以内3的倍数;〔2〕1000以内3的倍数2.用适当的符号填空:0N;Q;-R。
3.导入:类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小〞关系呢?二、讲授新课:1.子集、空集等概念的教学:①比较下面几个例子,试发现两个集合之间的关系:{3,6,9}A =与*{|3,333}B x x k k N k ==∈≤且;{}西乡一中学生=C 与{}西乡一中高一学生=D ;{|(1)(2)0}E x x x x =--=与{0,1,2}F =②定义:假设集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集〔subset 〕。
记作:()A B B A ⊆⊇或读作:A 包含于〔iscontainedin 〕B ,或者者B 包含〔contains 〕A 当集合A 不包含于集合B 时,记作A B③用Venn 图表示两个集合间的“包含〞关系:④集合相等定义:A B B A ⊆⊆且,那么A B =中的元素是一样的,因此A B =.⑤真子集定义:假设集合A B ⊆,存在元素x B x A ∈∉且,那么称集合A 是集合B 的真子集〔propersubset 〕。
《集合间的基本关系》教学设计1.通过类比实数间的关系,观察、发现、形成集合间关系的概念,理解集合之间的包含与相等的含义,提升学生的数学抽象素养.2.能识别给定集合的子集,了解空集的含义.3.对集合之间的关系,能进行自然语言、图形语言(Venn图)、符号语言间的转换,提升数学抽象素养.教学重点:集合间包含与相等的含义,用集合语言表达数学对象或数学内容.教学难点:对相似概念及符号的理解,例如区别元素与集合、属于与包含等概念及其符号表示.PPT.一、概念的引入问题1:上一节我们学习了集合,对于这个新的研究对象,接下来该如何研究呢?比如要研究些什么?用什么方法研究?如果有困难可以阅读本节的引言.师生活动:学生独立思考、讨论交流,教学时要特别关注研究方法的指引.教师提示,类比已有的学习经验是一个好方法,类比已有的学习经验是一个好方法,比如我们已研究过“实数”,引导学生回顾实数研究了哪些内容,如实数间的关系、实数的运算等,最后确定集合的研究问题:集合间的关系,集合的运算设计意图:引入一个新的数学对象后,关键在于引导学生思考“如何研究一个数学对象”,这种思考有助于学生掌握研究数学对象的方法,学会发现问题和提出问题.这里采用的“类比”就是一种重要的数学思维方法.问题2:阅读教科书“观察”,类比实数之间的相等关系、大小关系,集合与集合之间有哪些关系?师生活动:学生独立观察,充分思考,交流讨论.根据学生交流讨论情况,教师可以适时地选择以下问题进行追问.追问:(1)你从哪个角度来分析每组两个集合间的关系?(从元素与集合之间的关系.)(2)上述三个具体例子有什么共同特点?请你概括.(在每组的两个集合中,第一个集合中的任何一个元素都是第二个集合中的元素.).(3)上述三组集合中,前两组的两个集合间的关系与第三组的两个集合间的关系有什么不同之处?(不同之处是:前两组集合中,集合B中有的元素属于集合A,有的元素不属于集合A;第三组集合中,集合A中的任何一个元素都属于集合B,反过来,集合B中的任何一个元素也都属于集合A.)师生活动:教师引导学生梳理观察、讨论、分析的结果,抽象概括形成数学定义,介绍子集、包含关系和相等关系.一般地:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为B的子集.记作:A⊆B(B⊇A)读作:A 包含于B(或B包含A).设计意图:让学生通过观察、比较、归纳、概括出集合间的基本关系.并创设情境,让学生运用类比、联想、抽象、概括的思维方法解决问题,提升学生数学抽象素养.教学时要确保学生独立思考、讨论交流的时间.二、概念的理解问题3:阅读教科书观察之后至思考之前的内容,你有什么疑问?如果没有疑问,请你回答下列问题:(1)你能举几个具有包含关系、相等关系的集合,并用符号语言和Venn图表示吗?(2)子集和真子集的区别与联系是什么?(3)什么是空集?请你再举几个空集的例子.师生活动:让学生独立阅读这段内容,然后分别提出自己感到困惑的问题.教师根据学生回答的情况,进行补充,帮助学生提升对概念的理解,比如集合“{0}”是否为空集等例子.设计意图:对于难度不大的内容,特别是符号比较多时,通过阅读,熟悉自然语言、符号语言和图形语言,并建立它们之间的对应关系;通过阅读,提出自己的困惑,学会质疑,深入理解概念;通过举例子,抽象概念具体化,深入理解概念.问题4:包含关系{a}⊆A与属于关系a∈A有什么区别?试结合实例作出解释.师生活动:让学生独立思考,然后讨论交流,教师提问.预设的答案:{a}⊆A表示集合与集合间的关系,集合{a}是集合A的子集;而a∈A表示元素a与集合A间的关系.如针对集合A={0,1,2},{0}⊆{0,1,2}而0∈{0,1,2}.本图片为微课《【知识点解析】包含于的含义》及《【知识点解析】属于》的含义的知识讲解,微课中分别讲解了包含于和属于的意义,并进行了辨析,若需使用,请插入相应微课.设计意图:通过新学习的知识和已学习知识的对比,学生更容易区别集合的子集、元素与集合的关系,以及符号间的区别.问题5:通过类比实数关系的性质,你能发现集合之间的关系有哪些性质?师生活动:学生回顾、讨论、交流,教师提问.预设的答案:(1)任何一个集合是它本身的子集,即A⊆A(2)对于集合A⊆B,B⊆C,那么A⊆C.设计意图:类比实数关系的对称性、传递性等性质,得出两个集合间的关系的性质.在旧知识的基础上学习新知识有生长点,学生容易类比、掌握.三、概念的巩固应用例1 写出集合{a,b}的所有子集,并指出哪些是它的真子集.师生活动:学生分析解题思路,教师给出解答示范,特别突出有规律地列举.答案:子集有Φ,{a},{b},{a,b},其中真子集是Φ,{a},{b}.设计意图:巩固子集和真子集的概念和性质,体会分类的原则和方法,为保证不重不漏,要按照一定顺序写出子集,比如可以根据子集中元素的个数分类.例2 判断下列各题中集合A是否为集合B的子集,并说明理由:(1)A={1,2,3},B={x|x是8的约数};(2)A={x|x是长方形},B={x|x是两条对角线相等的平行四边形}.师生活动:学生判断,教师给出解答示范.答案:(1)A={1,2,3},B={x|x是8的约数}={1,2,4,8},其中3 ∉B,所以集合A不是集合B的子集.(2)A=B.设计意图:检验学生对子集概念的掌握情况,进一步明确判断两个集合之间关系的基本方法——定义法.例3 (1)已知集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},若B⊆A,则实数m的取值范围为________.(2)已知集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},若B⫋A,则实数m 的取值范围为________.师生活动:学生做练习,教师根据学生练习情况给予反馈.答案:(1)(-∞,3] ;(2)(-∞,3).设计意图:巩固两个集合的基本关系.两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系.特别要注意易错点:丢掉空集.常用数轴、Venn图来直观解决这类问题.练习:教科书练习1,2,3题.四、归纳总结、布置作业问题6:本节课你有哪些收获?可以从以下几方面思考:(1)两个集合间的基本关系有哪些?如何判断两个集合间的关系?(2)你是如何研究集合间基本关系的?(3)包含关系与属于关系有什么区别?设计意图:从知识内容和研究方法两个方面对本节课进行小结.布置作业:教科书习题1.2第1,2,3题.五、目标检测设计1.用适当的符号填空:(1)0______{x|x2=x};(2)-1______{x|x2=x};(3)Φ______ {x|x2=x};(4){0}______{x|x2=x};(5){0,1}______ {x|x2=x};(6)Φ______ {x|x2<-1}.设计意图:考查学生对符号语言的掌握程度.2.已知满足条件{1,2}⫋M⊆{1,2,3,4,5},写出满足条件的集合M.设计意图:考查学生对子集的概念、性质与符号的理解.3.已知集合A={x|1≤x<5},C={x|-a<x≤a+3}.若C⊆A,则a的取值范围是________.设计意图:考查学生对符号语言的掌握程度.参考答案:1.(1)∈;(2)∉;(3)⊂;(4)⊂;(5)=;(6)=.2.M={1,2,3}、{1,2,4}、{1,2,5}、{1,2,3,4}、{1,2,3,5}、{1,2,4,5}、{1,2,3,4,5}.3.(-∞,-1].。
集合间的基本关系教案篇一:集合间的基本关系示范教案1.1.2 集合间的基本关系整体设计教学分析课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.值得注意的问题:在集合间的关系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与�恋那�别.三维目标1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.重点难点教学重点:理解集合间包含与相等的含义.教学难点:理解空集的含义.课时安排1课时教学过程导入新课思路1.实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)欲知谁正确,让我们一起来观察、研探.思路2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0N;(2)2Q;(3)-1.5R. 类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2)��;(3)∈)推进新课新知探究提出问题(1)观察下面几个例子:①A={1,2,3},B={1,2,3,4,5};②设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};④E={2,4,6},F={6,4,2}.你能发现两个集合间有什么关系吗?(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别?(3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?(4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?(5)试用Venn图表示例子①中集合A和集合B.(6)已知A�罛,试用Venn图表示集合A和B的关系.(7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?(8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?(9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?活动:教师从以下方面引导学生:(1)观察两个集合间元素的特点.(2)从它们含有的元素间的关系来考虑.规定:如果A?B,但存在x∈B,且x?A,我们称集合A是集合B的真子集,记作AB(或BA).(3)实数中的“≤”类比集合中的?.(4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.(5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.(6)分类讨论:当A?B时,AB或A=B.(7)方程x2+1=0没有实数解.(8)空集记为?,并规定:空集是任何集合的子集,即??A;空集是任何非空集合的真子集,即A(A≠?).(9)类比子集.讨论结果:(1)①集合A中的元素都在集合B中;②集合A中的元素都在集合B中;③集合C中的元素都在集合D中;④集合E中的元素都在集合F中.可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.(2)例子①中A?B,但有一个元素4∈B,且4?A;而例子②中集合E和集合F中的元素完全相同.(3)若A?B,且B?A,则A=B.(4)可以把集合中元素写在一个封闭曲线的内部来表示集合.(5)如图1121所示表示集合A,如图1122所示表示集合B. ?图1-1-2-1(6)如图1-1-2-3和图1-1-2-4所示. 图1-1-2-2图1-1-2-3(7)不能.因为方程x2+1=0没有实数解.(8)空集. 图1-1-2-4(9)若A?B,B?C,则A?C;若A应用示例 B,BC,则AC.思路11.某工厂生产的产品在重量和长度上都合格时,该产品才合格.若用A表示合格产品的集合,B表示重量合格的产品的集合,C表示长度合格的产品的集合.已知集合A、B、C均不是空集.(1)则下列包含关系哪些成立?A?B,B?A,A?C,C?A.(2)试用Venn图表示集合A、B、C间的关系.活动:学生思考集合间的关系以及Venn图的表示形式.当集合A中的元素都属于集合B时,则A?B成立,否则A?B不成立.用相同的方法判断其他包含关系是否成立.教师提示学生以下两点:(1)重量合格的产品不一定是合格产品,但合格的产品一定重量合格;长度合格的产品不一定是合格产品,但合格的产品一定长度合格.(2)根据集合A、B、C间的关系来画出Venn图.解:(1)包含关系成立的有:B?A,C?A.(2)集合A、B、C间的关系用Venn图表示,如图1-1-2-5所示.图1-1-2-5变式训练课本P7练习3.点评:本题主要考查集合间的包含关系.其关键是首先明确两集合中的元素具体是什么. 判断两个集合A、B之间是否有包含关系的步骤是:先明确集合A、B中的元素,再分析集合A、B中的元素之间的关系,得:当集合A中的元素都属于集合B时,有A?B;当集合A中的元素都属于集合B,当集合B中至少有一个元素不属于集合A时,有AB;当集合A中的元素都属于集合B,并且集合B中的元素也都属于集合A时,有A=B;当集合A中至少有一个元素不属于集合B,并且集合B中至少有一个元素也不属于集合A时,有AB,且BA,即集合A、B互不包含.2.写出集合{a,b}的所有子集,并指出哪些是它的真子集.活动:学生思考子集和真子集的定义,教师提示学生空集是任何集合的子集,一个集合不是其本身的真子集.按集合{a,b}的子集所含元素的个数分类讨论.解:集合{a,b}的所有子集为?,{a},{b},{a,b}.真子集为?,{a},{b}.变式训练2007山东济宁一模,1已知集合P={1,2},那么满足Q?P的集合Q的个数是( )A.4B.3C.2D.1分析:集合P={1,2}含有2个元素,其子集有22=4个,又集合Q?P,所以集合Q有4个.答案:A点评:本题主要考查子集和真子集的概念,以及分类讨论的思想.通常按子集中所含元素的个数来写出一个集合的所有子集,这样可以避免重复和遗漏.思考:集合A中含有n个元素,那么集合A有多少个子集?多少个真子集?解:当n=0时,即空集的子集为?,即子集的个数是1=20;当n=1时,即含有一个元素的集合如{a}的子集为?,{a},即子集的个数是2=21;当n=2时,即含有一个元素的集合如{a,b}的子集为?,{a},{b},{a,b},即子集的个数是4=22. ……集合A中含有n个元素,那么集合A有2n个子集,由于一个集合不是其本身的真子集,所以集合A有(2n-1)个真子集.思路21.2006上海高考,理1已知集合A={-1,3,2m-1},集合B={3,m2}.若B?A,则实数m=_______. 活动:先让学生思考B?A的含义,根据B?A,知集合B中的元素都属于集合A,集合元素的互异性,列出方程求实数m的值.因为B?A,所以3∈A,m2∈A.对m2的值分类讨论. 解:∵B?A,∴3∈A,m2∈A.∴m2=-1(舍去)或m2=2m-1.解得m=1.∴m=1.答案:1点评:本题主要考查集合和子集的概念,以及集合元素的互异性.本题容易出现m2=3,其原因是忽视了集合元素的互异性.避免此类错误的方法是解得m的值后,再代入验证.讨论两集合之间关系时,通常依据相关的定义,观察这两个集合元素的关系,转化为解方程或解不等式.变式训练已知集合M={x|2-x<0},集合N={x|ax=1},若NM,求实数a的取值范围.分析:集合N是关于x的方程ax=1的解集,集合M={x|x>2}≠?,由于NM,则N=?或N≠?,要对集合N是否为空集分类讨论.解:由题意得M={x|x>2}≠?,则N=?或N≠?.当N=?时,关于x的方程ax=1中无解,则有a=0;111,又∵NM,∴∈M.∴>2. aaa111∴0<a<.综上所得,实数a的取值范围是a=0或0<a<,即实数a的取值范围是{a|0≤a<} 2222.(1)分别写出下列集合的子集及其个数:?,{a},{a,b},{a,b,c}. 当N≠?时,关于x的方程ax=1中有解,则a≠0,此时x=(2)由(1)你发现集合M中含有n个元素,则集合M有多少个子集?活动:学生思考子集的含义,并试着写出子集.(1)按子集中所含元素的个数分类写出子集;(2)由(1)总结当n=0,n=1,n=2,n=3时子集的个数规律,归纳猜想出结论.答案:(1)?的子集有:?,即�劣�1个子集;{a}的子集有:?、{a},即{a}有2个子集;{a,b}的子集有:?、{a}、{b}、{a,b},即{a,b}有4个子集;{a,b,c}的子集有:?、{a}、{b}、{c}、{a,b}、{a,c}、{b,c}、{a,b,c},即{a,b,c}有8个子集.(2)由(1)可得:当n=0时,有1=20个子集;当n=1时,集合M有2=21个子集;当n=2时,集合M有4=22个子集;当n=3时,集合M有8=23个子集;因此含有n个元素的集合M有2n个子集.变式训练已知集合A{2,3,7},且A中至多有一个奇数,则这样的集合A 有……( )A.3个B.4个C.5个D.6个分析:对集合A所含元素的个数分类讨论.A=?或{2}或{3}或{7}或{2,3}或{2,7}共有6个.答案:D点评:本题主要考查子集的概念以及分类讨论和归纳推理的能力.集合M中含有n个元素,则集合M有2n个子集,有2n-1个真子集,记住这个结论,可以提高解题速度.写一个集合的子集时,按子集中元素的个数来写不易发生重复和遗漏现象.知能训练课本P7练习1、2.【补充练习】1.判断正误:(1)空集没有子集.( )(2)空集是任何一个集合的真子集. ( )(3)任一集合必有两个或两个以上子集.( )(4)若B?A,那么凡不属于集合A的元素,则必不属于B.( ) 分析:关于判断题应确实把握好概念的实质.解:该题的5个命题,只有(4)是正确的,其余全错.对于(1)、(2)来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集. 对于(3)来讲,可举反例,空集这一个集合就只有自身一个子集.对于(4)来讲,当x∈B时必有x∈A,则x?A时也必有x?B.2.集合A={x|-1<x<3,x∈Z},写出A的真子集.分析:区分子集与真子集的概念,空集是任一非空集合的真子集,一个含有n个元素的子集有2n个,真子集有2n-1个,则该题先找该集合元素,后找真子集.解:因-1<x<3,x∈Z,故x=0,1,2,即a={x|-1<x<3,x∈Z}={0,1,2}.真子集:?、{1}、{2}、{0}、{0,1}、{0,2}、{1,2},共7个.3.(1)下列命题正确的是 ( )A.无限集的真子集是有限集B.任何一个集合必定有两个子集C.自然数集是整数集的真子集D.{1}是质数集的真子集(2)以下五个式子中,错误的个数为( ) ①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2}?{1,0,2}④?∈{0,1,2} ⑤?∈{0}A.5B.2C.3D.4(3)M={x|3<x<4},a=π,则下列关系正确的是 ( ) A.aMB.a?MC.{a}∈MD.{a}M分析:(1)该题要在四个选择肢中找到符合条件的选择肢,必须对概念把握准确,无限集的真子集有可能是无限集,如N是R的真子集,排除A;由于?只有一个子集,即它本身,排除B;由于1不是质数,排除D.(2)该题涉及到的是元素与集合,集合与集合的关系.①应是{1}?{0,1,2},④应是??{0,1,2},⑤应是??{0}.故错误的有①④⑤.(3)M={x|3<x<4},a=π.因3<a<4,故a是M的一个元素.{a}是{x|3<x<4}的子集,那么{a}答案:(1)C (2)C (3)D M.篇二:2014高中学科教学设计-集合间的基本关系我的教学设计模板篇三:《集合间的基本关系》教学设计1.1.2集合间的基本关系一、设计理念新课标指出:学生的数学学习活动不应只是接受、记忆、模仿、练习,教师应引导学生自主探究、合作学习、动手操作、阅读自学,应注重提升学生的数学思维能力,注重发展学生的数学应用意识。
1.2 集合间的基本关系教材分析:本节内容来自人教版高中数学必修一第一章第一节集合第二课时的内容。
集合论是现代数学的一个重要基础,是一个具有独特地位的数学分支。
高中数学课程是将集合作为一种语言来学习,在这里它是作为刻画函数概念的基础知识和必备工具。
本小节内容是在学习了集合的含义、集合的表示方法以及元素与集合的属于关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合间的基本运算的基础,因此本小节起着承上启下的关键作用.通过本节内容的学习,可以进一步帮助学生利用集合语言进行交流的能力,帮助学生养成自主学习、合作交流、归纳总结的学习习惯,培养学生从具体到抽象、从一般到特殊的数学思维能力,通过Venn图理解抽象概念,培养学生数形结合思想。
教学目标:A.了解集合之间包含与相等的含义,能识别给定集合的子集;B.理解子集、真子集的概念;C.能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用,体会数形结合的思想。
核心素养:1.数学抽象:集合间的关系的含义;2.逻辑推理:由集合的元素的关系推导集合之间的关系;3.数学运算:由集合与集合之间的关系求值;4.直观想象:体会直观图示对理解抽象概念的作用,体会数形结合的思想。
教学重难点:1.教学重点:集合间的包含与相等关系,子集与其子集的概念;2.教学难点:属于关系与包含关系的区别.教学过程:牛刀小试1:下图中,集合A 是否为集合B 的子集?牛刀小试2判断集合A 是否为集合B 的子集,若是则在( )打√,若不是则在( )打×:①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} ( × ) ③A={0}, B={x | x 2+2=0} ( × ) ④A={a,b,c,d}, B={d,b,c,a} ( √ )思考2:与实数中的结论 “若a ≥b,且b ≥a,则a=b ”。
高中数学集合关系概念教案
1. 掌握集合的定义和表示方法。
2. 理解集合的包含关系和交、并、补运算。
3. 能够用集合的概念解决实际问题。
【教学重点】
1. 集合的定义和表示法。
2. 集合之间的基本关系和运算。
【教学难点】
1. 理解集合运算的概念和性质。
2. 运用集合关系解决问题的能力。
【教学准备】
1. 教师准备:PPT、教材、教具等。
2. 学生准备:课前预习教材相关内容。
【教学过程】
一、复习导入
1. 复习上节课所学内容,引导学生回顾集合的基本定义和表示法。
二、新知讲解
1. 引入:介绍集合的概念和基本表示方法。
2. 概念解释:集合的包含关系、相等关系及运算。
3. 运算规则:介绍集合的交、并、补运算,让学生了解运算规则。
三、拓展引导
1. 实例分析:通过实例让学生掌握集合的运算方法和应用。
四、课堂练习
1. 授课安排练习题,巩固学生对集合概念的理解和掌握。
五、课堂总结
1. 总结本节课的主要内容,强调集合概念及重要运算规则。
2. 鼓励学生多加练习,提高对集合概念的掌握和应用能力。
【课后作业】
1. 完成教师布置的练习题,巩固集合的概念和运算方法。
2. 阅读相关课外资料,了解更多集合的应用和拓展知识。
【教学反思】
1. 本节课教学内容是否能够引起学生的兴趣,是否能够达到预期的教学效果。
2. 学生对集合概念和运算方法的掌握情况如何,是否需要进一步加强巩固。
集合间的关系教案教案标题:集合间的关系教案一、教学目标1. 知识目标:学生能够理解集合的概念,掌握集合间的关系,包括并集、交集、补集等。
2. 能力目标:培养学生的逻辑思维能力和分析问题的能力。
3. 情感目标:激发学生对数学的兴趣,培养学生的合作意识和团队精神。
二、教学重点和难点1. 教学重点:并集、交集、补集的概念和运用。
2. 教学难点:学生理解并集、交集、补集的抽象概念,并能够运用到实际问题中。
三、教学内容1. 集合的概念和表示方法2. 并集、交集、补集的概念3. 并集、交集、补集的运用四、教学过程1. 导入新知识:通过一个生活中的例子引入集合的概念,如学生的爱好集合、班级同学集合等。
2. 学习新知识:教师介绍集合的表示方法和并集、交集、补集的概念,通过示意图和实例让学生理解这些概念。
3. 练习与巩固:教师设计一些练习题,让学生在小组内合作完成,并进行讲解和讨论。
4. 拓展应用:教师设计一些实际问题,让学生运用并集、交集、补集的概念进行解决,如班级学生参加不同兴趣班的情况等。
5. 归纳总结:教师带领学生总结并集、交集、补集的性质和运用方法。
五、教学手段1. 多媒体课件2. 示意图3. 练习题4. 实例分析六、教学评价1. 课堂练习:通过课堂练习评价学生对并集、交集、补集的掌握程度。
2. 作业布置:布置相关作业,让学生在家里进行巩固和拓展。
3. 学习反馈:定期进行学习反馈,及时发现和解决学生的问题。
七、教学反思教师应该根据学生的实际情况和学习进度,灵活调整教学内容和方法,引导学生主动参与学习,培养学生的自主学习能力。
同时,教师应该及时对学生的学习情况进行评价和反馈,帮助学生解决学习中的困惑和问题。
《集合间的基本关系》一、教学目标1.知识与技能:学生能够理解集合间的基本关系(子集、真子集、相等)的概念,掌握判断集合间关系的方法,并能准确描述集合间的这些关系。
2.过程与方法:通过具体实例分析,引导学生从直观感受出发,逐步抽象出集合间关系的数学定义,培养学生的抽象思维能力和逻辑推理能力。
同时,通过小组讨论和合作探究,提升学生的团队协作能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养严谨的数学态度和实事求是的科学精神。
通过解决实际问题,让学生感受到数学的实用价值,增强学好数学的信心。
二、教学重点和难点●重点:子集、真子集、相等三种集合间关系的定义及判断方法。
●难点:理解并准确区分子集与真子集的概念,以及在复杂情境下判断集合间的关系。
三、教学过程1. 引入新课(5分钟)●生活实例:以班级中的男生集合、女生集合及全班学生集合为例,引导学生思考这些集合之间的关系,初步感受集合间的包含与被包含关系。
●提出问题:如何用数学语言描述这些集合之间的关系?引出子集、真子集、相等等概念。
●明确目标:告知学生本节课将要学习集合间的基本关系,并简要介绍学习目标。
2. 概念讲解(10分钟)●子集定义:详细讲解子集的定义,强调“所有元素都属于另一个集合”的含义,并通过实例说明。
●真子集与相等:在子集的基础上,进一步讲解真子集的概念(即子集且不等于原集合),以及两个集合相等的条件(即互相为子集)。
●比较区分:通过图表或对比表格的形式,帮助学生直观区分子集、真子集和相等三种关系。
3. 例题解析(15分钟)●典型例题:选取几个具有代表性的例题,分别涉及子集、真子集和相等的判断。
教师边讲边练,逐步展示解题过程。
●思路引导:在解题过程中,注重引导学生分析题目中的关键信息,明确判断集合间关系的依据。
●学生尝试:让学生尝试解答几个类似的题目,教师巡回指导,及时纠正学生的错误思路。
4. 小组讨论与合作探究(15分钟)●分组任务:将学生分成若干小组,每组分配一个实际问题或情境,要求将其转化为集合间关系的判断问题。
高中数学试讲集合关系教案
教学目标:
1. 了解集合的基本概念及表示方法
2. 掌握集合之间的关系,包括并集、交集、补集等
3. 能够运用集合关系解决实际问题
教学重点:
1. 理解集合的基本概念
2. 掌握集合关系的运算方法
教学难点:
1. 理解和运用交集、并集、补集等概念
2. 能够应用集合关系解决实际问题
教学准备:教材、黑板、彩色粉笔、教学PPT
教学过程:
一、导入(5分钟)
老师通过简单的例子引入集合的概念,让学生了解集合的基本定义和表示方法。
二、讲解与练习(15分钟)
1. 讲解集合的表示方法及基本概念:集合的定义、元素、空集、全集等。
2. 讲解集合的关系:交集、并集、子集、补集等。
3. 给出若干练习题,让学生练习集合的运算方法。
三、实例分析(15分钟)
通过实际问题,引导学生运用集合关系解决实际问题,如:有一个装有黑白两种球的箱子,求抽到黑色球的概率。
四、练习与巩固(10分钟)
布置练习题,让学生巩固集合关系的概念和运算方法。
五、总结与反思(5分钟)
对本节课的内容进行总结,并让学生反思学习中遇到的问题及解决方法。
六、作业布置(5分钟)
布置下节课的预习作业,让学生对集合关系的概念进行复习和巩固。
教学反馈:检查学生的作业情况,对学生在学习中的问题进行及时指导和纠正。
教学延伸:引导学生运用集合关系解决更加复杂的问题,培养学生的逻辑思维能力和解决问题的能力。
集合间的基本关系【教材分析】集合是数学的基本和重要语言之一,在数学以及其他的领域都有着广泛的应用,用集合及对应的语言来描述函数,是高中阶段的一个难点也是重点,因此集合语言作为一种研究工具,它的学习非常重要。
本节内容主要是集合间基本关系的学习,重在让学生类比实数间的关系,来进行探究,同时培养学生用数学符号语言,图形语言进行交流的能力,让学生在直观的基础上,理解抽象的概念,同时它也是后续学习集合运算的知识储备,因此有着至关重要的作用。
【教学目标与核心素养】【教学重难点】重点:集合间基本关系。
难点:类比实数间的关系研究集合间的关系。
【教学过程】一、子集1.情境与问题:如果一个班级中,所有同学组成的集合记为S,而所有女同学组成的集合记为F。
你觉得集合S和F之间有怎样的关系?你能从集合元素的角度分析它们的关系吗?【设计意图】通过生活中的大家熟悉的情境中提取数学概念,使其更通俗易懂。
【师生活动】老师组织学生分组讨论,派代表表述本组结论。
2.探究新知问题:大家来仔细观察下面的例子,你能发现集合间的关系吗? (1)A={1,3},B={1,3,5,6};【设计意图】培养学生观察,分析,归纳的能力【师生活动】学生观察例子后,得出结论⊆F S ,在集合A 中的任何一个元素都是集合B 中的元素,教师总结,这时我们说集合A 与集合B 有包含关系。
3.深化认知一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两集合有包含关系,称集合A 为集合B 的子集,记作:A ⊆B (或B ⊇A ),读作“A 包含于B ”或者“B 包含A ”。
4.请同学们想一想∈与⊆表达的含义相同吗?请举例说明【师生活动】学生以(1)为例{1,3}⊆A ,3∈A ,说明前者是集合之间的关系,后者是元素与集合间的关系。
教师进行点评和补充。
【设计意图】通过让学生举例,清楚集合与集合之间与元素与集合间关系的区别。
锻炼学生思维辩证能力5.尝试与发现(1)根据子集的定义判断,如果A={1,2,3},那么⊆A A 吗? (2)你认为可以规定空集必是任意一个集合的子集吗?为什么? 【师生活动】学生回答,教师点评不难看出,依据子集的定义,任意集合A 都是它自身的子集,即⊆A A因为空集不包含任何元素,所以我们规定:空集是任意一个集合A 的子集,即∅⊆A 二、真子集1.情境与问题:前面的情境与问题中的两个集合满足F S ,但是,只要班级中有男同学,那么S 中就有元素不属于F 。
高中数学集合间关系教案
教学目标:
1. 理解集合的概念和基本性质
2. 掌握集合之间的运算及关系
3. 能够解决实际问题中的集合间关系问题
教学重点:
1. 集合的概念和基本性质
2. 集合的运算及关系
3. 实际问题中的集合间关系问题
教学难点:
1. 如何利用集合的运算及关系解决实际问题
2. 对集合含义和性质的理解
教学步骤:
一、导入(5分钟)
教师引导学生回顾集合的基本概念和性质,激发学生对集合间关系的兴趣。
二、讲授(20分钟)
1. 集合的概念和基本性质
2. 集合的运算(并集、交集、差集)及关系(子集、相等)
3. 解决实际问题中的集合间关系问题
三、练习(15分钟)
教师出示一些实际问题,鼓励学生利用集合的运算及关系解决问题。
四、拓展(10分钟)
教师指导学生拓展思维,探讨集合间更复杂的关系和应用。
五、作业布置(5分钟)
布置相关练习作业,巩固学生对集合间关系的理解。
教学反思:
本节课主要讲解了高中数学中集合间的关系,包括集合的概念、运算和关系,通过实际问题的训练,提高学生解决问题的能力。
在后续教学中,需要继续强化学生对集合的理解,提高其运用集合的能力。
集合间的基本关系一、学习目标展示1.知识目标: (1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
(3)能使用venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用.2.过程目标:(1)让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义(2)树立数形结合的思想 .体会类比对发现新结论的作用.3.情感目标:(1)培养学生学习数学的兴趣,激励学生创新 (2)学会沟通,鼓励学生讨论,培养团结协作精神.二、自主探究导航(一)复习回顾1.集合的分类(集合中元素个数的多少)及集合的表示方法2.元素与集合之间的关系是什么?集合中元素的性质有哪些?3. 用列举法和描述法分别表示:“与2相差3的所有整数所组成的集合”(二)自学探究1.自主整理① 阅读教材第6页---第7页中间(集合D 的元素与集合C 的元素是一样的)思考回答下例问题:⑴ 观察第6页中的前两个例子集合A 与集合B 具有什么关系?(从集合中的元素入手)⑵ 观察第7页中的第三个例子集合A 与集合B 具有什么关系?子集定义:集合相等:⑶ 对于集合A ,B ,C ,,如果A ⊆B ,B ⊆C ,那么集合A 与C 有什么关系?(4) 包含关系{}a A ⊆与属于关系a A ∈正义有什么区别?试结合实例作出解释.(5) 能否说任何一人集合是它本身的子集,即A A ⊆?(6) 用图示法表示 (1)A ⊆B (2)A ⊈B② 阅读教材第7页中的相关内容,并思考回答下例问题:(1)集合A 是集合B 的真子集的含义记作 若B A ⊆,且存在元素B x ∈,但A x ∉,则称A 为B 的真子集。
集合A 是集合B 的真子集与集合A 是集合B 的子集之间有什么区别? (2) 叫空集.空集是任何集合的子集吗?空集是任何集合的真子集吗?(3)0,{0}与∅三者之间有什么关系?③ 阅读教材例2思考回答下例问题:(1) 写一个集合的子集时,怎样做到不发生重复和遗漏现象?(2) 分别写出下列各集合的子集及其个数:∅,{}a ,{},a b ,{},,a b c .集合M 中含有n 个元素,总结当0n =,1n =,2n =,3n =时子集的个数规律,归纳猜想出集合M 有多少个子集?多少个真子集2.上手练习3.疑点汇总:①②(三)精讲示范Ⅰ 知识归纳(1)子集:B A B x A x ⊆∈⇒∈,则若任意注1.B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合2.任何一个集合是它本身的子集A A ⊆3.当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/A(2)集合相等:A B B A ⊆⊆且(B A =中的元素是一样),因此B A =(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集,记作:A B 或B A,(4)子集与真子集符号的方向(类似于不等号)≤及≥)不同与同义;与如B A B A A B B A ⊇⊆⊇⊆(5) 空集是任何集合的子集 Φ⊆A 空集是任何非空集合的真子集 若A ≠Φ,则Φ A(6)易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合如 Φ⊆{0}不能写成Φ={0},Φ∈{0}(7)含n 个元素的集合{}n a a a ,,21 的所有子集的个数是n2,所有真子集的个数 是n 2-1,非空真子集数为22-nⅡ例题讲解 例1.已知集合A ={-1,3,2m -1},集合B ={3,2m }.若B ⊆A ,则实数m = .跟踪练习11.已知A ={x |x <-2或x >3},B ={x |4x +m <0},当A ⊇B 时,求实数m 的取值范围.2.已知集合A ={x ∈R |x 2-3x +4=0},B ={x ∈R |(x +1)(x 2+3x -4=0},要使 AP ⊆ B ,求满足条件的集合P .例2.若{}{}A B m x m x B x x A ⊆+≤≤-=≤≤-=,112|,43|,求是实数m 的取值范围.分析:由{}{}A B m x m x B x x A ⊆+≤≤-=≤≤-=,112|,43|,将此条件图像化,作图如下:根据图形,有21314m m -≥-⎧⎨+≤⎩, 解得 13m -≤≤.∴ 满足题设条件的实数m 的取值范围为13m -≤≤.想一想:上面的分析完整吗?{}|211B x m x m =-≤≤+中的属性211m x m -≤≤+,可否出现211m m ->+的情况?评析:在具体问题中,特别是含有字母的问题中一定要注意空集∅的存在与否,以及元素互异性的讨论.要注意分类讨论、数形结合等数学思想方法的应用.正解:跟踪练习21.已知{}{}A C B C A B A 求,8,4,2,0,5,3,2,1,,==⊆⊆.2.已知集合}5|{<<=x a x A ,x x B |{=≥}2,且满足B A ⊆,求实数a 的取值范围。
1.1.2 集合间的基本关系教学目标分析:知识目标:1、理解集合之间包含与相等的含义,能识别给定集合的子集。
2、在具体情景中,了解空集的含义。
过程与方法:从类比两个实数之间的关系入手,联想两个集合之间的关系,从中学会观察、类比、概括和思维方法。
情感目标:通过直观感知、类比联想和抽象概括,让学生体会数学上的规定要讲逻辑顺序,培养学生有条理地思考的习惯和积极探索创新的意识。
重难点分析:重点:理解子集、真子集、集合相等等。
难点:子集、空集、集合间的关系及应用。
互动探究:一、课堂探究:1、情境引入——类比引入思考:实数有相等关系、大小关系,如55,57,53=<>,等等,类比实数之间的关系,可否拓展到集合之间的关系?任给两个集合,你能否发现每组的前后两个集合的相同元素或不同元素吗?这两个集合有什么关系?注意:这里可关系两个数学思想,分别是特殊到一般的思想,类比思想探究一、观察下面几个例子,你能发现两个集合之间的关系吗?(1){1,2,3},{1,2,3,4,5}A B ==;(2)设A 为新华中学高一(2)班全体女生组成的集合,B 为这个班全体学生组成的集合;(3)设{|}={|}C x x D x x =是两条边相等的三角形,是等腰三角形。
可以发现,在(1)中,集合A 中的任何一个元素都是集合B 的元素。
这时,我们就说集合A 与集合B 有包含关系。
(2)中集合A ,B 也有类似关系。
2、子集的概念:集合A 中任意一个元素都是集合B 的元素,记作B A ⊆或A B ⊇。
图示如下符号语言:任意x A ∈,都有x B ∈。
读作:A 包含于B ,或B 包含A.当集合A 不包含于集合B 时,记作:A B ⊄注意:强调子集的记法和读法;3、关于Venn 图:在数学中,我们经常用平面上封闭的曲线的内部代表集合,这种图称为Venn 图.这样,上述集合A 与B 的包含关系可以用右图表示自然语言:集合A 是集合B 的子集集合语言(符号语言):A B ⊆图像语言:上图所示Venn 图注意:强调自然语言、符号语言、图形语言三者之间的转化;探究二、对于第(3)个例子,我们已经知道集合C 是集合D 的子集,那么集合D 是集合C 的子集吗?思考:与实数中的结论“,,a b b a a b ≥≥=且则”相类比,你有什么体会?类比:实数:b a ≥且b a b a =⇒≤集合:B A ⊆且B A A B =⇒⊇4、集合相等:如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊆),此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作:A B =。
集合的基本运算教案篇一:2022新高一数学(人教版)集合的基本运算.doc高一数学——集合第三讲集合的基本运算【教学目标】:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
【重点难点】:1.重点:集合的交集与并集、补集的概念2.难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”【教学过程】:用具:一、复习1、集合间的基本关系:子集、真子集、相等、空集2、作业讲评二、新授(1)知识导向或者情景引入我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?(2)并集1、观察下面两个图的阴影部分,它们同集合A、集合B有什么关系?2、考察集合A={1,2,3},B={2,3,4}与集合C={1,2,3,4}之间的关系在上述两个例子中,集合A,B与集合C之间都具有这样的一种关系:集合C是由所有属于集合A或属于集合B的元素组成的。
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union),记作:A∪B,读作:“A并B”,即:A∪B={某|某∈A,或某∈B}Venn图表示如上图。
说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
例题1:{1,2,3,6}∪{1,2,5,10}={1,2,3,5,6,10}.例题2:A={a,b,c,d,e},B={c,d,e,f}.则A∪B={a,b,c,d,e,f}例题3:教材例5(3)交集问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(Venn图中两个集合相交的部分)还应是我们所关心的,问题1、观察下面两个图的阴影部分,它们同集合A、集合B有什么关系?AB问题2、考察集合A={1,2,3},B={2,3,4}与集合C={2,3}之间的关系.上面两个问题中,集合C是由那些既属于集合A且又属于集合B的所有元素组成的。
§1.1.2集合间的基本关系一. 教学目标:1.知识与技能(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
(3)能使用venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用.2. 过程与方法让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.3.情感.态度与价值观(1)树立数形结合的思想 .(2)体会类比对发现新结论的作用.二.教学重点.难点重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.三.学法与教学用具1.学法:让学生通过观察.类比.思考.交流.讨论,发现集合间的基本关系.2.学用具:投影仪.四.教学思路(—)创设情景,揭示课题问题l :实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?让学生自由发言,教师不要急于做出判断。
而是继续引导学生;欲知谁正确,让我们一起来观察.研探.(二)研探新知投影问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1){1,2,3},{1,2,3,4,5}A B ==;(2)设A 为新华中学高一(2)班女生的全体组成的集合,B 为这个班学生的全体组成的集合;(3)设{|},{|};C x x D x x ==是两条边相等的三角形是等腰三角形组织学生充分讨论.交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系:①一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 含于B(或B 包含A).②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解。
高中数学-集合间的基本关系教案
一. 教学目标:
1.知识与技能
(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
(3)能使用venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用.
二.教学重点.难点 重点:集合间的包含与相等关系,子集与其子集的概念.
难点:难点是属于关系与包含关系的区别.
三.教学思路
(—)创设情景,揭示课题
问题l :实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?
(二)研探新知
投影问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗?
(1){1,2,3},{1,2,3,4,5}A B ==;
(2)设A 为国兴中学高一(3)班男生的全体组成的集合,B 为这个班学生的全体组成的集合;
(3)设{|},{|};C x x D x x ==是两条边相等的三角形是等腰三角形
(4){2,4,6},{6,4,2}E F ==.
组织学生充分讨论.交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系: ①一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.
记作:()A B B A ⊆⊇或
读作:A 含于B(或B 包含A).
②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.
教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号
之间有什么类似之处,强化学生对符号所表示意义的理解。
并指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn 图。
如图l 和图2分别是表示问题2中实例1和实例3的Venn 图.
图1 图2
投影问题3:与实数中的结论“若,,a b b a a b ≥≥=且则”相类比,在集合中,你能得出什么结论?
教师引导学生通过类比,思考得出结论: 若,,A B B A A B ⊆⊆=且则.
问题4:请同学们举出几个具有包含关系.相等关系的集合实例,并用Ve nn 图表示.
学生主动发言,教师给予评价. (三)学生自主学习,阅读理解
然后教师引导学生阅读教材第7页中的相关内容,并思考回答下例问题:
(1)集合A 是集合B 的真子集的含义是什么?什么叫空集?
(2)集合A 是集合B 的真子集与集合A 是集合B 的子集之间有什么区别?
(3)0,{0}与∅三者之间有什么关系?
(4)包含关系{}a A ⊆与属于关系a A ∈正义有什么区别?试结合实例作出解释.
(5)空集是任何集合的子集吗?空集是任何集合的真子集吗?
(6)能否说任何一人集合是它本身的子集,即A A ⊆?
(7)对于集合A ,B ,C ,D ,如果A ⊆B ,B ⊆C ,那么集合A 与C 有什么关系?
(四)巩固深化,发展思维
1. 学生在教师的引导启发下完成下列两道例题:
例1.某工厂生产的产品在质量和长度上都合格时,该产品才合格。
若用A 表示合格产品,B 表示质量合格的产品的集合,C 表示长度合格的产品的集合.则B A (B )
下列包含关系哪些成立?
A B B A A C C A
⊆⊆⊆⊆
,,,
试用Venn图表示这三个集合的关系。
例2 写出集合{0,1,2)的所有子集,并指出哪些是它的真子集.
(五)布置作业。