7.3 区间估计
- 格式:ppt
- 大小:727.50 KB
- 文档页数:22
区间估计的基本概念前面介绍了参数的点估计,讨论了估计量的优良性准则,给出了寻求估计量最常用的矩估计法和最大似然估计法.参数的点估计是用一个确定的值去估计未知参数,看似精确,实际上把握不大,没有给出误差范围,为了使估计的结论更可信,需要引入区间估计.Neyman(1894–1981)引例在估计湖中鱼数的问题中,若根据一个实际样本,得到鱼数N的最大似然估计为1000条.实际上,N的真值可能大于1000,也可能小于1000.为此,希望确定一个区间来估计参数真值并且满足:1.能以比较高的可靠程度相信它包含参数真值.“可靠程度”是用概率来度量的.2.区间估计的精度要高.可靠度:越大越好估计你的年龄八成在21-28岁之间区间:越小越好被估参数可靠度范围、区间一、置信区间的定义(Confidence Interval )对于任意θ∈Θ,满足设总体X 的分布函数F (x ,θ)含有一个未知参数θ,θ∈Θ,对于给定常数α(0<α<1),若由抽自X 的样本X 1,X 2,…,X n 确定两个统计量112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα<<≥-112ˆ(,,,)nX X X θ212ˆ(,,,)nX X X θ和则称随机区间是θ的置信水平为1−α的置信区间.12ˆˆ(,)θθ和分别称为置信下限和置信上限.1ˆθ2ˆθ(1)当X 连续时,对于给定的α,可以求出置信区间满足此时,找区间使得至少为1−α,且尽可能接近1−α.12ˆˆ(,)θθ112212ˆˆ{(,,,)(,,,)}1nnP X X X X X X θθθα<<=-12ˆˆ(,)θθ112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα<<=-12ˆˆ()P θθθ<<(2)当X 离散时,对于给定的α,常常找不到区间满足12ˆˆ(,)θθ说明:(2)估计的精度要尽可能高. 如要求区间长度尽可能短,或者能体现该要求的其他准则.(1)要求θ以很大的可能被包含在区间内,即概率尽可能的大.可靠度与精度是一对矛盾,一般是在保证可靠度的条件下尽可能提高精度.12ˆˆ()P θθθ<<12ˆˆ(,)θθ21ˆˆθθ-(3)对于样本(X 1,X 2,…,X n )112212ˆˆ((,,,),(,,,))n n X X X X X X θθ以1−α的概率保证其包含未知参数的真值.随机区间112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα<<=-即有:(4)对于样本观测值(x 1,x 2,…,x n )可以理解为:该常数区间包含未知参数真值的可信程度为1−α.112212ˆˆ((,,,),(,,,))n n x x x x x x θθ常数区间只有两个结果,包含θ和不包含θ.此时,不能说:112212ˆˆ{(,,,)(,,,)}1n n P x x x x x x θθθα<<=-没有随机变量,自然不能谈概率如:取1−α=0.95.若反复抽样100次,样本观测值为112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα<<=-1121ˆˆ((,,),(,,))i i i in n x x x x θθ于是在100个常数区间中,包含参数真值的区间大约为95个,不包含真值的区间大约为5个.12,,,ii i nx x x1,2,,100i =对应的常数区间为1,2,,100i =对一个具体的区间而言,它可能包含θ,也可能不包含θ,包含θ的可信度为95%.1121ˆˆ((,,),(,,))i i i i nnx x x x θθ二、构造置信区间的方法枢轴量法1.寻求一个样本X 1,X 2,…,X n 和θ的函数W =W (X 1,X 2,…,X n ;θ),使得W 的分布不依赖于θ和其他未知参数,称具有这种性质的函数W 为枢轴量(Pivotal quantity ).3.若由不等式a <W (X 1,X 2,…,X n ;θ)<b 得到与之等价的θ的不等式2.对于给定的置信水平1−α,定出两个常数a 和b ,使得P {a <W (X 1,X 2,…,X n ;θ)<b }=1−α112212ˆˆ(,,,)(,,,)n n X X X X X X θθθ<<即有P {a <W (X 1, X 2,…, X n ;θ)<b }关键:1.枢轴量W (X 1, X 2,…, X n ;θ)的构造2.两个常数a ,b 的确定一般从θ的一个良好的点估计出发构造,比如MLE因此,是θ的一个置信水平为1−α的置信区间.112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα=<<=-12ˆˆ(,)θθf (w )ababab1−α1−α1−α希望置信区间长度尽可能短.对于任意两个数a 和b ,只要使得f (w )下方的面积为1−α,就能确定一个1−α的置信区间.f(w)abab ab1−α1−α1−α当W 的密度函数单峰且对称时,如:N (0,1),t 分布等,当a =−b 时求得的置信区间的长度最短.如:b =z α/2或t α/2(n )当W 的密度函数不对称时,如χ2分布,F 分布,习惯上仍取对称的分位点来计算未知参数的置信区间.χ21−αα/2α/222()n αχ21-2()n αχ。
区间估计的名词解释
一、什么是区间估计?
区间估计是统计学中一种常用的参数估计方法,用于根据样本数据来估计总体参数的范围。
在区间估计中,我们通过样本数据计算出一个区间,该区间通常包含总体参数的真实值。
区间估计的方法包括单侧区间估计和双侧区间估计。
二、区间估计的原理
区间估计的原理基于抽样分布理论。
根据中心极限定理,当样本容量足够大时,样本均值的分布近似于正态分布。
因此,我们可以利用样本均值和标准误差来估计总体均值的分布。
具体来说,我们首先根据样本数据计算出样本均值和标准误差。
然后,利用样本均值加减标准误差的倍数来计算出置信区间的上下限。
置信区间的置信度通常设置为 95% 或更高,这表示我们有 95% 的把握认为总体参数的真实值落在这个区间内。
三、区间估计的应用场景
区间估计在实际应用中具有广泛的应用价值,下面列举了一些常见的应用场景:
1. 估计总体均值:例如,通过对某批次产品进行抽样检测,计
算出样本均值和标准误差,然后用区间估计方法估计该批次产品的总体均值。
2. 估计总体比例:例如,通过对某人群进行抽样调查,计算出
样本比例和标准误差,然后用区间估计方法估计该人群的总体比例。
3. 估计总体标准差:例如,通过对某批次产品进行抽样检测,计算出样本标准差和样本容量,然后用区间估计方法估计该批次产品的总体标准差。
总之,区间估计是一种常用的参数估计方法,能够帮助我们在实际问题中对总体参数进行估计。
掌握区间估计的方法和原理,对于统计分析和决策具有重要意义。