中职数学基础模块上册《集合之间的关系》word教案
- 格式:doc
- 大小:52.50 KB
- 文档页数:2
【课题】1.2 集合之间的关系【教学目标】知识目标:掌握集合之间的关系(子集、真子集、相等)的概念,会判断集合之间的关系.能力目标:(1)通过集合语言的学习与运用,培养学生的数学思维能力;(2)通过集合的关系的图形分析,培养学生的观察能力.情感目标:(1)经历利用集合语言描述集合与集合间的关系的过程,养成规范意识,发展严谨的作风;(2)经历利用图形研究集合间关系的过程,体验“数形结合”的探究方法.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】*巩固知识典型例题例4 用适当的符号填空:⑴{1,3,5} {1,2,3,4,5,6};⑵2{|9}x x={3,-3};⑶{2} { x| |x|=2 };⑷2 N;⑸a{ a };⑹{0} ;⑺{1,1}-2x x+=.{|10}Ü;解⑴{1,3,5}{1,2,3,4,5,6}⑵{x|x2=9}={3,-3};⑶ 因为{|2}{2,2}x x ==-,所以{2}{2}x x =Ü; ⑷ 2∈N ; ⑸ a ∈{a }; ⑹ {0}Ý;⑺ 因为2{|10}x x +==,所以{1,1}-Ý2{|10}x x +=.。
【课题】1.3集合之间的关系【教学目标】1、掌握子集、真子集的概念;2、掌握集合之间的包含关系,会正确书写相关符号;3、能正确判断各集合之间的包含关系,并正确利用符号进行连接。
【教学重点】集合与集合间的关系及其相关符号表示。
【教学难点】真子集的概念【教学设计】1、从复习上节课的学习内容入手,通过实际问题导入知识;2、通过实际问题引导学生认识真子集,突破难点;3、通过简单的实例,认识集合的相等关系;4、为学生们提供观察和操作的机会,加深对知识的理解与掌握.【课时安排】2课时(90分钟)【教学过程】✧复习知识揭示课题上节课我们已经学了集合的相关知识,我们一起来回忆一下:1、集合的表示法(1)列举法:在花括号内,一一列举集合的元素;(2)描述法:{代表元素|元素所具有的特征性质}。
2、元素与集合之间有属于或不属于的关系。
完成下面的问题:用适当的符号“∈”或“∉”填空:;(4) 0.5 ∉Z;(1) 0_∉_∅;(2) 0 ∈N;(3)(5) 1 ∈{1,2,3};(6) 2 ∉x|x<1};(7)2 ∉{x|x=2k+1, k∈Z}课时一:子集✧创设情景兴趣导入问题:1、假设用集合B表示我班全体学生的集合,用集合A表示我班女生的集合,那么,集合A 与集合B 之间存在什么关系呢?解决:显然集合A 中的元素(我班的女生)肯定是集合B 的元素(我班的学生)归纳:当集合A 的元素肯定是集合B 的元素时称集合B 包含集合A .两个集合之间的这种关系叫做包含关系。
✧ 动脑思考 探索新知我们常用封闭曲线的内部表示集合。
这种表示集合的图形叫做维恩图。
概念:一般地,对于两个集合A 和B ,如果集合A 的任意一个元素都是集合B 的元素,那么集合A 叫做集合B 的子集,记做A B ⊇或B A ⊆,读作“A 包含于B ”或“B 包含A ”。
由子集的定义可知,任何一个集合 都是它自身的子集,即A A ⊆。
对于空集,空集是任何集合的子集,即A ∅⊆。
中职数学基础模块上册(人教版)教案:集合之间的关系(二)
1.1.3 集合之间的关系(二)
【教学目标】
1. 理解两个集合相等概念.能判断两集合间的包含、相等关系.
2. 理解掌握元素与集合、集合与集合之间关系的区别.
3. 学习类比方法,渗透分类思想,提高学生思维能力,增强学生创新意识.
【教学重点】
1. 理解集合间的包含、真包含、相等关系及传递关系.
2. 元素与集合、集合与集合之间关系的区别.
【教学难点】
弄清元素与集合、集合与集合之间关系的区别.
【教学方法】
本节课采用讲练结合、问题解决式教学方法,并运用现代化教学手段进行教学.使学生初步经历使用最基本的集合语言表示有关数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力.精心设计问题情境,引起学生强烈的求知欲望,通过启发,使学生的思考、发现、归纳等一系列的探究思维活动始终处于自主的状态中.
【教学过程】。
职高数学集合之间的关系教案教案标题:职高数学集合之间的关系教案一、教学目标:1. 理解数学集合的基本概念和符号表示法;2. 掌握集合之间的关系及其运算;3. 能够应用集合的相关知识解决实际问题。
二、教学重点:1. 集合与元素的概念;2. 集合之间的关系;3. 集合的运算。
三、教学难点:1. 真子集和全集的概念;2. 并集和交集运算的应用;3. 集合关系的解题方法。
四、教学准备:1. 教师:教学课件、教学实例、教学素材;2. 学生:纸笔、计算器。
五、教学过程:Step 1:导入与激发兴趣(5分钟)通过提出一个实际问题引发学生对集合的思考,例如:在一个职高班级中,汉语课和数学课的学生分别是哪些人?让学生尝试列举可能的解答。
Step 2:引入基本概念(10分钟)1. 讲解集合和元素的概念,并分别用集合的文字描述和符号表示方法进行演示和解释;2. 介绍集合的表示方法:列举法和描述法;3. 引导学生根据实际情境,构建并描述几个集合。
Step 3:集合关系的讲解与例题演示(15分钟)1. 介绍集合之间的基本关系:相等、包含、相交、互斥等,给出相应的示例;2. 讲解集合关系的判断方法和符号表示;3. 根据学生的理解情况,解答提出的问题,帮助学生掌握关系的解题方法。
Step 4:集合的运算(20分钟)1. 讲解集合的并集和交集运算的概念和符号表示方法;2. 引导学生通过示例理解并集和交集的含义,并进行相应运算;3. 设计一些实际问题,让学生运用集合的运算解决问题。
Step 5:归纳总结与拓展(10分钟)1. 与学生一起总结集合的基本概念、符号表示和集合关系;2. 提示学生拓展思考集合的其他运算或关系,并进行讨论。
六、课堂作业:1. 完成课堂练习;2. 设计一个与日常生活相关的问题,并用集合的概念和运算解决。
七、教学反思:教案中的教学步骤和方法根据职高学生的特点进行设计,注重理论与实践的结合,旨在培养学生的数学思维和解决问题的能力。
集合之间的关系教案
教学目标:
1.理解集合之间关系的概念,掌握集合之间关系的判断方法。
2.通过实例分析,培养学生的分析能力和判断能力。
3.培养学生的思维能力和团队合作精神。
教学内容:
1.集合的概念及表示方法。
2.集合之间的关系:子集、真子集、相等。
3.如何判断两个集合之间的关系。
教学重点与难点:
重点:掌握集合之间关系的判断方法。
难点:理解子集、真子集、相等的概念及判断方法。
教学方法:
1.通过实例引入集合的概念,让学生了解集合的表示方法。
2.通过实例分析,让学生理解子集、真子集、相等的概念。
3.通过练习题和讲解,让学生掌握集合之间关系的判断方法。
教学过程:
1.导入新课:通过实例引入集合的概念和表示方法。
2.新课学习:讲解集合之间关系的概念及判断方法。
3.巩固练习:通过练习题和讲解,让学生掌握集合之间关系的判断方法。
4.归纳小结:回顾本节课所学内容,总结集合之间关系的判断方法。
评价与反馈:
1.通过练习题和讲解,让学生掌握集合之间关系的判断方法。
2.通过小组讨论和总结,让学生了解自己在哪些方面还需要加强。
3.教师根据学生的表现给出反馈和建议,鼓励学生继续努力。
中职数学基础模块上册(人教版)教案:集合之间的关系(一)1.1.3 集合之间的关系(一)【教学目标】1. 理解子集、真子集概念;掌握子集、真子集的符号及表示方法;会用它们表示集合间的关系.2. 了解空集的意义;会求已知集合的子集、真子集并会用符号及Venn图表示.3. 培养学生使用符号的能力;建立数形结合的数学思想;培养学生用集合的观点分析问题、解决问题的能力.【教学重点】子集、真子集的概念.【教学难点】集合间包含关系的正确表示.【教学方法】本节课采用讲练结合、问题解决式教学方法,并运用现代化教学手段辅助教学.设计典型题目,并提出问题,层层引导学生探究知识,让学生在完成题目的同时,思维得以深化;切实体现以人为本的思想,充分发挥学生的主观能动性,培养其探索精神和运用数学知识的意识.【教学过程】课新课做集合B的子集.记作 A ⊆B或B ⊇A;读作“A包含于B”,或“B包含A”.2. 真子集定义.如果集合A是集合B的子集,并且集合B中至少有一个元素不属于A,那么集合A是集合B的真子集.记作 A ⊂≠B(或B ⊃≠A);读作“A真包含于B”,或“B真包含A”.3. Venn图表示.集合B同它的真子集A之间的关系,可用Venn图表示如下.4. 空集定义.不含任何元素的集合叫空集.记作∅.如,{x| x2<0};{x | x+1=x+2},这两个集合都为空集.5.性质.(1) A ⊆A任何一个集合是它本身的子集.(2) ∅⊆A空集是任何集合的子集.(3) 对于集合A,B,C,如果集的定义.请学生举满足“A ⊆B”的实例.在理解了“子集”定义的基础上,引导学生根据元素与集合的关系,试叙述“真子集”的定义.老师总结,得出真子集的定义.介绍用Venn图表示集合及集合间关系的方法.请学生画图表示:A ⊂≠B.请学生举空集的例子.师:能否把子集说成是由原来集合中的部分元素组成的集合?生:分组讨论,派代表发表各组看法.解疑:不能.因为集合的子集也包括它本身,而这个子集是由它的全体元素组成的.空集是任一个集合的子集,而这个集合中并不含有B中的的形成作好铺垫.遵循从特殊到一般的认知规律,归纳出定义.集合间包含关系的正确理解与表示是难点,通过让学生举例可以突破这一难点,增进学生对定义的理解.渗透数形结合的数学思想,提高学生的数学能力.通过置疑、解疑的过程,使学生深刻理解子集的概念.通过分组讨论,关注学生的自主体验,分解了难点.AB。
集合间的基本关系
教材分析:类比实数的大小关系引入集合的包含与相等关系
了解空集的含义
课 型:新授课
教学目的:(1)了解集合之间的包含、相等关系的含义;
(2)理解子集、真子集的概念;
(3)能利用V enn 图表达集合间的关系;
(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;
教学过程:
一、引入课题
1、复习元素与集合的关系——属于与不属于的关系,填以下空白:
(1)0 N ;(2
;(3)-1.5 R
2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)
二、新课教学
(一) 集合与集合之间的“包含”关系;
A={1,2,3},B={1,2,3,4}
集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;
如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或
读作:A 包含于(is contained in )B ,或B 包含(contains )A
当集合A 不包含于集合B 时,记作A B
用Venn
)(A B B A ⊇⊆或
(二)
A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =
即 ⎩⎨⎧⊆⊆⇔=A
B B A B A 练习
结论:
任何一个集合是它本身的子集
(三) 真子集的概念
若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper
⊆
subset )。
记作:A B (或B A )
读作:A 真包含于B (或B 真包含A )
举例(由学生举例,共同辨析)
(四) 空集的概念
(实例引入空集概念)
不含有任何元素的集合称为空集(empty set ),记作:∅
规定:
空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:
○1A A ⊆ ○
2B A ⊆,且C B ⊆,则C A ⊆ (六) 例题
(1)写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化简集合A={x|x-3>2},B={x|x ≥5},并表示A 、B 的关系;
(七) 课堂练习
(八) 归纳小结,强化思想
两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;。