第七章_美式期权定价(金融衍生品定价理论讲义)
- 格式:pdf
- 大小:143.71 KB
- 文档页数:11
金融衍生品定价原理
金融衍生品是指基于金融资产的派生性、非实际所有权的金融工具,包括衍生证券及衍生合同。
衍生品定价原理主要是指衍生品价格本质上受基础财产和期权理论影响。
衍生品价格变化以及衍生品本身获取利润的关键,是建立在衍生品价格关系的理论基础之上的。
衍生品市场价格的关键在于投资者对已有金融资产具有的不确定性及投资者对衍生品的预期与对金融资产的感受。
金融资产应获得实际物理所有权,但衍生品价格主要由投资者期望贴价确定。
此外,衍生品定价原理还受到衍生品收益及衍生品收益概率组合的影响。
预测衍生品价格,必须把握基础财产价格变化以及期权价格当前以及未来所有权变化走势才能进行有效衍生品定价。
衍生品定价原理还涉及到其它一些部分,如衍生品风险和定价调整等,并由衍生品风险管理策略等方式的改善来解决这些问题。
衍生品定价模型除了受市场买卖双方的预期和行为,也受到衍生品市场深度的影响,衍生品的非线性变动大都是由深度变化所决定的。
总之,衍生品定价原理是衍生物价格影响因素的关键,它包括衍生品收益和期权定价理论,衍生品收益概率组合和衍生品风险定价,以及衍生品市场深度和衍生品价格变动。
只有把握衍生品定价原理,才能有效地预测衍生品价格变动,实现衍生品期望收益。
金融学中的金融衍生品定价金融衍生品是金融市场中的一种重要工具,其定价是金融学中的重要课题之一。
本文将从理论层面对金融衍生品定价进行探讨,并介绍几种常用的金融衍生品定价模型。
一、定价理论基础金融衍生品的定价理论基础主要包括资产定价理论和无套利定价原理。
资产定价理论是指通过衡量资产的风险和收益来确定其价格,其中著名的资本资产定价模型(CAPM)和套利定价理论(APT)被广泛应用于金融衍生品的定价。
无套利定价原理是指在金融市场中不存在风险无差异的套利机会,通过构建套利组合实现无风险利润。
二、期权定价模型期权是金融衍生品中的一种典型产品。
几种常用的期权定价模型包括布莱克-斯科尔斯(Black-Scholes)模型和它的变体,以及蒙特卡洛模拟方法。
布莱克-斯科尔斯模型以资本资产定价模型为基础,通过假设资产价格的对数收益率服从几何布朗运动,建立了对期权价格的数学表达式。
蒙特卡洛模拟方法则通过随机模拟资产价格的路径,得到期权价格的近似解。
三、期货和远期定价模型期货和远期合约是另一类广泛使用的金融衍生品。
最基本的定价模型是无套利定价模型,即利用无套利原理确定合约价格。
此外,通过协理论方法,可以根据利率和存储成本等因素,建立远期合约价格的模型。
另外,通过期货价格和现货价格之间的价差(基差),也可以对期货合约进行定价。
四、利率衍生品定价模型利率衍生品包括利率互换、利率期权等。
利率互换的定价模型可以基于利率期限结构,利用贴现因子计算交换现金流的现值。
利率期权的定价模型常用的有布莱克-迈尔斯(Black-Merton)模型和格文斯坦(Geske)模型。
五、其他金融衍生品定价模型除了上述提到的几种金融衍生品之外,还有其他一些特殊的金融衍生品,如信用衍生品和能源衍生品。
信用衍生品的定价模型主要包括基于模型和基于市场的方法。
能源衍生品的定价模型受多种因素影响,如供求关系、储存成本等。
六、定价模型的应用和局限性金融衍生品定价模型的应用广泛,不仅在金融市场中用于交易和风险管理,还在金融工程学和金融研究中具有重要意义。
金融期权定价理论及其应用金融市场是一个高度复杂的系统,投资者和交易人员都需要通过各种分析工具来预判市场变化,减少风险、增加收益。
期权定价理论就是其中重要的一环,它是保险公司、基金管理者和各种金融工具交易者必备的知识之一。
在这篇文章中,我们将探讨期权定价理论的原理、模型以及应用。
一、期权定价理论概述期权是一种金融衍生品,它可以使投资者在未来的时间内以一个确定的价格买入或卖出一定数量的某种资产。
期权的价值取决于下面三个主要因素:1. 资产价格水平 (underlying asset price)2. 行权价格 (exercise price)3. 期权到期时间 (time to expiry)在此基础上,Black-Scholes公式创立了期权定价理论。
该公式的基本思想是,如果我们知道了期权的上述三个因素以及市场利率和波动率,我们就可以计算出期权的理论价格。
Black-Scholes模型主要适用于欧式期权,也就是只能在到期日行权的期权。
对于美式期权,行权只能在美式期权到期日之前。
因此,它们的定价也有所不同。
二、Black-Scholes期权定价模型Black-Scholes模型假设资产价格服从随机漫步,并且期权价格的波动率是稳定不变的。
该模型还假设,市场利率是无风险利率,可以随意获得。
在这个模型框架下,Black-Scholes公式的推导过程中使用了几个重要的假设和公式: S:资产价格水平K:行权价格σ:资产价格的波动率r:市场利率t:期权到期时间N:标准正态分布函数的值S、K、σ、r、t这五个变量是市场上可以通过数据源获得的,只有N这一项需要计算。
Black-Scholes公式给出如下期权价格计算公式:C = S*N(d1) - Ke^(-rt)*N(d2)P = Ke^(-rt)*N(-d2) - S*N(-d1)其中,C代表欧式期权的买方支付的价格 (call option price),P代表欧式期权的卖方支付的价格 (put option price)。
金融衍生工具–期权定价引言金融市场中的期权是一种重要的金融衍生工具,它给予买方在未来特定时间以特定价格买入或卖出某一标的资产的权利。
期权的定价是金融衍生品定价的核心问题之一,直接影响着期权的交易和投资策略的制定。
本文将介绍期权定价的理论基础和常用的定价模型。
期权定价理论基础期权定价的理论基础主要建立在两个重要的金融理论之上:Black-Scholes模型和风险中性定价理论。
1.Black-Scholes模型 Black-Scholes模型是1973年由费雪·布莱克和莫顿·斯科尔斯提出的期权定价模型。
该模型基于一些假设,包括市场无摩擦、无套利机会、标的资产价格服从几何布朗运动等。
根据Black-Scholes模型,期权的价值取决于标的资产的价格、行权价格、到期时间、无风险利率、标的资产的波动率等因素。
2.风险中性定价理论风险中性定价理论是金融衍生品定价的重要理论基础之一,它是由法国数学家吉尔巴特·威尔默定于1974年提出的。
该理论的核心思想是,在无套利机会的市场中,衍生品的价格应该等于其未来现金流的风险中性折现值。
根据这个理论,可以推导出Black-Scholes模型中的偏微分方程,进而得到期权定价公式。
常用的期权定价模型除了Black-Scholes模型,还有其他一些常用的期权定价模型,根据不同的假设和计算方法,它们能够更好地适应不同类型的期权。
1.Binomial模型 Binomial模型是一种离散时间和状态的期权定价模型,它是基于一棵二叉树的方法。
该模型假设在每个时间步骤中,标的资产的价格只有两种可能的走势,上涨或下跌,根据这两种走势的概率和标的资产价格变动的幅度,可以构建一棵二叉树,从而计算期权的价值。
2.存在异质波动率的期权定价模型在实际市场中,不同期权的隐含波动率可能不同,因此存在异质波动率的现象。
为了更准确地定价期权,一些模型考虑了异质波动率的特点,比如Black-Scholes模型的扩展版本(如Black-Scholes-Merton模型)、Variance Gamma模型等。
金融市场的金融衍生品定价在金融市场中,金融衍生品定价是一个极其重要的问题。
金融衍生品是一种派生于金融资产的金融工具,其价值是通过衍生的方式来确定的。
金融衍生品的定价对于投资者来说至关重要,它决定了买方和卖方之间的合理定价水平,进而影响了交易的盈亏情况。
在本文中,我们将讨论金融市场的金融衍生品中常见的定价模型和方法。
一、期权定价模型1. Black-Scholes期权定价模型Black-Scholes期权定价模型是一种用来确定欧式期权价格的数学模型,该模型基于假设市场没有利率差异、没有交易费用以及标的资产的波动性是恒定的。
它使用了随机微分方程和偏微分方程来计算期权的价格。
在Black-Scholes模型中,期权的价格受到标的资产价格、行权价、到期时间、无风险利率和波动率等因素的影响。
2. Binomial期权定价模型Binomial期权定价模型是一种基于树状结构的离散时间模型,它将时间分割成许多小的时间步长,通过建立价格的二叉树来计算期权价格。
在该模型中,假设资产价格在每个时间步长内只有两种可能的变动,即上涨和下跌,通过反复计算资产价格的期望值,可以逐步回溯到期权的价格。
3. 蒙特卡洛期权定价模型蒙特卡洛期权定价模型是一种基于随机模拟的方法,它模拟了许多次的价格路径,通过计算价格路径的平均值来估计期权的价格。
在该模型中,通过生成服从特定分布的随机数,每一个随机数代表一个价格路径,通过模拟大量价格路径求解期望值,可以得到期权的定价结果。
二、期货和远期合约定价方法1. 无套利定价原理无套利定价原理是期货和远期合约定价的基础。
该原理的核心思想是如果市场上存在无风险套利机会,那么合约定价就不是合理的。
因此,通过排除套利机会,可以得到一个合理的定价模型。
无套利定价原理在期货和远期合约的定价中起到了非常重要的作用。
2. 同时持有标的资产和期货合约在股票市场中,投资者可以同时持有标的资产和相应的期货合约来进行套利。
第七章 美式期权定价由于美式期权提前执行的可能,使得解决最优执行决策成为美式期权定价和套期保值的关键。
由第三章的内容我们知道,如果标的股票在期权的到期日之前不分红,则美式看涨期权不会提前执行,因为在到期日之前执行将损失执行价格的利息。
但是,如果标的股票在期权到期日以前支付红利,则提前执行美式看涨期权可能是最优的。
提前执行可以获得股票支付的红利,而红利的收入超过利息损失。
事实上,我们将证明,投资者总是在股票分红前执行美式看涨期权。
对于美式看跌期权而言,问题变的更复杂。
看跌期权的支付以执行价格为上界,这限制了等待的价值,所以对于美式看跌期权而言,即使标的股票不支付红利,也可能提前执行。
提前执行可以获得执行价格的利息收入。
许多金融证券都暗含着美式期权的特性,例如可回购债券(called bond ),可转换债券(convertible bond ),假设:1.市场无摩擦2.无违约风险3.竞争的市场4.无套利机会1.带息价格和除息价格每股股票在时间t 支付红利t d 元。
当股票支付红利后,我们假设股价将下降,下降的规模为红利的大小。
可以证明,当市场无套利且在资本收益和红利收入之间没有税收差别时,这个假设是成立的。
()()t e c d t S t S +=这里()t S c 表示股票在时间t 的带息价格,()t S e 表示股票在时间t 的除息价格。
这个假设的证明是非常直接的。
如果上述关系不成立,即()()t e c d t S t S +¹,则存在套利机会。
首先,如果()()t ec d t S t S +>,则以带息价格卖出股票,在股票分红后马上以除息价格买回股票。
因为我们卖空股票,所以红利由卖空者支付,从而这个策略的利润为()()()t e c d t S t S +-。
因为红利是确定知道的,所以只要()()()t S t S e c -var =0,则利润是没有风险的。
其次,如果()()t ec d t S t S +<,则以带息价格买入股票,获得红利后以除息价格卖出,获得利润为()()t S d t S c t e -+。
2.美式看涨期权在这一节,我们将证明,如果标的股票在美式期权到期日之前分红,则美式期权有可能提前执行,而且,如果美式看涨期权提前执行,则提前执行只发生在分红前瞬间。
研究美式看涨期权提前执行的关键是看涨期权的时间价值(time value )的概念。
下面我们引入时间价值的概念并分析时间价值的性质。
符号:()0C :美式期权在时间0的价格()0c :欧式期权在时间0的价格()0S :标的股票在时间0的价格T : 美式期权的到期日K :美式期权的执行价格()T B ,0:面值为1的债券在时间0的价格 []×0PV :括号内现金流在时间0的现值考虑美式看涨期权这样的执行策略:在到期日,不管股票价格是否大于执行价格,我们都执行期权。
(如果股票价格在到期日是虚值时,这个策略显然不是最优的,但在这个策略下美式看涨期权的现值是容易计算的) 在这样一个执行策略下,美式期权等价于执行价格为K 的远期合约,所以为美式看涨期权的目前值为()[]K T S PV -0=()()T KB S ,00-下面引入时间价值的概念。
定义:以不支付红利的股票为标的物的美式看涨期权的时间价值为()()()()[]T KB S C TV ,0000--= (1)直观上来说,时间价值是由于等待以决定执行期权而给期权合约带来的价值增加值。
因为在到期日,期权是虚值时可以不执行,所以时间价值是非负的。
因为()()()(){}T KB S Max c C ,00,000-³³(2) 所以(1)时间价值大于美欧式期权价格之差;(2)时间价值是非负的。
下图说明了看涨期权的时间价值作为股票价格的函数的性质。
下面我们我们考虑红利的影响。
为简单起见,假设红利的大小和支付时间都是已知的。
我们先研究在期权的有效期之内,提前执行可能发生的时间。
性质:给定正的利率,在两次分红之间或者到期日之前执行美式看涨期权不是最优的。
证明:考虑下图0 t TToday Ex-Dividend Date Maturity of Option首先证明在时间t 之前不会执行。
考虑两种交易策略:策略1:马上执行期权。
这个策略价值为()K S -0策略2:等到分红前瞬间执行,即使期权是虚值的。
这个策略在时间t 的价值为()K t S c -,从而该策略在时间0的价值为()()t KB S ,00-策略2的价值大于策略1的价值,所以应该等待。
其次证明在分红后和到期日之前的任何时间也不会执行。
考虑两种交易策略:策略1:在分红后马上执行期权。
这个策略在时间t 的价值为()K t S e -,策略2:等到到期日执行,即使期权是虚值的。
这个策略在时间T 的价值为()K T S e -,从而该策略在时间t 的价值为()()T t KB t S e ,-策略2的价值大于策略1的价值,所以应该等待。
如果期权的执行不是发生在分红前的瞬间,则会损失利息但不会有任何收入。
提前执行的唯一收入是获取红利,所以美式期权除了在分红前的瞬间和到期日外,其余时间不会执行。
下面讨论在什么条件下会在分红前瞬间提前执行美式看涨期权。
我们通过比较分红前瞬间执行与不执行美式看涨期权所获得的收入来说明提前执行美式看涨期权的条件。
如果在分红前的瞬间提前执行,则期权的价值为()()K d t S K t S t e c -+=-如果不提前执行,则期权的价值为()t C 。
这个值是以股票的除息价为基础的。
()()())(,t TV T t KB t S t C e +-=这里()()T t KB t S e ,-是在到期日不管股票价格如何都执行的期权这样一个策略在时间t 的价值,)(t TV 是利用除息价()t S e 来确定的。
在分红前瞬间执行期权当且仅当执行的价值大于不执行的价值,即 ()K d t S t e -+>()())(,t TV T t KB t S e +-即t d >()[])(,1t TV T t B K +-(3) 条件(3)说明,在时间t 执行期权当且仅当红利大于执行价格的利息损失()[]T t B K ,1-与以除息价为基础的时间价值)(t TV 之和。
由条件(3)(1)如果股票不分红,则美式期权不会提前执行。
(2)美式期权提前执行是最优的当且仅当红利充分大,以足以抵消执行价格的利息损失和期权的时间价值。
如果红利很小,而离到期的时间很长,则不会提前执行。
3.美式看跌期权美式看跌期权的提前执行问题与美式看涨期权的提前执行有很大区别。
区别的原因在于,美式看跌期权的支付以执行价格为上界,这限制了等待带来的收益。
相反,美式看涨期权的支付没有上界。
即使标的股票不支付红利,美式看跌期权的有界支付使得提前执行变成最优的(当股票价格变的非常低时)。
提前执行美式看跌期权的收益是获得支付的利息,而成本是放弃任何可能的额外收益。
当这种额外收益非常小时,提前执行的收益超过放弃的成本。
我们先定义美式看跌期权的时间价值。
定义:以不支付红利的股票为标的物的美式看跌期权的时间价值为()()()()[]0,000S T KB P TV --=(4) 这里)0(P 是美式看跌期权在时间0的价值,()()[]0,0S T KB -不是在到期日不管股票价格为多少都执行期权这样策略在时间0的价值。
直观上来说,时间价值是由于等待以决定执行期权而给期权合约带来的价值增加值。
因为在到期日,期权是虚值时可以不执行,所以时间价值是非负的。
因为()()()(){}0,0,000S T KB Max p P -³³(5) 这里)0(p 是执行价格、到期日均与美式期权相同的欧式看跌期权的价值,所以(1)时间价值大于美欧式期权价格之差;(2)时间价值是非负的。
下图说明了看跌期权的时间价值作为股票价格的函数的性质。
下面我们讨论红利对看跌期权提前执行的影响。
和前面一样,我们假设在期权的有效期内,每股股票在时间t 支付已知红利t d 。
我们先拓展看跌期权时间价值的定义。
在期权到期日不管股票价格如何都执行期权这样一个策略在时间0的价值为[]()()()[]t B d S T KB T S K PV t ,00,0)(0--=-它表示执行价格的现值减去股票除息价格的现值。
和无红利股票期权比较起来,由于分红导致的股价下降使得该策略增值。
定义:以支付红利的股票为标的物的美式看跌期权的时间价值为()()()()()[]{}t B d S T KB P TV t ,00,000---=(6)(6)与(4)比较起来,差别在于红利现值导致的调整。
下面我们考虑美式看跌期权的提前执行问题。
和前面一样,我们通过比较执行与不执行美式看涨期权所获得的收入来说明提前执行美式看涨期权的条件。
如果美式看跌期权在时间0执行,它的值为()0S K -如果不提前执行,它的价值是)0(P 。
利用(6),我们可以写成()()()()[]{}()0,00,00TV t B d S T KB P t +--=因此,在时间0提前执行是最优的当且仅当()0S K -()()()[]{}()0,00,0TV t B d S T KB t +-->即 ()[]()()0,0,01TV t B d T B K t +>- (7)换句话说,提前执行是最优的当且仅当,在执行价格上获得的利息超过损失红利的现值与看跌期权时间价值的和。
从(7),我们得到性质:即使标的股票不分红,美式看跌期权也可能提前执行。
这个性质说明了美式看涨期权和美式看跌期权之间的主要差别。
给定标的股票不分红,美式看涨期权不提前执行,而美式看跌期权有可能提前执行。
性质:(1)红利将推迟美式看跌期权的提前执行。
(2)美式看跌期权不会在分红前瞬间提前执行。
证明:(1)当红利增加时,(7)左边超过右边的可能性减少。
(2) 考虑下面两个可能的执行策略:策略1:在分红前瞬间执行看跌期权,期权的价值为[]t e d t S K +-)(策略2:在分红后马上执行,期权的价值为)(t S K e -期权在策略2下价值更高。
(1)说明,红利趋向于推迟美式看跌期权的提前执行,因为将来的红利将导致股票价格在分红日下降,等待这个下降将增加美式看跌期权价值。
(2)说明进一步说明这个性质。
它说明应该在分红后而不是分红前提前执行。
4.定价前面讨论了美式期权提前执行的一般性质。
为了确定美式期权更明确的价格,我们应该给出标的股票价格运动分布的进一步假设。
本节我们在二项树模型中讨论美式期权的定价。
美式看涨期权标的股票不分红时,美式看涨期权的价格等于欧式看涨期权的价格。