3-5小样本区间估计
- 格式:ppt
- 大小:1.96 MB
- 文档页数:22
(1) P值是:1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。
2) 拒绝原假设的最小显著性水平。
3) 观察到的(实例的) 显著性水平。
4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。
(2) P 值的计算:一般地,用X 表示检验的统计量,当H0 为真时,可由样本数据计算出该统计量的值C ,根据检验统计量X 的具体分布,可求出P 值。
具体地说:左侧检验的P 值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C}右侧检验的P 值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C}双侧检验的P 值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍: P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。
若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。
计算出P 值后,将给定的显著性水平α与P 值比较,就可作出检验的结论:如果α > P 值,则在显著性水平α下拒绝原假设。
如果α ≤ P 值,则在显著性水平α下接受原假设。
在实践中,当α = P 值时,也即统计量的值C 刚好等于临界值,为慎重起见,可增加样本容量,重新进行抽样检验。
整理自:区间估计区间估计(Interval Estimation)[编辑]什么是区间估计区间估计就是以一定的概率保证估计包含总体参数的一个值域,即根据样本指标和抽样平均误差推断总体指标的可能范围。
它包括两部分内容:一是这一可能范围的大小;二是总体指标落在这个可能范围内的概率。
区间估计既说清估计结果的准确程度,又同时表明这个估计结果的可靠程度,所以区间估计是比较科学的。
用样本指标来估计总体指标,要达到100%的准确而没有任何误差,几乎是不可能的,所以在估计总体指标时就必须同时考虑估计误差的大小。
3号准则、5号准则中的估计价值
3号准则和5号准则是统计学中常用的准则,其目的是帮助我们判断样本数据是否能够代表总体数据。
在使用这两个准则时,我们需要对样本数据进行估计,以确定样本数据的可靠性。
在3号准则中,我们需要计算样本均值与总体均值之间的差异,并将其与样本标准差相除,得到一个t值。
根据t值与自由度的关系,我们可以确定样本数据是否代表总体。
在进行估计时,我们需要考虑到样本容量、方差和样本均值的精确程度等因素。
在5号准则中,我们需要计算置信区间,以确定总体均值的区间估计。
置信区间的计算涉及到样本均值、标准差和样本容量等因素。
我们可以根据置信区间中的上下限确定总体均值的估计值,并对样本数据进行有效性判定。
总的来说,3号准则和5号准则都是基于样本数据的统计学方法,可以帮助我们对总体数据进行估计。
在使用这两个准则时,我们需要注意到样本数据的特点,以便进行准确的估计。
- 1 -。
区间估计及假设检验算法实现方法详解随着数学、统计学等学科的发展,计算机技术在数学、统计学中扮演着越来越重要的角色。
在实际应用中,人们往往需要对各种数据进行分析处理以满足不同的需求,如何快速准确地进行数据分析,是一个非常重要的问题。
其中,区间估计和假设检验是数据分析中常用的两种方法。
本文将详细介绍这两种方法的实现方式。
一、区间估计区间估计是以样本统计量为基础,通过分析样本的信息来推断总体参数的取值范围,同时限定一定程度的误差。
通常,我们通过样本估计总体的平均数、标准差等参数,并对其进行区间估计。
常见的区间估计有置信区间、预测区间等。
1. 置信区间置信区间是指在给定的置信水平下,估计总体参数的取值范围。
在实际中,一个置信水平通常取95%或99%,即我们希望在95%或99%的数据中,总体参数的真实值可以被估计出来。
例如我们要估计一个总体的均值,使用样本均值计算出来一个估计值,并使用标准误和置信系数得到置信区间,那么这个置信区间的含义就是,我们认为有95%的置信度,总体均值在这个置信区间之内。
2. 预测区间预测区间是指在给定的置信水平下,预测一个新的数据值的取值范围。
通常,我们需要根据给定的样本数据来估计总体参数,并通过置信水平和误差限制得到一个预测区间。
例如,我们要预测未来一家公司的利润,使用以前几年公司利润值的样本数据,得到一组样本均值、标准误和置信系数等参数,根据置信系数和置信区间计算得到预测区间,那么这个预测区间的含义就是,在一定置信水平下,公司未来的利润值会在这个预测区间之内。
在实际进行区间估计的过程中,通常会使用计算机进行计算。
例如,在R语言中,我们可以使用以下代码实现置信区间的计算:```# 假设有一个样本数据data# 想要计算一个均值的置信区间result <- t.test(data, conf.level = 0.95)# 得到result$conf.int即为置信区间```我们可以看到,R语言中的t.test函数就可以方便地实现置信区间的计算,而不需要手动进行计算。
38第二节 区间估计一、区间估计的概念和步骤点估计用一个确定的值去估计未知的参数,具有较大的风险。
因为估计量来自于一个随机抽取的样本,结果也就带有随机性。
样本估计量刚好等于所估计的总体参数的可能性极小。
但是如果说所估计的总体参数就落在估计值附近,即所估计的总体参数就落在以点估计所得到的估计值为中心的某一个小区间内,那就比较有把握了。
这种方法就是区间估计法。
在第四章中我们已经知道,一个足够大样本的均值的抽样分布是正态的,并且所抽到的样本均值落在总体均值的两侧x σ±范围内的概率是0.683,落在总体均值±2σx 范围内的概率是0.955,落在总体均值3±σx 范围内的概率是0.997等等。
由此可见,我们可以按照概率来估计总体均值是落在某一区间范围内的。
我们把这种对总体均值的估计称作区间估计。
从上述说明可以看到:1. 如果所估计的区间越大,参数被包含在该区间内的概率就越大。
2. 如果样本的方差越小,则在相同的概率下区间估计所得到的结果就越短。
一般地,设θ为总体的一个未知参数,θθ12,分别为由一组样本所确定的对θ的两个估计量,对于给定的10<<α,若P(θθθ12≤≤)=1-α,则称区间[θθ12,]为置信度是1-α的置信区间。
θθ12,分别为置信区间的下限和上限。
1-α称为置信度或置信概率,表示区间估计的可靠度。
α称为置信度水平。
常用的置信度有 0.80,0.90,0.95 0.99等。
一般来说,对于估计要求比较精确的问题,置信程度也要求高一些,在社会经济现象中,通常采用95%就可以了。
置信度反过来也表示可能犯错误的概率。
如置信度为95%,则犯错误的概率就为1-95%=5%。
这一概率也就是置信度水平α,也可理解为风险率或风险水平。
图5-2 根据不同样本所得到的置信度为95.5%的置信区间39需要指出的是,P(θθθ12≤≤)=1-α不应理解为θ落在某一固定区间的概率。