八年级数学课件分式的的基本性质(3)-通分
- 格式:ppt
- 大小:984.00 KB
- 文档页数:16
15.1.2 分式的基本性质(3)----通分教学设计教学目标1.进一步理解分式的基本性质.2.学习掌握分式的约分和通分.3.通过学习分式的基本性质,约分、通分法则,渗透类比的思想方法.教学重点掌握通分的法则教学难点运用分式的基本性质,将分式进行变形教学过程设计一、复习回顾二、复习引入1.分数的通分计算解:(1)(2)变形的依据是分式的基本性质,重点是求出分母的最小公倍数。
分数的通分:根据分数的基本性质,把几个异分母的分数分别化成与原来的分数相等的同分母的分数。
师生活动:教师指出(1)是约分,依据是分式的基本性质,那么(2)是什么变形呢?从而引入新课。
2.分数通分的知识梳理根据分数的基本性质,把几个异分母的分数分别化成与原来的分数相等的同分母的分数,叫分数的通分.1.通分的依据是:分数的基本性质2.通分的基本方法是:先找出分数的分子、分母的最小公倍数,再通分.3.通分的目的:化为同分母分数设计意图:从学生熟悉的分数通分入手,回顾分数的计算及知识梳理,自然衔接新课。
三、类比归纳,讲授新课观察课前的填空题:教师指出是各分母的最简公分母;并得到分式通分的概念:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同2 2 2分母的分式,叫做分式的通分。
我们把各分母的所有因式的最高次幂的积,叫做最简公分母.探究:如何确定最简公分吗1.定系数:各分母系数的最小公倍数2.定字母:各分母中含有的所有字母3.定指数:各字母最高次幂设计意图:通过分数概念的类比,学生能轻松得出分式的概念,并进行类比记忆。
通过事例探究如何确定最简公分母。
例4.解:最简公分母是2a2b2c.师生活动:教师给出例题的示范,并指出由分母的变化决定分子的变化。
跟踪训练1通分:最简公分母是解:最简公分母是(x+5)(x-5).教师总结:分母是多项式时,先因式分解,再将每一个因式看成一个整体,最后确定最简公分母.跟踪训练2通分:解:最简公分母是(a+b)(a-b).跟踪训练3跟踪训练4找出各组分式的最简公分母师生活动:请学生到白板上板演,教师巡视并答疑解惑。