实验3 区间估计
- 格式:doc
- 大小:157.50 KB
- 文档页数:7
参数估计实验报告1. 背景参数估计是统计学中的一个重要概念,用于根据样本数据估计总体的未知参数。
在实际研究和应用中,参数估计广泛应用于各种领域,如医学、工程、经济学等。
本次实验目的是通过一个案例来了解参数估计的基本原理和方法。
我们将使用一个假设的数据集,根据样本数据估计总体的未知参数,并分析估计结果的准确性和可靠性。
2. 分析2.1 数据集描述我们使用的数据集是一组某电商平台用户的购买金额数据。
数据集包括1000个样本,每个样本表示一个用户的购买金额。
我们的目标是估计所有用户的平均购买金额。
2.2 参数的选择在本次实验中,我们选择了总体的平均购买金额作为参数进行估计。
平均购买金额是一个重要的指标,能够反映用户的购买行为和消费水平。
2.3 方法选择为了估计总体的平均购买金额,我们采用了两种常见的参数估计方法:点估计和区间估计。
点估计是通过样本数据得到某个具体值作为总体参数的估计值。
在本次实验中,我们选择了样本的平均值作为总体平均购买金额的点估计。
区间估计是通过样本数据得到一个区间范围,包含总体参数的真实值的可能性。
在本次实验中,我们使用了置信区间作为总体平均购买金额的区间估计。
2.4 实验步骤我们按照以下步骤进行参数估计实验:1.导入数据集,查看数据的基本信息。
2.计算样本的平均值作为总体平均购买金额的点估计。
3.计算置信区间,得到总体平均购买金额的区间估计。
4.对估计结果进行分析,评估估计的准确性和可靠性。
3. 结果3.1 数据集描述我们导入数据集,并查看了数据的基本信息。
数据集总共包括1000个样本,每个样本表示一个用户的购买金额。
数据的平均值为100元,标准差为50元。
3.2 点估计我们计算了样本的平均值作为总体平均购买金额的点估计。
通过样本计算得到的平均值为95元。
点估计结果表示,在我们的样本中,用户的平均购买金额大约为95元。
3.3 区间估计我们使用了95%的置信水平计算了总体平均购买金额的置信区间。
(1) P值是:1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。
2) 拒绝原假设的最小显著性水平。
3) 观察到的(实例的) 显著性水平。
4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。
(2) P 值的计算:一般地,用X 表示检验的统计量,当H0 为真时,可由样本数据计算出该统计量的值C ,根据检验统计量X 的具体分布,可求出P 值。
具体地说:左侧检验的P 值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C}右侧检验的P 值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C}双侧检验的P 值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍: P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。
若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。
计算出P 值后,将给定的显著性水平α与P 值比较,就可作出检验的结论:如果α > P 值,则在显著性水平α下拒绝原假设。
如果α ≤ P 值,则在显著性水平α下接受原假设。
在实践中,当α = P 值时,也即统计量的值C 刚好等于临界值,为慎重起见,可增加样本容量,重新进行抽样检验。
整理自:区间估计区间估计(Interval Estimation)[编辑]什么是区间估计区间估计就是以一定的概率保证估计包含总体参数的一个值域,即根据样本指标和抽样平均误差推断总体指标的可能范围。
它包括两部分内容:一是这一可能范围的大小;二是总体指标落在这个可能范围内的概率。
区间估计既说清估计结果的准确程度,又同时表明这个估计结果的可靠程度,所以区间估计是比较科学的。
用样本指标来估计总体指标,要达到100%的准确而没有任何误差,几乎是不可能的,所以在估计总体指标时就必须同时考虑估计误差的大小。
概率论与数理统计实验实验3 参数估计假设检验实验目的实验内容直观了解统计描述的基本内容。
2、假设检验1、参数估计3、实例4、作业一、参数估计参数估计问题的一般提法X1, X2,…, Xn要依据该样本对参数作出估计,或估计的某个已知函数.现从该总体抽样,得样本设有一个统计总体,总体的分布函数向量). 为F(x, ),其中为未知参数( 可以是参数估计点估计区间估计点估计——估计未知参数的值区间估计——根据样本构造出适当的区间,使他以一定的概率包含未知参数或未知参数的已知函数的真?(一)、点估计的求法1、矩估计法基本思想是用样本矩估计总体矩.令设总体分布含有个m未知参数??1 ,…,??m解此方程组得其根为分别估计参数??i ,i=1,...,m,并称其为??i 的矩估计。
2、最大似然估计法(二)、区间估计的求法反复抽取容量为n的样本,都可得到一个区间,这个区间可能包含未知参数的真值,也可能不包含未知参数的真值,包含真值的区间占置信区间的意义1、数学期望的置信区间设样本来自正态母体X(1) 方差?? 2已知, ?? 的置信区间(2) 方差?? 2 未知, ?? 的置信区间2、方差的区间估计未知时, 方差?? 2 的置信区间为(三)参数估计的命令1、正态总体的参数估计设总体服从正态分布,则其点估计和区间估计可同时由以下命令获得:[muhat,sigmahat,muci,sigmaci] = normfit(X,alpha)此命令以alpha 为显著性水平,在数据X下,对参数进行估计。
(alpha缺省时设定为0.05),返回值muhat是X的均值的点估计值,sigmahat是标准差的点估计值, muci是均值的区间估计,sigmaci是标准差的区间估计.例1、给出两列参数?? =10, ??=2正态分布随机数,并以此为样本值,给出?? 和?? 的点估计和区间估计命令:r=normrnd(10,2,100,2);[mu,sigm,muci,sigmci]=normfit(r);[mu1,sigm1,muci1,si gmci1]=normfit(r,0.01);mu=9.8437 9.9803sigm=1.91381.9955muci=9.4639 9.584310.2234 10.3762sigmci=1.68031.75202.2232 2.3181mu1=9.8437 9.9803sigm1=1.91381.9955muci1=9.3410 9.456210.3463 10.5043sigmci1=1.6152 1.68412.3349 2.4346例2、产生正态分布随机数作为样本值,计算区间估计的覆盖率。
关于区间估计的课程设计一、课程目标知识目标:1. 学生能够理解区间估计的基本概念,掌握其定义和性质。
2. 学生能够运用区间估计方法,对总体参数进行估计,并解释估计结果的含义。
3. 学生能够掌握区间估计的误差分析,了解影响区间估计精度的因素。
技能目标:1. 学生能够运用统计软件或计算器进行区间估计的计算。
2. 学生能够根据实际问题,选择合适的区间估计方法,并解决实际问题。
3. 学生能够通过实例分析,提高数据处理和分析能力。
情感态度价值观目标:1. 学生能够认识到统计学在实际生活中的广泛应用,增强学习统计学的兴趣。
2. 学生能够培养严谨的科学态度,注重数据分析的客观性和准确性。
3. 学生能够通过小组合作,培养团队协作能力和沟通表达能力。
课程性质分析:本课程为高中统计学课程,旨在帮助学生掌握区间估计的基本方法,提高数据处理和分析能力。
学生特点分析:高中学生具备一定的数学基础和逻辑思维能力,但对于统计学方法的应用还较为陌生,需要通过实例和实际操作来加深理解。
教学要求:1. 注重理论与实践相结合,让学生在实际问题中感受区间估计的应用价值。
2. 强调计算能力的培养,引导学生熟练使用统计软件或计算器进行计算。
3. 鼓励学生积极参与讨论和分享,提高课堂互动效果。
二、教学内容1. 区间估计基本概念:总体参数、样本统计量、估计量、置信区间。
2. 区间估计的原理与方法:中心极限定理、标准误差、正态分布的性质。
3. 置信区间的计算与应用:- 单个总体均值的区间估计。
- 单个总体比例的区间估计。
- 两个总体均值差的区间估计。
- 两个总体比例差的区间估计。
4. 影响区间估计精度的因素:样本容量、总体标准差、置信水平。
5. 实际问题中的应用:分析实际问题,选择合适的区间估计方法,解决实际问题。
教学大纲安排:第一课时:区间估计基本概念,总体参数与样本统计量。
第二课时:中心极限定理,标准误差,正态分布性质。
第三课时:单个总体均值和比例的区间估计。
项目七 概率论、数据统计与区间估计实验3 区间估计实验目的 掌握利用Mathematica 软件求一个正态总体的均值、方差的置信区间的方法;求两个正态总体的均值差和方差比的置信区间的方法. 通过实验加深对统计推断的基本概念的和基本思想的理解.基本命令1.调用区间估计软件包的命令<<Statistics\ConfidenceIntervals.m用Mathematica 作区间估计, 必须先调用相应的软件包. 要输入并执行命令<<Statistics`或<<Statistics\ConfidenceIntervals.m2.求单正态总体求均值的置信区间的命令MeanCi 命令的基本格式为MeanCI[样本观察值, 选项1, 选项2,…]其中选项1用于选定置信度, 形式为ConfidenceLevel->α-1,缺省默认值为ConfidenceLeve1->0.95. 选项2用于说明方差是已知还是未知, 其形式为knownV ariance->None 或20σ, 缺省默认值为knownV ariance->None. 也可以用说明标准差的选项knownStandardDeviation->None 或0σ来代替这个选项.3. 求双正态总体求均值差的置信区间的命令MeanDifferenceCI 命令的基本格式为MeanDifferenceCI[样本1的观察值, 样本2的观察值,选项1,选项2,选项3,…]其中选项1用于选定置信度, 规定同2中的说明. 选项2用于说明两个总体的方差是已知还是未知, 其形式为knownV ariance->20σ或},{2221σσ或None, 缺省默认值为knownV ariance->None. 选项3用于说明两个总体的方差是否相等, 形式为EqualV ariance->False 或True. 缺省默认值为EqualVariance->False, 即默认方差不相等.4. 求单正态总体方差的置信区间的命令V arianceCI 命令的基本格式为V arianceCI[样本观察值, 选项]其中选项1用于选定置信度, 规定同2中的说明.5. 求双正态总体方差比的置信区间的命令V arianceRatioCI 命令的基本格式为V arianceRatioCI[样本1的观察值,样本2的观察值,选项]其中选项1用于选定置信度, 规定同2中的说明.6. 当数据为概括数据时求置信区间的命令(1) 求正态总体方差已知时总体均值的置信区间的命令NormalCI[样本均值, 样本均值的标准差, 置信度选项](2) 求正态总体方差未知时总体均值的置信区间的命令StudentTCI[样本均值, 样本均值的标准差的估计, 自由度, 置信度选项](3) 求总体方差的置信区间的命令ChiSquareCI[样本方差, 自由度, 置信度选项](4) 求方差比的置信区间的命令FRatioCI[方差比的值, 分子自由度, 分母自由度,置信度选项] 实验举例单正态总体的均值的置信区间(方差已知情形)例3.1(教材例3.1) 某车间生产滚珠, 从长期实践中知道, 滚珠直径可以认为服从正态分布. 从某天产品中任取6个测得直径如下(单位:mm):15.6 16.3 15.9 15.8 16.2 16.1若已知直径的方差是0.06, 试求总体均值μ的置信度为0.95的置信区间与置信度为0.90的置信区间.输入<<Statistics\ConfidenceIntervals.mdata1={15.6,16.3,15.9,15.8,16.2,16.1};MeanCI[data1,KnownV ariance->0.06] (*置信度采取缺省值*)则输出{15.7873,16.1793}即均值μ的置信度为0.95的置信区间是(15.7063,16.2603).为求出置信度为0.90的置信区间, 输入MeanCI[data1,ConfidenceLevel->0.90,KnownV ariance->0.06]则输出{15.8188,16.1478}即均值μ的置信度为0.90的置信区间是(15.7873,16.1793). 比较两个不同置信度所对应的置信区间可以看出置信度越大所作出的置信区间也越大.例3.2 (教材例3.2) 某旅行社为调查当地旅游者的平均消费额, 随机访问了100名旅游者, 得知平均消费额80σ=x元, 根据经验, 已知旅游者消费服从正态分布, 且标准差12=元, 求该地旅游者平均消费额μ的置信度为%95的置信区间.输入NormalCI[80,12/25]输出为{77.648,82.352}单正态总体的均值的置信区间(方差未知情形)例3.3 (教材例3.3) 有一大批袋装糖果, 现从中随机地取出16袋, 称得重量(以克计)如下:506 508 499 503 504 510 497 512514 505 493 496 506 502 509 496设袋装糖果的重量近似地服从正态分布, 试求置信度分别为0.95与0.90的总体均值μ的置信区间.输入data2={506,508,499,503,504,510,497,512,514,505,493,496,506,502,509,496};MeanCI[data2](*因为置信度是0.95, 省略选项ConfidenceLeve1->0.95;又方差未知, 选项knownV ariance->None也可以省略*)则输出{500.445,507.055}即μ的置信度为0.95的置信区间是(500.445,507.055).再输入MeanCI[data2,ConfidenceLevel->0.90]则输出{501.032,506.468}即μ的置信度为0.90的置信区间是(501.032,506.468).例3.4 (教材例3.4) 从一批袋装食品中抽取16袋, 重量的平均值为,x=样本标503g75.准差为.α)..0= s假设袋装重量近似服从正态分布, 求总体均值μ的置信区间(05=2022.6这里, 样本均值为503.75, 样本均值的标准差的估计为,4/ns自由度为/=2002.615,05α, 因此关于置信度的选项可省略.=.0输入StudentTCI[503.75,6.2002/Sqrt[16],15]则输出置信区间为{500.446,507.054}两个正态总体均值差的置信区间例3.5 (教材例3.5) A, B两个地区种植同一型号的小麦, 现抽取了19块面积相同的麦田, 其中9块属于地区A, 另外10块属于地区B, 测得它们的小麦产量(以kg计) 分别如下: 地区A: 100 105 110 125 110 98 105 116 112地区B : 101 100 105 115 111 107 106 121 102 92设地区A 的小麦产量),(~211σμN X ,地区B 的小麦产量),(~222σμN Y ,221,,σμμ均未知,试求这两个地区小麦的平均产量之差21μμ-的95%和90%的置信区间. 输入list1={100,105,110,125,110,98,105,116,112}; list2={101,100,105,115,111,107,106,121,102,92}; MeanDifferenceCI[list1,list2] (*默认定方差相等*)则输出{-5.00755,11.0075}即21μμ-的置信度为95%的置信区间是(-5.00755, 11.0075).输入MeanDifferenceCI[list1,list2,EqualV ariances->True] (*假定方差相等*)则输出{-4.99382,10.9938}这时21μμ-的置信度为0.95的置信区间是(-4.99382, 10.9938). 两种情况得到的结果基本一致.输入MeanDifferenceCI[list1,list2,ConfidenceLevel->0.90,EqualV ariances->True]则输出{-3.59115, 9.59115}即21μμ-的置信度为90%的置信区间是(-3.59115, 9.59115). 这与教材结果是一致的.例3.6 (教材 例3.6) 比较A 、B 两种灯泡的寿命, 从A 种取80只作为样本,计算出样本均值,2000=x 样本标准差.801=s 从B 种取100只作为样本, 计算出样本均值,1900=y 样本标准差.1002=s 假设灯泡寿命服从正态分布, 方差相同且相互独立, 求均值差21μμ-的置信区间(05.0=α).根据命令StudentTCI 的使用格式, 第一项为两个正态总体的均值差; 第二项为两个正态总体的均值差的标准差的估计, 由方差相等的假定, 通常取为2111n n S w+,其中2)1()1(21222211-+-+-=n n S n S n S w ; 第三项为自由度;221-+=n n df 第四项为关于置信度的选项.正确输入第二个和第三个对象是计算的关键.输入sp=Sqrt[(79*80^2+99*100^2)/(80+100-2)];StudentTCI[2000-1900,sp*Sqrt[1/80+1/100],80+100-2]则输出{72.8669,127.133}即所求均值差的置信区间为(72.8669,127.133).单正态总体的方差的置信区间例3.7 (教材 例3.7) 有一大批袋装糖果, 现从中随机地取出16袋, 称得重量(单位:g)如下:506 508 499 503 504 510 497 512 514505 493 496 506 502 509 496设袋装糖果的重量近似地服从正态分布, 试求置信度分别为0.95与0.90的总体方差2σ的置信区间.输入data7={506.0,508,499,503,504,510,497,512,514,505,493,496,506, 502,509,496}; V arianceCI[data7]则输出{20.9907,92.1411}即总体方差2σ的置信度为0.95的置信区间是(20.9907,92.1411).又输入V arianceCI[data7,ConfidenceLevel->0.90]则可以得到2σ的置信度为0.90的置信区间(23.0839,79.4663).例 3.8 (教材 例 3.8) 假设导线电阻近似服从正态分布, 取9根, 得样本标准差,007.0=s 求电阻标准差的置信区间(05.0=α).输入ChiSquareCI[0.007^2,8]输出置信区间{0.0000223559,0.000179839}双正态总体方差比的置信区间例 3.9 (教材 例 3.9) 设两个工厂生产的灯泡寿命近似服从正态分布),(211σμN 和),(222σμN . 样本分别为工厂甲: 1600 1610 1650 1680 1700 1720 1800工厂乙: 1460 1550 1600 1620 1640 1660 1740 1820设两样本相互独立, 且222121,,,σσμμ均未知, 求置信度分别为0.95与0.90的方差比2221/σσ的置信区间.输入Clear[list1,list2];list1={1600,1610,1650,1680,1700,1720,1800}; list2={1460,1550,1600,1620,1640,1660,1740,1820}; V arianceRatioCI[list1,list2]则输出{0.076522,2.23083}这是置信度为0.95时方差比的置信区间.为了求置信度为0.90时的置信区间, 输入V arianceRatioCI[list1,list2,ConfidenceLevel->0.90]则输出结果为{0.101316,1.64769}.例3.10 (教材 例3.10) 某钢铁公司的管理人员为比较新旧两个电炉的温度状况, 他们抽取了新电炉的31个温度数据及旧电炉的25个温度数据, 并计算得样本方差分别为7521=s 及10022=s . 设新电炉的温度),(~211σμN X , 旧电炉的温度),(~222σμN Y .试求2221/σσ的95%的置信区间.输入FRatioCI[75/100,30,24]则输出所求结果{0.339524, 1.60191}实验习题1.对某种型号飞机的飞行速度进行15次试验, 测得最大飞行速度如下:422.2 417.2 425.6 420.3 425.8 423.1 418.7 428.2 438.3 434.0 312.3 431.5 413.5 441.3 423.0假设最大飞行速度服从正态分布, 试求总体均值μ(最大飞行速度的期望)的置信区间(05.0=α与10.0=α).2.从自动机床加工的同类零件中抽取16件, 测得长度值(单位:mm)为12.15 12.12 12.01 12.08 12.09 12.16 12.03 12.06 12.06 12.13 12.07 12.11 12.08 12.01 12.03 12.01求方差的置信区间(05.0=α).3.有一大批袋装化肥, 现从中随机地取出16袋, 称得重量(单位:kg)如下:50.6 50.8 49.9 50.3 50.4 51.0 49.7 51.2 51.4 50.5 49.3 49.6 50.6 50.2 50.9 49.6设袋装化肥的重量近似地服从正态分布, 试求总体均值μ的置信区间与总体方差2σ的置信区间(分别在置信度为0.95与0.90两种情况下计算).4.某种磁铁矿的磁化率近似服从正态分布. 从中取出容量为42的样本测试, 计算样本均值为0.132, 样本标准差为0.0728, 求磁化率的均值的区间估计(05.0=α).5.两台机床加工同一产品, 从甲机床加工的产品中抽取100件,测得样本均值为19.8, 标准差0.37. 从乙机床加工的产品中抽取80件, 测得样本均值20.0, 标准差0.40. 求均值差21μμ-的置信区间(05.0=α).6.设某种电子管的寿命近似服从正态分布, 取15只进行试验, 得平均寿命为1950h, 标准差为300h, 以90%的可靠性对使用寿命的方差进行区间估计.7.随机地从A 批导线中抽取4根, 从B 批导线中抽取5根, 测得电阻(单位:Ω)为 A 批导线: 0.143 0.142 0.143 0.137 B 批导线: 0.140 0.142 0.136 0.138 0.140设测定数据分别来自分布),(211σμN 和),(222σμN ,且两样本相互独立. 又222121,,,σσμμ均未知, 求21μμ-的置信度为0.95的置信区间.8.研究由机器A 和机器B 生产的钢管的内径, 随机地抽取机器A 生产的管子18只, 测得样本方差;34.0221mm s =抽取机器B 生产的管子13只, 测得样本方差.29.0222mm s =设两样本相互独立, 且设两机器生产的管子的内径分别服从正态分布),(211σμN 和),(222σμN , 这里222121,,,σσμμ均未知, 求方差比2221/σσ的置信度为0.90的置信区间.。