当前位置:文档之家› 期权价格的性质金融衍生品定价理论讲义

期权价格的性质金融衍生品定价理论讲义

期权价格的性质金融衍生品定价理论讲义
期权价格的性质金融衍生品定价理论讲义

第三章 期权价格的性质

在第一章里,我们定性地讨论了期权价格的性质。我们不但描述了影响期权价格的各种因素,而且讨论了在各种情况下期权的支付。在这一节里,我们将应用无套利原理严格证明欧式期权价格的一些重要的性质。需要强调的是,我们并不对标的资产的未来价格的分布作任何假设。在上一章中,我们利用标的资产和债券合成构造远期合约和期货合约,投资银行可以利用这种方法来为远期合约和期货合约做市及对冲风险。同样地,在本章中,我们利用合成构造期权的方法来为期权做市及对冲风险。我们仅仅研究以同一种资产为标的物的看涨和看跌期权价格之间最基本的关系。本章主要内容:美、欧式期权价格的上下界;美式期权的提前执行;红利对期权价格的影响;看涨和看跌期权价格之间的平价关系。

我们不妨假设标的物为某种股票,其在时间t 的价格为S t ,期权的执行价格为K ,到期日为一期,即,T =1,无风险利率为f r (或者r ),按离散或者连续方式计算复利。我们以t t t t P p C c ,,,分别表示欧式看涨、美式看涨、欧式看跌、美式看跌期权在时间t 的价格。

1.期权价格的上、下界

由第一章内容,期权价格受标的股票的价格、执行价格、标的股票的价格的方差、到期日、无风险利率和到期日之前标的资产的预期红利六种因素的影响。

1.1 上界

美式或者欧式看涨期权的持有者拥有以一定价格购买一份股票的权利,所以在任何情形下,期权的价值不会超过标的股票的价格

t t S c ≤ t t S C ≤ 否则,买入股票,卖空看涨期权就能获得套利机会。

例子:标的股票价格为30元,执行价格为25元的看涨期权,其价格不超过30元(不管是美式还是欧式)。如果价格为40元,如何构造套利机会?

看涨期权的价格永远不会超过标的股票的价格。即使执行价格为零,期权永远不到

期,期权的价格也至多为S T 。甚至在这种极端情形下,期权的价格也可能比标的股票的价格低,因为股票有选举权,而期权没有。

美式或者欧式看跌期权的持有者拥有以执行K 价格卖一份股票的权利,所以在任

何情形下,期权的价值不会超过K

K p t ≤ K P t ≤ 对欧式看跌期权而言,我们知道它在到期日的价格不会超过K ,所以

r

K

p t +≤

1 否则,卖出期权,投资在无风险利率,获得套利

例子:r =5%,t S =30元, K =25元,1

25?-≤r t e p

1.2 以不支付红利股票为标的物的欧式期权价格的下界

我们在这里仅仅关注标的股票的价格和执行价格的影响,所以,我们可以把看涨期权在时间t 的价格写成,c S K t t (,)。下面,我们讨论第一条性质。

性质1:c S K S K r f 00010(,)max (),≥-+????

?

? (1)

当期权被执行的概率严格位于0和1之间时,即,在到期日,股票价格S T 大于执行价格K 的概率严格位于0和1之间,上述不等式严格成立。

证明:我们证明严格不等式。考虑如下的策略:卖空一份标的股票,买一份欧式看涨

期权,再以无风险利率r f 借出K r f 1+。该策略的初始成本为c S K S K r f 0001(,))-++,到

期日的支付为:

S K S K S K T T T --+=-+>??

?

0 当

S K

S K

T T ≥< 时。

因为策略的期末支付是非负的,且严格为正的概率大于0,所以,由无套利原理,初始成本也应该严格大于零。即有,

c S K S K r f 0001(,)()-++>0。 这个不等式等价于

c S K S K r f

0001(,)()>-+。

(2)

最后,因为期权的持有者只有买标的物的权利而没有必须买的义务,所以期权的价格是非负的。又因为假设期权被执行的概率严格位于0和1之间,所以期权的价格严格大于零,即,c S K 000(,)>。这个式子与(2)式结合起来,得到我们需要的结果。 #

注:(1)在性质1中,我们是针对时间0的价格讨论的,该性质对到期日以前的任何时间均成立,只需把(1)式中角标由0换成t ,并对执行价格的折现作相应的修改。

(2)通过类似的方法,我们可以得到以不支付红利股票为标的物的欧式看跌期权价格的下界为

max ,K r S f 100+-??????

??。

(3) 这个性质的直观意义在于,如果在期末必须以价格K 买一份股票,这种义务的现值为S K r f 01-+。当股票价格S T 小于执行价格K 的概率严格位于0和1之间时,不买股

票的权利的价值严格大于零。因此,欧式看涨期权的的价格严格大于S K r f 01-+。另一方

面,由于期权被执行的概率是严格正的,所以,c S K 000(,)>。

例子:欧式看涨期权

假设标的股票的价格为55元,执行价格为50元,期权三个月到期,三个月的简单利率为8.9%,在这3个月内,股票不支付红利,求欧式看涨期权价格的下界,如果期权的价格为4元,如何构造套利机会。

例子:欧式看跌期权

3个月到期的欧式看跌期权,执行价格为50元,股票价格为45元,三个月的简单利率为8.9%,在这3个月内,股票不支付红利,求欧式看跌期权价格的下界,如果期权的价格为3元,如何构造套利机会。

性质2:欧式看涨期权的价格是其执行价格的凸函数,即,

ααc S K c S K c S K t t t t t t (,)()(,~

)(,)+-≥1 (3) 这里,K K K =+-αα()~

1,α∈(,)01。当S K K T ∈(,~

]的概率严格正时,上式中的严格不等式成立。

证明:考虑如下的策略:买入α份以K 为执行价格的欧式看涨期权,买入1-α份以~

K 为执行价格的欧式看涨期权,卖空一份以K 为执行价格的欧式看涨期权。这个策略在

t t ()<1时的成本为ααc S K c S K c S K t t t t t t (,)()(,~)(,)+--1。不失一般性,假设~

K K >。这个策略在到期日的支付为: 0 如果S K T ≤,

α()S K T ->0

如果K S K T <≤, ()(~

)10-->αK S T

如果K S K T <≤~

0 如果S K T >~

在任何情况下,支付均为非负的。因此,由无套利原理有:

ααc S K c S K c S K t t t t t t (,)()(,~

)(,)+--≥10

这即为(3)式。当S K K T ∈(,~

]的概率严格正时,(3)式中的严格不等式成立。 #

注:我们可以证明欧式看涨期权的价格是其执行价格的减函数,从而,欧式看涨期权的价格是其执行价格的单调递减的凸函数。

例子:

在实际中,投资者投资的期权不但可以以单个证券为标的物,也可以以上市证券形成的证券组合为标的物。另外,投资者还可投资在期权形成的证券组合上。下面,我们比较两种投资方式所需要的成本。

性质3:假设有n 种证券,以这n 种证券为标的物构成n 种欧式期权,它们具有相同的执行价格K 。以这n 种证券的凸组合为标的物,以K 为执行价格的期权的价格比前面的n 种欧式期权以同样的权形成的证券组合的价格低,即,

c S K c S K t t j t t

j

j n

**(,)

(,)≤

=∑α

1

这里,

α

j

j n

=∑=1

1,αj ≥0,

S S t j t

j

j n

*

=∑α

1

,而c S K t t **(,)是以n 种证券的凸组合为标的物,

以K 为执行价格的期权的价格。

证明:以n 种证券的凸组合为标的物,以K 为执行价格的期权的终端支付为:

max ,αj T j

j n S K =∑

-?????

?

??10。

因为[]max ,z 0是z 的凸函数,由不等式得到:

[]

max ,max ,ααj T j

j n j T j j n S K S K ==∑∑

-?????

?

??≤-1100。

而上述不等式的右端正好是n 种欧式期权的证券组合的终端支付。由无套利原理,我们得

到:

c S K c S K t t j t t

j

j n

**(,)

(,)≤

=∑α

1

这里的不等式严格成立当且仅当存在证券j 和'j ,使得S K S T j T j <<'以一个严格正的概率成立。 #

假设所有n 个标的证券的支付使得,以单个证券为标的物,以K 为执行价格的n 个期权都能同时被最优执行,则这n 个期权的凸组合的价格,和下面这个期权的价格是相同的,这个期权以n 个标的证券的凸组合为标的物,以K 为执行价格。但是,一旦以单个证券为标的物的n 个期权中有某个不能被同时最优执行,则两者的价格不会相等。作为期权的证券组合,不同于以n 个证券的凸组合为标的物的期权,因为我们可以单独执行组合中的每个期权。所以,期权的证券组合的价格大于以n 个证券的凸组合为标的物的期权的价格。

例子:

1.3 美式期权的下界

性质:美式看涨期权价格的下界为 {}K S C t t -≥,0max

证明:(1)0≥t C

(2)不妨假设K S t ≥。如果K S C t t -<,构造套利机会: 以t C 买入美式看涨期权,马上执行,现金流为K S t -,净利润为

0>--t t C K S

例子:设美式看涨期权的价格为2元,设股价为50元,执行价格为45元,是否存在套利机会?

性质:如果两个美式看涨期权具有相同的执行价格,相同的标的物,则到期日越长的期权,价格越高。

图:美式看涨期权价格的界

性质:美式看跌期权价格的下界为

{}t t S K P -≥,0m ax 证明:

例子:设美式看跌期权到期日为78天,价格为3元,执行价格为55元,标的股票价格为55元,是否存在套利机会?

图:美式看跌期权价格的界

2.提前执行:以不支付红利股票为标的物的美式期权

本节的目的是证明:以不支付红利的股票为标的物的美式期权不会提前执行。对期权定价理论感兴趣的读者可以参考在1973年的开创性工作。

由于欧式期权只能在到期日执行,而美式期权在到期日前的任何时间都能执行,所以,欧式期权的定价比美式期权定价容易。但是,当标的股票不支付红利时,我们可以证明美式看涨期权不会提前执行,从而美式看涨期权的价格和欧式看涨期权的价格一致。下面,我们证明这一重要的定理。

定理1:以不支付红利的股票为标的物的美式看涨期权不会提前执行。

证明:设无风险利率为r f ,采用连续计算复利的方式;欧式和美式期权的到期日为

T ,执行价格均为K ;不支付红利的标的股票在t 时的价格为S t 。

由前面知道:

()[

]

c S T K S e

K t t t r T t f ,,max ,()

≥---0

(9)

方程(9)对一个欧式看涨期权成立。但是,由前面的分析我们知道,和一个欧式看涨期权等价的美式看涨期权的价格总比欧式看涨期权的价格大。因此,

()()[

]

C S T K c S T K S e

K t t t t t r T t f ,,,,max ,()

≥≥---0 (10)

而且,如果执行,美式看涨期权的价值是[]max ,0S K t -,它比[]max ,0S B K t t -小。在这种情况下,美式期权的持有者在证券市场上卖掉期权总会优于提前执行该期权。

从(10)式,我们可以更合理的解释为什么当无风险利率上升时,看涨期权的价格会上升?假设股票的价格是50元,执行价格是30元,期权一年到期。如果无风险利率是5%,则期权价格的下限是21.46元。如果现在无风险利率变为10%,则下限增为22.85元。直观上来说,现在期权更值钱是因为无风险利率的上长,使得现在购买一年后支付一元的零息债券的价格降低。

例子:以不支付红利股票为标的物的美式看涨期权的执行价格为40元,股票的价格为50元,期权一个月到期。( )

(1)如果投资者计划持有股票的时间大于一个月,则马上提前执行不是最好的策略:支付40元的执行价格,损失1个月利息;持有股票没有获得红利的优势;股价有可能跌到40元以下,持有期权等于持有一份保险。

(2)如果投资者计划持有股票的时间小于一个月,认为股价过高,提前执行,再卖掉股票也不是最优的策略,因为卖掉期权比提前执行的收入更大。

图:美式看涨期权价格与标的物价格的关系

利率越大,到期日越长,或者股票波幅越大,美式看涨期权的价格越大。

不同于美式看涨期权,即使在标的股票不支付红利的条件下,提前执行美式看跌期权可能是最优的。原因在于,当股价充分下降以后,从股价进一步下降得到的利润可能比马上执行得到的现金的利息少。

例子:设执行价格为25元看跌期权,股价为1元,6个月到期,6个月的简单利率为9.5%。

美式看涨期权和美式看跌期权在提前执行问题上的不同源于看涨期权的收入是无上界的,而看跌期权的收入是有上界的。既然看涨期权无上界,等待总有可能获得利润,而看跌期权有上界,所以最好提前执行,获取利息。

例子:假设执行价格为10元,股价为0元。马上执行,获得的收入为10元,如果等待,执行时收入最多也只为10元,而且提前执行可以获得利息。

图:美式看跌期权的价格与标的物价格的关系

利率越小,波幅越大,或者到期日越大,美式看跌期权价格越大。

图:欧式看跌期权价格与标的物价格的关系

3. 美式看涨期权与看跌期权价格之间的关系

看涨期权与看跌期权价格之间的平价关系仅仅对于欧式期权成立。但是,我们也可以得到以不支付红利股票为标的物的美式期权价格之间的关系。我们设P t 为美式看跌期权的价格,p t 为欧式看跌期权的价格。其余的符号和这一章里一样。因为美式期权总能在到期日以前执行,所以,美式看跌期权价格总大于欧式看跌期权价格,即,P t ≥p t 。我们采用连续计算复利的方式。由欧式期权价格的平价关系有

p c Ke

S t t r T t t f =+---()

, 从而有

P c Ke

S t t r T t t f ≥+---()

因为标的股票不支付红利,所以

C c t t =。

我们得到

P C Ke

S t t r T t t f ≥+---()

或者

C P S Ke

t t t r T t f -≤---()

。 (12)

为了进一步说明C t 与P t 之间的关系,我们考虑:

证券组合1:一份欧式看涨期权和数量为K 的现金 证券组合2:一份美式看跌期权和一份标的股票

两种证券组合中的期权具有相同的执行价格和到期日。假设证券组合1中的现金可以以无风险利率投资。(1)如果看跌期权不提前执行,则证券组合2在到期日T 的支付为

()max ,S K T 。 这时,证券组合1的支付为

()max ,()

S K Ke

K T r T t f +--。

因此,证券组合1比证券组合2的价值大。(2)下面,我们假设证券组合2中的看跌期权提前执行,例如,在时间τ执行。这说明证券组合2在时间τ的价值为K 。但是,即使证券组合1中的看涨期权无价值,证券组合1在时间τ的的价值为Ke r t f ()

τ-。由这两种情况分析,我们得到,在任何情况下,证券组合1都比证券组合2的价值高。因此,我们有

c K P S t t t +>+。

因为c C t t =,所以

C K P S t t t +>+,

或者

C P S K t t t ->-。

由(12)与上式,我们得到

S Ke

t r T t f -≥--()

C P S K t t t ->-。

(13)

例子:以不支付红利股票为标的物的美式看涨期权的执行价格为20元,5个月到期,期权的价格为1.5元。假设现在股票的价格为19元,无风险利率为每年8%。

由欧式期权价格之间的平价关系,对应的欧式看跌期权的价格为

68.119205.1125

1.0=-+?-e

由(13)

18.0201920191125

1.0-=-≤-≤-=-?-e P C

从而

5.268.1≤≤P

4.红利的影响

我们在前面讨论期权的价格性质时,标的股票均不支付红利。下面,我们讨论红利的影响。当标的股票有红利支付时,我们不能保证美式看涨期权不提前执行。有时,美式看涨期权在红利支付前的瞬间执行是最优的,因为,红利的支付将使得股票的价格下降,从而导致期权的价值下降。

下面这一定理更注重实际。我们分析当标的股票支付红利时,美式看涨期权的

价值会有什么变化?因为大多数上市公司都是支付红利的,所以期权合约的持有者应该注意,当标的股票因支付红利而价格下降时,并不能保证期权的价格不下降。

在1976年12月份的某一天,通用汽车公司的股票大约为每股75美元。以此为标的物的看涨期权的执行价格为60美元。在第二天,通用汽车公司按计划每股分配红利3美元。这意味着该公司的股票价格将降至约每股72美元。从(7.19)式我们知道,在分红之前,看涨期权的价格不会低于S K -,或者15美元。到了第二天,每人都知道公司的股票价格将下降,所以看涨期权的价格将下降(约降至12.63美元)。知道先一天期权约值15美元,第二天期权的价格将下降,作为投资者,唯一理性的行为就是在分红之前执行期权。

定理:当标的股票支付红利时,美式看涨期权是可能提前执行的。

证明:假设无风险利率为r f ,采用连续计算复利的方式;美式期权的到期日为T ,执行价格均为K ;标的股票在t 时的价格为S t ,在到期日支付红利D ;。在时间T 到期,面值为1的无息债券在t 时的价格为B e t r T t f =--()

。考虑甲、乙两种证券组合,甲证券组合:以价格c S T K 00(,,)买一份欧式看涨期权,以价格()K D B +0购买K +D 份债券。乙证券组合:以价格S 0买一份股票。下表说明了两种证券组合的终端支付的关系:

证券组合 证券组合 在时间t 的价值 证券组合 在到期日T 的支付 S K T < S K T ≥

c S T K K D B t t t (,,)()++

0+K D +

S K K D T -++

S t S T +D S T +D

甲、乙在T 的 支付的关系

V 甲>V 乙 V 甲乙

在到期日,当股票的价格小于执行价格时,期权不会被执行,从而期权没有价值,证券组合甲的支付为K +D 。但是,由于S K T <,所以证券组合甲的支付大于证券组合乙的支付。另一方面,当股票的价格大于执行价格时,证券组合甲、乙在到期日的支付相等。不管在哪种情况下,证券组合甲的支付大于或者等于证券组合乙的支付。由无套利原理,我们有:

c S T K K D B t t t (,,)()++≥S t

从这个式子可以得到;

()[]c S T K S K D B t t t t ,,max ,()≥-+0 (11)

从上式可以看出,当红利的规模和无风险利率取恰当的值时,有可能得到:

()K D B S t t +>

这时,(11)式中期权的价值为零。但是,如果有可能提前执行时,美式看涨期权的价值是[]max ,0S K t -。所以美式期权的持有者有可能提前执行该期权。 例子:

下面讨论红利对期权价格界的影响。 我们假设在期权的到期日以前,标的股票支

付的红利的现值为D 。为简单计,我们假设红利一次性支付。

欧式看涨期权与看跌期权价格的下界 我们定义证券组合A 、B 如下:

证券组合A :一份欧式看涨期权和数量为D Ke r T t f +--()

的现金 证券组合B :一份标的股票

在证券组合A 中,如果现金流以无风险利率投资,则在到期日T ,这个现金流变为De

K r T t f ()

-+。如果S K T >,则看涨期权在T 执行,证券组合A 的支付为

S K T -+De K r T t f ()

-+。如果S K T <,则看涨期权在T 不执行,证券组合A 的支付为

De

K r T t f ()

-+。所以,证券组合A 在到期日T 的支付为

(

)max ,()

()

S De

K De

T r T t r T t f f ++--。

在证券组合B 中,如果红利现金流以无风险利率投资,则在到期日T ,这个现金流变为De

r T t f ()

-。所以,证券组合B 在到期日T 的支付为S De T r T t f +-()

。无论在哪种情况下,证券

组合A 的到期日支付都不会小于证券组合B 的到期日支付,有时,还严格大于B 的终端支付。因此,有无套利原理,证券组合A 现在的价值应该大于证券组合B 现在的价值,即, c D Ke

S t r T t t f ++>--()

(14)

或者

c S D Ke

t t r T t f >----()

。 (15)

这是我们得到的,当标的股票具有红利支付时,欧式看涨期权的下界。 接着,我们定义证券组合C 和D 如下:

证券组合C :一份欧式看跌期权和一份标的股票

证券组合D :数量等于D Ke r T t f +--()

的现金流

在证券组合C 中,如果标的股票的红利现金流以无风险利率投资,则在到期日T ,这个现金流变为De r T t f ()

-。如果K S T ≤,证券组合C 中的看跌期权在T 执行,证券组合C 的支付

为K +De r T t f ()

-。如果S K T >,则看跌期权在T 不执行,证券组合C 的支付为

S T +De

r T t f ()

-。所以,证券组合C 在到期日T 的支付为

(

)max ,()

()

S De

K De

T r T t r T t f f ++--。

金融衍生品及套利定价

金融衍生品工具期中论文翻译 金融衍生品及套利定价 Andrea Pascucci 王凌霄 20081340043 金融衍生品是一种价值取决于一个或一个以上多证劵或者基础资产的合约。基础资产可以是股票,债券,货币兑换率也可以是货品的报价单,例如金,石油和小麦。 1.1 期权 期权是金融衍生工具种最简单的一个例子,它是一种拥有在未来某个特定时间以特定的价格买卖一些基础资产权利(但没有义务)的合约。所以在期权合约中,我们需要特别指出?一种基础资产; ?合约价格K,称为执行价格; ?日期T,称为合约到期日 看涨期权拥有购买的权利,看跌期权拥有卖出的权利,欧式期权则只能在合约到期日进行买卖,美式期权则可以在任意时刻进行买卖。 我们考虑一个以执行价格为K,合约到期入为T的欧式期权,我们在合约到期日以价格ST 卖出。在日期T我们有两种可能(1.1):如果ST>K,根据相应期权获得利润,最后的盈利等于ST-K,(例如以价格K买入,然后以ST卖出)如果ST

1.3欧式看跌期权盈利 1.4跨式盈利 最后,我们可以得到欧式看张期权盈利的公式为 (K ?S T )+ = max{K ?S T , 0}. 看涨期权和看跌期权是基础金融衍生品工具,现在他们也经常被称为普通期权。将这些期权合并,可能建立起新的衍生品工具:例如对同一资产购买看涨和看跌期权,确定执行价格和合约到期日期,我们得到了一个衍生品,我们将它称为鞍式期权,他的盈利增长比执行价格大的多的多。这种类型的衍生品盈利是靠价格在一边大幅度变化,而我们并不需要对价格的走向进行预测。显然,期权的价格可以以普通期权的形式进行定价,另一方面,在现实的市场当中存在着许多金融衍生品,他们有复杂的结构,这些衍生品在市场当中 不断得扩展和发展。 1.1.1 主要用途 衍生品的应用主要有两个用途: ?规避风险 ?投机 例如,我们假设一个投资者拥有股票S:购买看跌期权S,他拥有将来一敲定价格卖出S的权利,因此他或她规避了S价格崩盘的风险。类似的,一家石油公司回购买看张期权让他有权利在未来以相对低的价格购买石油,这样做,公司规避了将来石油价格上涨带来的风险。最近几年,衍生品的应用也越来越广泛:不久以前购房贷款的汇率只能固定或者可变,然而现在报价将更广泛。例如,我们不难发现,贷款汇率有上限:这种构架的产品包含一种虎扑多种衍生品

期权的定价方法概述及利用matlab计算期权价格

期权的定价方法概述及利用matlab计算期权价格 摘要期权是功能最多、最激动人心的融衍生工具之一。期权定价问题一直是金融数学当中最复杂的问题之一,简要介绍几种基本的期权定价理论,并利用matlab金融工具箱计算出香港恒生指数期权的价格并与实际价格进行比较,指出可能导致偏差的一些原因。 关键词期权定价;MATLAB;B-S模型 1 期权概述 期权是一种独特的衍生金融产品,实质上是将权利和义务分开进行定价,使得权利的受让人在规定时间内对于是否进行交易,行使其权利具有选择权,而义务方必须履行其义务。它使买方能够避免坏的结果,同时,又能从好的结果中获益。 2 期权的定价模型 2.1 二项式期权定价模型 设:S0=股票现行价格,u=股价上行乘数,d=股价下行乘数,r=无风险利率,C0=期权现行价格,Cu=股价上行时期权的到期日价值,Cd=股价下行时期权的到期日价值,X=期权的执行价格,H=套期保值比率,则二项式定价模型为: u=1+上升百分比= d=1+下降百分比= 其中:e是自然对数;σ为标的资产连续复利收益率的标准差;t为以年表示的时段长度。 2.2 Black—Scholes期权定价模型 1)假设条件 B-S微分方程的推导是建立在以下假设的基础上的:①股价遵循预期收益率μ和标准差σ为常数的马尔科夫随机过程;②允许使用全部所得卖空衍生证券;③没有交易费用或税金,且所有证券高度可分;④在衍生证券的有效期内没有支付红利;⑤不存在无风险的套利机会;⑥证券交易是连续的,股票价格连续平滑变动;⑦无风险利率r为常数,能够用同一利率借入或贷出资金;⑧只能在交割日执行期权。 2)Black—Scholes期权定价公式

期权价格的性质金融衍生品定价理论讲义

第三章 期权价格的性质 在第一章里,我们定性地讨论了期权价格的性质。我们不但描述了影响期权价格的各种因素,而且讨论了在各种情况下期权的支付。在这一节里,我们将应用无套利原理严格证明欧式期权价格的一些重要的性质。需要强调的是,我们并不对标的资产的未来价格的分布作任何假设。在上一章中,我们利用标的资产和债券合成构造远期合约和期货合约,投资银行可以利用这种方法来为远期合约和期货合约做市及对冲风险。同样地,在本章中,我们利用合成构造期权的方法来为期权做市及对冲风险。我们仅仅研究以同一种资产为标的物的看涨和看跌期权价格之间最基本的关系。本章主要内容:美、欧式期权价格的上下界;美式期权的提前执行;红利对期权价格的影响;看涨和看跌期权价格之间的平价关系。 我们不妨假设标的物为某种股票,其在时间t 的价格为S t ,期权的执行价格为K ,到期日为一期,即,T =1,无风险利率为f r (或者r ),按离散或者连续方式计算复利。我们以t t t t P p C c ,,,分别表示欧式看涨、美式看涨、欧式看跌、美式看跌期权在时间t 的价格。 1.期权价格的上、下界 由第一章内容,期权价格受标的股票的价格、执行价格、标的股票的价格的方差、到期日、无风险利率和到期日之前标的资产的预期红利六种因素的影响。 1.1 上界 美式或者欧式看涨期权的持有者拥有以一定价格购买一份股票的权利,所以在任何情形下,期权的价值不会超过标的股票的价格 t t S c ≤ t t S C ≤ 否则,买入股票,卖空看涨期权就能获得套利机会。 例子:标的股票价格为30元,执行价格为25元的看涨期权,其价格不超过30元(不管是美式还是欧式)。如果价格为40元,如何构造套利机会? 看涨期权的价格永远不会超过标的股票的价格。即使执行价格为零,期权永远不到 期,期权的价格也至多为S T 。甚至在这种极端情形下,期权的价格也可能比标的股票的价格低,因为股票有选举权,而期权没有。 美式或者欧式看跌期权的持有者拥有以执行K 价格卖一份股票的权利,所以在任 何情形下,期权的价值不会超过K K p t ≤ K P t ≤ 对欧式看跌期权而言,我们知道它在到期日的价格不会超过K ,所以 r K p t +≤ 1 否则,卖出期权,投资在无风险利率,获得套利 例子:r =5%,t S =30元, K =25元,1 25?-≤r t e p 1.2 以不支付红利股票为标的物的欧式期权价格的下界

第十章 期权价格概述

第十章 期权价格概述 【学习目标】 本章是期权部分的重点内容之一。本章首先从内在价值和时间价值两个方面对期权价格进行了深入解析,分析了影响期权价值的主要因素,确定期权价格的基本边界,探讨了美式期权是否需要提前执行的问题,从而画出了期权价格曲线的基本形状,最后,我们运用无套利分析的基本方法,推出了看涨期权和看跌期权之间的平价关系。学习完本章,读者应能够运用期权价格曲线,深入掌握期权价格中的内在价值和时间价值的有关内容,掌握期权价值的主要影响因素和期权价格的基本边界,掌握看涨期权和看跌期权之间的平价关系,同时理解美式期权的提前执行问题。 如第八章所述,期权交易实质上就是一种权利的交易。在这种交易中,期权购买者为了获得期权合约所赋予的权利,就必须向期权出售者支付一定的费用。这一费用就是期权费(期权价格),即期权合约本身的价格。在期权交易中,期权价格(价值1)的决定是一个重要而复杂的核心问题。自1973年以来,许多专家和学者纷纷提出各自的期权定价模型,以说明期权价格的决定和变动。在这些模型中,最著名的模型主要有如下两个:一个是布莱克-舒尔斯模型(The Black-Scholes Model ),另一个则是二项式模型(The Binominal Model )。在第十一章,我们将对这两个模型作一简要的介绍和评价。在此之前,为了更好地说明这两个模型的内涵,我们有必要先对各种期权定价模型的理论基础——期权价格的构成、影响期权价格的主要因素以及期权价格的边界等问题进行深入的分析。 第一节 期权价格解析 尽管在现实的期权交易中,期权价格会受到多种因素的复杂影响,但从理论上说,期权价格都是由两个部分组成的:一是内在价值,二是时间价值。即 期权价格=期权内在价值+期权时间价值。 一、期权的内在价值 期权的内在价值(Intrinsic Value )是指期权合约本身所具有的价值,也就是期权多方行使期权时可以获得的收益的现值。我们曾经在第八章中谈及这一概念2。例如,如果股票XYZ 的市场价格为每股60美元,而以该股票为标的资产的看涨期权协议价格为每股50美元,那么这一看涨期权的购买方只要执行此期权即可获得 1 000美元()60501001000??-?=??美元(股票期权通常为美式期权且一张期权合约的交易单位为100股股票)。这1 000美元的收益就是看涨期权的内在价值。 1 价格和价值本来是两个不同的概念,它们之间是市场价格和理论价值的区别。但是在对期权费的研究中,一般将这两者混用。所谓的期权价格(Options Price )实际上就是期权价值(Options Value ),即期权的合理公平价值。 2 详见第八章第一节。

C13029 金融衍生品系列课程之一 80分

一、单项选择题 1. 一般情况下,期货合约()。 A. 较近月份交易价格低于较远月份交易价格 B. 不存在套期保值 C. 不存在投机 D. 较近月份交易价格高于较远月份交易价格 2. Cracked Corn公司(CCC)买入一份玉米期货合约,农民John 卖出一份玉米期货合约。如果玉米价格上涨,下列选项中表述正确的是()。 A. John的保证金账户金额增加 B. CCC的保证金账户金额增加 C. CCC直接向John付款 D. John直接向CCC付款 3. 远期合约买方的风险不包括()。 A. 现货价格下跌 B. 交割履约问题 C. 生产商的信用问题 D. 现货价格上涨

4. 下列各项中关于持有成本模型正确的是()。 A. 期货价格=远期价格-持有成本 B. 期货价格=现货价格-持有成本 C. 期货价格=现货价格+持有成本 D. 期货价格=远期价格+持有成本 5. 期货合约初始保证金账户金额由()来确定。 A. 期货交易所 B. 期货买方 C. 期货卖方 D. 期货经纪 6. 期货合约的盈利可在()实现。 A. 交割时 B. 每月 C. 每天 D. 合约购买时 7. 下列()情况下,采用期货合约交割商品时可能并无益处。 A. 卖方可能实现亏损 B. 合约价格等于现货价格

C. 期货合约不要求交割 D. 买方只是进行投机 8. 期货账户中每天调整保证金账户的做法被称为()。 A. 逐日盯市 B. 保证金要求 C. 清算所 D. 投机 二、多项选择题 9. 期货合约在交易所挂牌的好处包括()。 A. 价格有效性 B. 合约标准化 C. 消除了信用风险 D. 降低了基差风险 三、判断题 10. 一般情况下,在远期合约中,如果商品价格在交割时下跌,则卖方盈利。() 正确 错误

金融衍生工具定价

已知: 22 () 22 (,)() Z Z r T rT f S T e F Se e dZ σ +∞-- - -∞ =?, (,) (,) f S T S T S ? ?= ? , 2 2 (,)(,) f S T S T S ? Γ= ? , (,) (,) f S T S T T ? Θ=- ? . 求证:22 1 (,)(,)(,)(,) 2 S T S S T rS S T rf S T σ Θ=-Γ-?+. 证明:只需证明22 1 (,) 2 ((,) ) ) , , ( S S f S r T f S rS T S T T T σ+- ? ? Γ = ? . 设 2 () 2 (,,)Z r T G S T Z Se σ - =,(,,)((,,)) H S T Z F G S T Z =,则 2 2 (,)(,,) Z rT f S T e H S T Z e dZ +∞- - -∞ =. 于是 22 2 22 2 (,) (,) (,,)(,,) (,,) Z Z rT rT Z rT f S T e H S T Z e dZ e H S T Z e dZ T T e H rf S T Z S e T dZ T +∞+∞ -- -- -∞-∞ +∞- - -∞ ?? ?? ' ?? =+? ?? ???? ?? ? =+? ??? - 红色部分证毕. 对第二项,由先求积分后求偏导,变为先求偏导后求积分,则 22 22 (,,) (,,) Z Z rT rT H S T Z e H S T Z e dZ e dZ T T - +∞+∞ -- - -∞-∞ ?? ?? = ? ?? ?? . 接下来只需证明 2 2 22 1 (,) (,,) () 2 , Z rT S S T H S T Z e rS S T dZ T σ - +∞- -∞ ? ? Γ =+ ? . 回忆一下复合函数求导法则: 若(,,)((,,)) H S T Z F G S T Z =,则 (,,)(,,) ((,,)) H S T Z G S T Z F G S T Z T T ?? ' = ?? . 于是有 22 () 2 (,,) ((,,)) 2 Z r T H S T Z F G S T Z Se r T σσ -? ? ' =-? ?? . 2 () 2 (,,) ((,,))Z r T H S T Z F G S T Z e S σ - ? ' = ? (这个式子很重要!),(1)

第八章_Black-Scholes_模型(金融衍生品定价理论讲义)

第八章 Black-Scholes 模型 金融学是一门具有高度分析性的学科,并且没有什么能够超过连续时间情形。概率论和最优化理论的一些最优美的应用在连续时间金融模型中得到了很好地体现。Robert C. Merton ,1997年诺贝尔经济学奖得主,在他的著名教科书《连续时间金融》的前言中写到: 过去的二十年证明,连续时间模型是一种最具有创造力的多功能的工具。虽然在数学上更复杂,但相对离散时间模型而言,它能够提供充分的特性来得到更精确的理论解和更精练的经验假设。 因此,在动态跨世模型中引入的真实性越多,就能够得到比离散时间模型越合理的最优规则。在这种意义上来说,连续时间模型是静态和动态之间的分水岭。 直到目前为止,我们已经利用二项树模型来讨论了衍生证券的定价问题。二项树模 型是一种离散时间模型,它是对实际市场中交易离散进行的一种真实刻画。离散时间模型的极限情况是连续时间模型。事实上,大多数衍生定价理论是在连续时间背景下得到的。与离散时间模型比较而言,尽管对数学的要求更高,但连续时间模型具有离散时间模型所没有的优势:(1)可以得到闭形式的解。闭形式解对于节省计算量、深入了解定价和套期保值问题至关重要。(2)可以方便的利用随机分析工具。 任何一个变量,如果它的值随着时间的变化以一种不确定的方式发生变化,我们称它为随机过程。如果按照随机过程的值发生变化的时间来分,随机过程可以分为离散时间随机过程和连续时间随机过程。如果按照随机过程的值所取的范围来分,随机过程可以分为连续变量随机过程和离散变量随机过程。在这一章中,我们先介绍股票价格服从的连续时间、连续变量的随机过程:布朗运动和几何布朗运动。理解这个过程是理解期权和其他更复杂的衍生证券定价的第一步。与这个随机过程紧密相关的一个结果是Ito 引理,这个引理是充分理解衍生证券定价的关键。 In this chapter we study the best-known continuous time model, the Black-SCHOLES MODEL. This model, developed by Fischer Black and Myron Scholes in 1973, describes the value of a European option on an asset with no cash flows. The model has had a huge influence on the way that traders price and hedge options. It has also been pivotal to the growth and success of financial engineering in the 1980s and 1990s. The model requires only five inputs: the asset price, the strike price, the time to maturity, the risk-free rate of interest, and the volatility. The Black-Scholes model has becomes the basic benchmark model for pricing equity options and foreign currency options. It is also sometimes used, in a modified form, to price Eurodollar futures options, Treasury bond options, caps, and floors. We cannot say that we have mastered option pricing theory unless we understand the Black-Scholes formula. 本章的第二部分内容在连续时间下推导Black-Scholes 欧式期权定价公式,我们分别利用套期保值方法和等价鞅测度方法。并对所需的参数进行估计。最后讨论标的股票支付红利的欧式期权定价问题。 1.连续时间随机过程 我们先介绍Markov 过程。 定义:一个随机过程{}03t t X 称为Markov 过程,如果预测该过程将来的值只与它的目 前值相关,过程过去的历史以及从过去运行到现在的方式都是无关的,即 [][]t s t s X X E X E =Y (1) 这里,t s 3,t Y 表示直到时间t 的信息。 我们通常假设股票的价格过程服从Markov 过程。假设IBM 公司股票的现在的价格是100元。如果股票价格服从Markov 过程,则股票一周以前、一个月以前的价格对于预测股票将来价格是无用的。唯一相关的信息是股票当前的价格100元。由于我们对将来价格

金融衍生产品的定价综述

金融衍生产品定价模型综述 蒲实 (重庆大学数学与统计学院2008级统计2班) 一.摘要 衍生证券已经有很长的历史。期权和期货是所有衍生证券里在交易所交易最活跃的衍生证券。十七世纪晚期,在荷兰的Amsterdam 股票交易所,就已经有了期权这种形式的证券交易。1973年建立的Chicago Board Options Exchange (CBOE) 大大带动了期权的交易。19世纪出现有组织的期货市场。 期权定价理论是最成熟也是最重要的衍生证券定价理论。最早的期权定价理论可以追溯到1900年Bachelier (1900) 的博士论文,Bachelier 的主要贡献在于:发展了连续时间游走过程。受Louis Bachelier 工作的启发,Kiyoshi It?在二十世纪四、五十年代作出了随机分析方面奠基性的工作,这套理论随即成为金融学最本质的数学工具,也带来了衍生证券定价理论革命性的飞跃。但是,风险中性定价的概念直到Black-Scholes (1973)和Merton (1973)才得以突破。他们的工作使随机分析和经济学达到了最优美的结合,也给金融实际操作带来了最具有影响力的冲击。由于许多权益都可以被视为偶发性权益(例如债务,股权,保险等),所以在他们以后,期权定价的技巧被广泛的应用到许多金融领域和非金融领域,包括各种衍生证券定价、公司投资决策等。 我们可以把这些研究大致分为:复杂衍生证券的定价(例如MBS ,奇异期权等);数值计算(例如美式期权定价,亚式期权);拓展模型来解释Black-Scholes 模型不能解释的现象(例如Volatility smile );交易约束和交易成本对衍生证券套期保值和定价的影响。 二.关键词 金融衍生产品,维纳过程(wiener Processes) ,Ito(伊藤)引理,随机过程,布朗运功,套期保值,鞅过程。 三.正文 1. 二项树模型 该模型由Sharpe (1978)提出, Cox, Ross and Rubinstein (1979)对它进行了拓展,将二项分布用于描述股价运动,从此二叉树模型被广泛运用于衍生品的定价,成为构造离散时 间价格运动的基本模型。定义如下:0S =标的资产现在的价格;q =标的资产上涨的概率; r f =无风险利率;u =标的资产上涨的幅度;d =标的资产下跌的幅度;f =衍生证券现在的价格;u c =当标的资产价格为uS 时衍生物的价格;d c =当标的资产价格为dS 时衍生物的价格 对r f 的限制为u r d f >+>1 我们构造无风险套期保值证券组合:以价格S 0买一份股票,买m 份以股票为标的物的衍生证券(m 称为套期保值比率)。如果这个套期保值证券组合在每种状态下的到期支付都相等,则这个证券组合是无风险的。得到:uS mc dS mc u d 00-=-解

期权文献综述

文献综述 金融衍生品定价:EPMS估计量的渐近分布综述

金融衍生品定价:EPMS估计量的渐近分布综述 摘要 金融衍生品的定价是以各种定价模型的为基础的。其中,金融衍生品的定价以期权定价的研究最为广泛,许多优秀的模型都是从期权定价作为出发点考虑的。期权定价是整个金融衍生品定价的核心。 本文在首先介绍了期权基本概念的基础上着重介绍了期权定价理论的产生和发展的历史进程;然后对期权定价方法及其实证研究进行了较详细的分类综述,突出综述了在整个期权定价理论中有着重要贡献的Black-Scholes定价模型以及在此基础上出现的树图模型、蒙特卡罗模拟方法、有限差分方法等在期权定价理论体系中比较重要的思想。最后分析比较了各种定价方法之间的差别以及适用范围和各自的缺陷等,并对期权定价理论的未来研究做出展望。 关键词:期权定价,Black-Scholes模型,二叉树模型,蒙特卡罗法

目录 摘要 (i) 1.期权的分类及意义 (1) 1.1 期权的定义 (1) 1.2 期权的分类 (1) 1.3 新型模式 (2) 1.4 期权的特点 (3) 2.期权定价理论 (3) 2.1 早期期权定价理论研究 (3) 2.2 Black-Scholes期权定价模型 (4) 2.3 树图方法 (5) 2.4 蒙特卡洛法 (6) 2.5 有限差分方法 (7) 3.期权定价理论的研究展望 (7) 3.1 各种期权定价理论比较分析 (7) 3.2 期权定价理论的研究展望 (8) 4.总结 (9) 5.参考文献 (9)

金融衍生品定价:EPMS估计量的渐近分布综述 1.期权的分类及意义 1.1 期权的定义 期权又称为选择权,是在期货的基础上产生的一种衍生性金融工具。指在未来一定时期可以买卖的权利,是买方向卖方支付一定数量的金额(指权利金)后拥有的在未来一段时间内(指美式期权)或未来某一特定日期(指欧式期权)以事先规定好的价格(指履约价格)向卖方购买或出售一定数量的特定标的物的权力,但不负有必须买进或卖出的义务。 从其本质上讲,期权实质上是在金融领域中将权利和义务分开进行定价,使得权利的受让人在规定时间内对于是否进行交易,行使其权利,而义务方必须履行。在期权的交易时,购买期权的一方称作买方,而出售期权的一方则叫做卖方;买方即是权利的受让人,而卖方则是必须履行买方行使权利的义务人。 1.2 期权的分类 期权交易的类型很多,大致有如下几种: (1)按期权的权利划分,有看涨期权和看跌期权两种类型。 看涨期权(CallOptions)是指期权的买方向期权的卖方支付一定数额的权利金后,即拥有在期权合约的有效期内,按事先约定的价格向期权卖方买入一定数量的期权合约规定的特定商品的权利,但不负有必须买进的义务。而期权卖方有义务在期权规定的有效期内,应期权买方的要求,以期权合约事先规定的价格卖出期权合约规定的特定商品。 看跌期权:按事先约定的价格向期权卖方卖出一定数量的期权合约规定的特定商品的权利,但不负有必须卖出的义务。而期权卖方有义务在期权规定的有效期内,应期权买方的要求,以期权合约事先规定的价格买入期权合约规定的特定商品。 (2)按期权的交割时间划分,有美式期权和欧式期权两种类型。 美式期权是指在期权合约规定的有效期内任何时候都可以行使权利。 欧式期权是指在期权合约规定的到期日方可行使权利,期权的买方在合约到期日之前不能行使权利,过了期限,合约则自动作废。 (3)按期权合约上的标的划分,有股票期权、股指期权、利率期权、商品

第七章_美式期权定价(金融衍生品定价理论讲义)

第七章 美式期权定价 由于美式期权提前执行的可能,使得解决最优执行决策成为美式期权定价和套期保值的关键。由第三章的内容我们知道,如果标的股票在期权的到期日之前不分红,则美式看涨期权不会提前执行,因为在到期日之前执行将损失执行价格的利息。但是,如果标的股票在期权到期日以前支付红利,则提前执行美式看涨期权可能是最优的。提前执行可以获得股票支付的红利,而红利的收入超过利息损失。事实上,我们将证明,投资者总是在股票分红前执行美式看涨期权。 对于美式看跌期权而言,问题变的更复杂。看跌期权的支付以执行价格为上界,这限制了等待的价值,所以对于美式看跌期权而言,即使标的股票不支付红利,也可能提前执行。提前执行可以获得执行价格的利息收入。 许多金融证券都暗含着美式期权的特性,例如可回购债券(called bond ),可转换债券(convertible bond ), 假设: 1.市场无摩擦 2.无违约风险 3.竞争的市场 4.无套利机会 1.带息价格和除息价格 每股股票在时间t 支付红利t d 元。当股票支付红利后,我们假设股价将下降,下降的规模为红利的大小。可以证明,当市场无套利且在资本收益和红利收入之间没有税收差别时,这个假设是成立的。 ()()t e c d t S t S += 这里()t S c 表示股票在时间t 的带息价格,()t S e 表示股票在时间t 的除息价格。 这个假设的证明是非常直接的。如果上述关系不成立,即()()t e c d t S t S +1,则存在套利机会。 首先,如果()()t e c d t S t S +>,则以带息价格卖出股票,在股票分红后马上以除息价格买回股票。因为我们卖空股票,所以红利由卖空者支付,从而这个策略的利润为()()()t e c d t S t S +-。因为红利是确定知道的,所以只要()()()t S t S e c -var =0,则利润是没有风险的。 其次,如果()()t e c d t S t S +<,则以带息价格买入股票,获得红利后以除息价格卖出,获得利润为()()t S d t S c t e -+。

《金融衍生品定价的数学模型和案例分析》简介

《金融衍生品定价的数学模型和案例分析》简介 同济大学数学系 姜礼尚 期权(option)是一类金融衍生工具,但从更广义上讲,期权是一种未定权益(Contingent Claim),它是一种选择权;应用Black-Scholes-Morton 期权定价原理,可以为多种不同形式的未定权益和选择权给出一个“公平”的估价。基于这个理念,我们认为期权定价原理的应用绝不仅限于期权本身的定价,而应更广泛地应用于金融、保险、财务、投资等各个不同领域。本书正是从这个思路出发,试图利用期权定价原理对当前市场上流行的一些金融和保险的创新产品进行定价。在这里我们把这些创新产品看成是相关标的资产(underlying assets):外汇、黄金、股指、公司资产和利率等的衍生物,基于无套利原理,得到一个风险中性的“公平”价格,它的定价强烈地依赖于相关标的资产的数学模型,虽然它只是一种近似,但对金融机构的实际定价具有重要的参考价值。 本书可以看作是拙作“期权定价的数学模型和方法”(高等教育出版社,2003年)的应用篇,着重研究在已有定价模型和方法的基础上,针对各种金融和保险创新产品的具体实施条款,建立数学模型(即建立偏微分方程定解问题),求出它的闭合解或数值解,并进行定量分析,讨论一些金融参数和创新产品定价之间的依从关系。为了帮助更多读者掌握用偏微分方程方法研究Black-Scholes-Merton期权定价原理,我们专门写了“期权定价的偏微分方程模型和方法”一章放在附录中,供大家学习和参考。 本书作为金融数学专业的教学用书和金融、保险、管理等领域的参考教材,它适用于两大类读者:第一类读者是应用数学专业的教师和研究人员,特别是广大攻读金融数学各类学位的研究生和本科生,第二类读者是金融、保险、管理等的从业人员,特别是正在从事金融和保险创新产品设计的金融(保险)分析师,金融(保险)机构的决策人员以及相关的研究工作者。我们深信本书将对他们的学习和研究有所裨益。 本书中绝大部分内容都是我们同济大学数学系风险管理研究所的老师们和研究生们在最近三年内的研究成果,它从一个侧面反映了我们在应用数学理论解决实际问题的漫长道路上所做出的努力和尝试以及我们正在追求的目标。 我们衷心希望本书能起到抛砖引玉的作用,能对Black-Scholes-Morton期权定价原理在这一领域的应用起到一点推动作用。我们真诚地希望,能得到数学届的同仁特别是金融和保险业界从业人员的批评和指正。 2007年1月22日 目录(部分) 序言 第一章 跳扩散模型下的期权定价 §1.1 跳扩散模型 §1.2 期权定价的PDE模型 §1.3 期权定价公式 第二章 个人理财产品案例之一-一类与得利宝有关的理财产品的定价研究 §2.1问题的提出 得利宝之亚洲货币挂钩投资产品是中国交通银行上海分行于2005年11月28日推出一种投资保本型金融产品。它的条款内容是:客户将美元存入银行,银行拿这笔美元去投资另一货币或国债,另一货币是一篮子亚洲货币,篮子货币由日元(JPY)、韩元(KRW)、新加坡元(SGD)、泰株(THB)各占25%构成。投资者通过汇率的变动获取收益,其投资收益由固定收益和参与投资收益两部分构成,参与投资收益=参与率×[(最终篮子货币值-最初篮子货币值)或零中较大者],其中,参与率(参与篮子货币投资的比率)为50%,最初篮子货币值指的是交易本金,最终篮子货币值=交易本金×(25%×JPY最初汇价/JPY最终汇价+25% ×KRW最初汇价/KRW最终汇价+25%×SGD最初汇价/SGD最终汇价+25%×THB最初汇价/THB最终汇价)。客户在到期日除了可获得保本的固定收益外,还可获得与亚洲一篮子货币相对美元升幅相挂钩的额外收益。这些一篮子货币升幅越高,客户所获得的收益就越高,即使出现最差情况,一篮子货币相对于美元全部走弱,投资者也可获得保本的收益。因此得利宝具有收益高、风险小、本金安全等特点。 我们将得利宝条款中的投资收益稍作改变:假设到期日T,保本收益为K,参与投资收益为0(T)XXλ+?,总收益为0()T KXXλ++?,其中T X为T时刻的投资帐户资产值,0X为初始

期权定价理论文献综述

期权定价理论文献综述 [摘要]本文在首先介绍了期权基本概念的基础上着重介绍了期权定价理论的产生和发展的历史进程;然后对期权定价方法及其实证研究进行了较详细的分类综述,突出综述了在整个期权定价理论中有着重要贡献的Black-Scholes定价模型以及在此基础上出现的树图模型、蒙特卡罗模拟方法、有限差分方法等在期权定价理论体系中比较重要的思想。最后分析比较了各种定价方法之间的差别以及适用范围和各自的缺陷等,并对期权定价理论的未来研究做出展望。 [关键字]综述;期权定价;Black-Scholes模型;二叉树模型;蒙特卡罗法 1 期权的分类及意义 1.1 期权的定义 期权(option)是一份合约,持有合约的一方(seller)有权(但没有义务)向另一方在合约中事先指定的时刻(或此时刻前)以合约中指定的价格购买或者出售某种指定数量的特殊物品。为了获得这种权利,期权的购买者(holder or buyer)必须支付一定数量的权利金(也称保证金或保险金),因此权利金就成为期权这个金融衍生品的价格。 1.2 期权的分类 期权交易的类型很多,大致有如下几种: (1)按交易方式可分为看涨期权、看跌期权和双重期权; (2)按期权的执行时间不同可分为美式期权和欧式期权; (3)按期权交割的内容标准可分为股票期权、货币期权、利率期权与指数期权; 此外近年来还发展了许多特殊的期权交易形式,如回溯期权、循环期权、价差期权、最大/最小期权、平均价期权、“权中权”期权等。

1.3 期权的功能 作为套期保值的工具。当投资者持有某种金融资产,为了防范资产价格波动可能带来的风险,可以预先买卖该资产的期权来对冲风险。当投资者预期基础资产的市场价格将下跌时,为防止持有这种资产可能发生的损失,可以买入看跌期权予以对冲,其所付成本仅为购买期权的权利金。通过购买看涨期权和看跌期权,一方面可以达到基础资产保值的目的;另一方面也可以获得基础资产价格升降而带来的盈利机会。 作为投机的工具。在投资者并不需要为持有资产作对冲风险的交易时,也可根据对基础资产价格必定性大小的预期,买卖期权本身来获得盈利,投资者买卖期权的目的已从对冲风险,变成赚取期权的价差利益,即投机,通过购买期权和转卖期权的权利金差价中获利,或通过履约从中获利。 2 期权定价理论的历史发展 2.1 早期期权定价理论研究 期权的思想萌芽可追溯到公元前1800年的《汉漠拉比法典》,而早在公元前1200年的古希腊和古胖尼基国的贸易中就已经出现了期权交易的雏形,只不过在当时条件下不可能对其有深刻认识。公认的期权定价理论创始人是法国数学家Louis Bachelicr。1900年,他在博士论文“投机理论”中第一次对股票价格的走势给予了严格的数学描述。他假设股票价格变化过程是一个无漂移和每单位时间具有方差2 的纯标准布朗运动,并得出到期日看涨期权的预期价格是:其中 参数π是市场“价格杠杆”调节量,α是股票预期收益率。这一模型同样也没有考虑资金的时间价值。 Boness在1964年也提出了类似的模型,他对股票收益假定了一个固定的对数分布,并且认识到风险保险的重要性。为简明,他假定“投资者不在乎风险”。他利用这一假设证明了用股票的预期收益率α来贴现最终期权的预期值。他的最终模型是:

金融衍生品定价理论

金融衍生品定价理论1 陶正如1,陶夏新1,2 1中国地震局工程力学研究所,哈尔滨(150080) 2哈尔滨工业大学,哈尔滨(150080) E-mail :taozhengru@https://www.doczj.com/doc/006372438.html, 摘 要:金融衍生品有利于规避金融市场风险,而衍生品是否能充分发挥作用则取决于其价格是否合理。本文总结了金融衍生品定价理论的发展,介绍了几种比较具有代表性的定价模型,并进行了简单的评述。 关键词:金融衍生品,定价模型,随机过程 1. 引言 真正的现代金融衍生品始于20世纪60年代末到70年代初,浮动汇率代替当时维系全球的固定汇率制-布雷顿森林体系成为世界各国新兴的汇率制度,西方经济发达国家各类金融机构以自由竞争和金融自由化为基调进行金融创新[1,2]。随着金融市场在全球范围的快速扩张,国际贸易与金融商品交易的风险日益增加,迫切需要规避市场风险、提高交易效率,金融衍生产品作为新兴的风险管理手段应运而生。 金融衍生品的价格衍生自标的资产(商品价格、利率、汇率和股票价格或股价指数等)的价格,根据两者间的关系,可以把衍生品分为两大类[3]:线性衍生品和非线性衍生品。前者主要包括远期、期货和互换合约,其价值与标的资产价值呈线性关系,定价比较容易。后者主要包括期权,以及一些更为复杂的结构化衍生证券和奇异衍生证券,它们的价值与标的资产价值之间呈现出复杂的非线性关系。 在所有的衍生品定价中,期权定价的研究最为广泛,因为与其它衍生品相比,期权易于定价;许多衍生品可表示为若干期权的组合形式;各种衍生品的定价原理相同,可以通过期权定价方法推导出一般衍生品的定价模型[4]。 2. 20世纪90年代前的金融衍生品定价模型 1900年,法国数学家Louis Bachelier 在《投机理论》中提出了最早的期权理论模型,奠定了现代期权定价理论的基础,这标志着研究连续时间随机过程的数学和连续时间衍生证券定价的经济学两门分支学科的诞生[5-14]。Bachelier 的模型第一次给予布朗运动严格的数学描述,假设股价变化满足标准布朗运动、没有漂移、每单位时间方差为σ2,则到期日期权的期望价值是: ()??? ??????+???????????????????=t X S t t X S XN t X S SN t S C σ?σσσ, (1) 其中,C (S , t )为t 时刻股票价格为S 时的期权价值;S 为股票价格;X 为期权的执行价格;t 是距到期日的时间,()?N 为标准正态分布累积函数;()??为标准正态分布密度函数。 巴氏模型比较适用于短期买权的定价,但其假设股价服从标准布朗运动,则股价可能为负,这与股票市场实际不符。另外,模型忽视了资金的时间价值为正的客观事实,期权与股票的不同风险特征和投资者的风险厌恶等问题使其在实际应用中受到限制[6,8,9]。但其仍具有 1本课题得到国家自然科学基金(项目编号:70603025),地震学联合基金(项目编号:606027), 黑龙江省自然科学基金(项目编号:G2005-13)的资助。

期权定价最终稿

2011 级 学院:金融学院 专业:金融学班级:金融1111班 学生姓名:陶彦宇学号: 1103110243 完成日期: 2014年8月 2011 年 8 月

期权定价的研究综述 摘要: 随着美国次贷危机和欧债危机的相继发生,人们对于资金风险管理的要求越来越高。期权作为一种风险规避工具越来越受到人们的重视,而随着计算机技术的大规模使用,一些新型期权被开发出来。而对于期权的定价,则成为了期权应用的重点。 关键词:期权定价 综述 金融期权 数值方法 正文: 自从期权产生之后,学者们一直在努力研究期权的定价理论。近代期权研究公认以法国数学家 Louis Bachelier 对Brown 运动的研究为开端。1900年,他的博士论文《The Theory of Speculation 》首次给出欧式期权的定价公式[1],被认为是奠定了期权定价理论研究的基础。Bachelier 假设股票价格变化服从漂移率为0,波动率为σ的绝对布朗运动,推导出看涨期权的价格为: ??? ??-+??? ??--??? ??-=T K S T K S KN T K S N S C T T T T σ?σσ 其中T S 为期权到期时T 时刻股票的价格,K 为期权的执行价格,()??为标准正态分布的密度函数,()?N 为标准正态分布的累计概率密度函数。 但在后来的研究中,学者们发现其局限性也是显著的: 1.Bachelier 在论文中采用的绝对布朗运动允许股票的价格为负,不符合实际情况。 2.Bachelier 认为当时间趋向于正无穷时,期权价格可以高于股票价格,也不符合实际情况。 3.Bachelier 没有考虑货币的时间价值,这也是很大的局限性。 在这之后五十多年的时间内,期权定价的发展一直处于停滞阶段,Sprenkle (1961)假设股票价格服从对数正态分布,同时加入正向漂移项[2],解决了Bachelier 论文中股票价格可能为负的问题。但该模型仍然忽略了货币的时间价值。

期权价格知识概述

第十章期权价格概述 【学习目标】 本章是期权部分的重点内容之一。本章首先从内在价值和时刻价值两个方面对期权价格进行了深入解析,分析了阻碍期权价值的要紧因素,确定期权价格的差不多边界,探讨了美式期权是否需要提早执行的问题,从而画出了期权价格曲线的差不多形状,最后,我们运用无套利分析的差不多方法,推出了看涨期权和看跌期权之间的平价关系。学习完本章,读者应能够运用期权价格曲线,深入掌握期权价格中的内在价值和时刻价值的有关内容,掌握期权价值的要紧阻碍因素和期权价格的差不多边界,掌握看涨期权和看跌期权之间的平价关系,同时理解美式期权的提早执行问题。 如第八章所述,期权交易实质上确实是一种权利的交易。在这种交易中,期权购买者为了获得期权合约所给予的权利,就必须向期权出售者支付一定的费用。这一费用确实是期权费(期权价格),即期权合约本身的价格。在期权交易中,期权价格(价

值1)的决定是一个重要而复杂的核心问题。自1973年以来,许多专家和学者纷纷提出各自的期权定价模型,以讲明期权价格的决定和变动。在这些模型中,最闻名的模型要紧有如下两个:一个是布莱克-舒尔斯模型(The Black-Scholes Model),另一个则是二项式模型(The Binominal Model)。在第十一章,我们将对这两个模型作一简要的介绍和评价。在此之前,为了更好地讲明这两个模型的内涵,我们有必要先对各种期权定价模型的理论基础——期权价格的构成、阻碍期权价格的要紧因素以及期权价格的边界等问题进行深入的分析。 第一节期权价格解析 尽管在现实的期权交易中,期权价格会受到多种因素的复杂阻碍,但从理论上讲,期权价格差不多上由两个部分组成的:一是内在价值,二是时刻价值。即 期权价格=期权内在价值+期权时刻价值。 一、期权的内在价值 期权的内在价值(Intrinsic Value)是指期权合约本身所具有的价值,也确实是期权多方行使期权时能够获得的收益的现 1价格和价值本来是两个不同的概念,它们之间是市场价格和理论价值的区不。然而在对期权费的研究中,一般将这两者混用。所谓的期权价格(Options Price)实际上确实是期权价值(Options Value),即期权的合理公平价值。

期权定价方法综述_刘海龙

综述研究 期权定价方法综述① 刘海龙,吴冲锋 (上海交通大学安泰管理学院,上海200052) 摘要:介绍了期权定价理论的产生和发展;然后对期权定价方法及其实证研究进行了较详细的分类综述,突出综述了既适用于完全金融市场,又适用于非完全的金融市场的确定性套利定价方法、区间定价方法和Ε2套利定价方法;最后,对各种方法的条件和特点进行了讨论和评价. 关键词:综述;期权定价;蒙特卡罗模拟;有限差分方法;Ε2套利;区间定价 中图分类号:F830.9 文献标识码:A 文章编号:100729807(2002)022******* 0 引 言 期权是一种极为特殊的衍生产品,它能使买方有能力避免坏的结果,而从好的结果中获益,同时,它也能使卖方产生巨大的损失.当然,期权不是免费的,这就产生了期权定价问题.期权定价理论是现代金融理论最为重要的成果之一,它集中体现了金融理论的许多核心问题,其理论之深,方法之多,应用之广,令人惊叹.期权的标的资产也由股票、指数、期货合约、商品(金属、黄金、石油等),外汇增加到了利率,可转换债券、认股权证、掉期和期权本身等许多可交易证券和不可交易证券.期权是一种企业、银行和投资者等进行风险管理的有力工具. 期权的理论与实践并非始于1973年B lack2 Scho les关于期权定价理论论文的发表.早在公元前1200年的古希腊和古腓尼基国的贸易中就已经出现了期权交易的雏形,只不过当时条件下不可能对其有深刻认识.期权的思想萌芽也可以追溯到公元前1800年的《汉穆拉比法典》.公认的期权定价理论的始祖是法国数学家巴舍利耶(L ou is B achelier,1900年),令人难以理解的是,长达半个世纪之久巴舍利耶的工作没有引起金融界的重视,直到1956年被克鲁辛格(K ru izenga)再次发现. 1973年芝加哥委员会期权交易所创建了第一个用上市股票进行看涨期权交易的集中市场,首次在有组织的交易所内进行股票期权交易,在短短的几年时间里,期权市场发展十分迅猛,美国股票交易所、太平洋股票交易所以及费城股票交易所纷纷模仿,1977年看跌期权的交易也开始出现在这些交易所内.有趣的是,布来克和斯科尔斯(B lack and Scho les)发表的一篇关于期权定价的开创性论文也是在1973年[1],同年,莫顿教授又对其加以推广和完善,不久,B lack2Scho les期权定价方程很快被编成了计算机程序,交易者只需键入包括标的资产价格、标的资产价格的波动率、货币利率和期权到期日等几个变量就很容易解出该方程,后来有人用这个方程对历史期权价格进行了验证,发现实际价格与理论价格基本接近,这一理论研究成果直接被应用到金融市场交易的实践中,推动了各类期权交易的迅猛发展. 关于期权定价的理论研究[2-30]和综述文献[31-33]已相当丰富.本文与以往综述类文献根本不同的特点是将金融市场分为完全的金融市场和非完全的金融市场.突出了适用于非完全市场期 第5卷第2期2002年4月 管 理 科 学 学 报 JOU RNAL O F M ANA GE M EN T SC IEN CES I N CH I NA V o l.5N o.2 A p r.,2002 ①收稿日期:2001201208;修订日期:2002201216. 基金项目:国家自然科学基金(70173031)资助项目;国家杰出青年科学基金(70025303)资助项目;教育部跨世纪优秀人才基金资助项目. 作者简介:刘海龙(19592),男,吉林省吉林市人,博士,教授.

相关主题
文本预览
相关文档 最新文档