数理统计 区间估计
- 格式:ppt
- 大小:1005.00 KB
- 文档页数:23
数理统计11:区间估计,t分布,F分布在之前的⼗篇⽂章中,我们⽤了九篇⽂章的篇幅讨论了点估计的相关知识,现在来稍作回顾。
⾸先,我们讨论了正态分布两个参数——均值、⽅差的点估计,给出了它们的分布信息,并指出它们是相互独⽴的;然后,我们讨论到其他的分布族,介绍了点估计的评判标准——⽆偏性、相合性、有效性;之后,我们基于⽆偏性和相合性的讨论给出了常⽤分布的参数点估计,并介绍了两种常⽤于寻找点估计量的⽅法——矩法与极⼤似然法;最后,我们对点估计的有效性进⾏了讨论,给出了⼀些验证、寻找UMVUE的⽅法,并介绍了CR不等式,给出了⽆偏估计效率的定义。
以上就是我们在前九篇⽂章中提到的主要内容,还顺便介绍了⼀些常⽤的分布:Γ分布、β分布、χ2分布。
今天开始,我们将进⼊区间估计与假设检验部分。
由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:什么是区间估计区间估计同样是参数估计的⼀种⽅法,不同于点估计⽤样本计算出的⼀个统计量直接作为原始参数的估计,区间估计会根据抽取出的样本,计算出⼀个基于样本观测值的区间。
简单说来,如果对总体f(x;θ)中的参数θ作估计,则⾸先从总体中获得样本\boldsymbol{X}=(X_1,\cdots,X_n),并确定两个具有确定⼤⼩关系的统计量\hat g_1(\boldsymbol{X})\le \hat g_2(\boldsymbol{X}),根据样本观测值计算出的区间[\hat g_1(\boldsymbol{X}),\hat g_2(\boldsymbol{X})]就是待估参数\theta的区间估计。
由此,我们可以看出,区间估计依然是依赖于统计量的,并且往往需要不⽌⼀个统计量。
区间估计相⽐于点估计的特点是,区间估计给出了⼀个相对“粗糙”的范围,这就导致你需要使⽤这个参数时,不像点估计⼀样能直接把估计值拿来⽤;但是,区间估计具有涵盖参数真值的可能,因为当参数空间\Theta的取值连续时,点估计\hat\theta与真值相等的可能性\mathbb{P}(\hat\theta=\theta)=0,但是区间估计包含真值的可能性\mathbb{P}(\theta\in[\hatg_1(\boldsymbol{X}),\hat g_2(\boldsymbol{X})])>0,这使得区间估计⽐起点估计⽽⾔,增加了⼀定的可靠性。
数理统计区间估计总结数理统计是一门研究数据收集、整理、分析和解释的学科,而区间估计是其中一种重要的方法。
区间估计是通过样本数据来推断总体参数的取值范围,它能够提供关于总体参数的不确定性程度的信息。
本文将对区间估计的概念、应用以及优缺点进行探讨,以期帮助读者更好地理解和运用这一统计方法。
一、区间估计的概念区间估计是一种基于样本数据的统计推断方法,通过计算得到一个包含未知总体参数的区间范围。
这个区间的上限和下限是根据样本数据计算出来的,并且具有一定的置信水平,代表了对总体参数的估计精度。
二、区间估计的应用区间估计广泛应用于各个领域的研究中,特别是在市场调研、医学实验、经济学研究等方面。
例如,在市场调研中,通过对样本数据的分析,可以得到某一产品销售量的置信区间,以评估其市场潜力。
在医学实验中,可以利用区间估计来确定某种药物的有效剂量范围,以指导临床应用。
三、区间估计的优缺点区间估计具有以下优点:首先,它能够提供对总体参数的估计精度信息,使得决策者能够更加准确地评估风险和不确定性。
其次,区间估计不依赖于总体分布的假设,适用于各种类型的数据。
最后,区间估计可以较好地处理样本量较小的情况,提供对总体参数的合理估计。
然而,区间估计也存在一些缺点。
首先,区间估计只能提供对总体参数的范围估计,无法给出具体的点估计。
其次,区间估计的置信水平不一定能够准确反映总体参数的真实情况,存在一定的误差。
最后,区间估计对样本数据的分布和总体参数的假设要求较高,如果假设不满足,估计结果可能会失真。
区间估计是一种重要的统计推断方法,可以提供对总体参数的估计范围和置信水平信息。
它在各个领域的研究中有着广泛的应用,并具有一定的优点和缺点。
因此,在实际应用中,我们需要根据具体情况选择合适的区间估计方法,并结合其他统计方法进行综合分析,以获得更加准确的结论。
数理统计区间估计总结数理统计是一门研究数据分析和概率推断的学科,而区间估计是数理统计中的一个重要方法。
在实际应用中,我们常常需要根据样本数据来推断总体参数的取值范围。
区间估计的目的就是通过样本数据来估计总体参数,并给出一个置信水平,表示我们对估计结果的信心程度。
区间估计的基本思想是根据样本数据的统计量来构造一个区间,使得总体参数有一定的概率落在这个区间内。
常见的区间估计方法包括正态分布的区间估计、t分布的区间估计等。
其中,正态分布的区间估计是应用最广泛的一种方法。
在进行区间估计时,我们首先需要确定置信水平。
置信水平是指在重复抽样的条件下,该区间估计方法能够包含总体参数的真值的概率。
常见的置信水平有90%、95%和99%等。
一般情况下,置信水平越高,估计的区间范围就越宽,我们对估计结果的信心程度也更高。
接下来,我们需要选择一个合适的统计量来进行区间估计。
常见的统计量有样本均值、样本比例、样本方差等。
根据不同的总体分布和参数类型,我们选择相应的统计量来构造区间估计。
我们根据区间估计的方法和统计量的抽样分布来计算区间的上下限。
以样本均值的区间估计为例,当总体服从正态分布时,我们可以使用z分布进行区间估计;当总体的标准差未知时,我们可以使用t 分布进行区间估计。
区间估计的优点是能够给出一个范围,而不是一个点估计,使我们对总体参数的估计更加准确。
同时,区间估计还能够给出一个置信水平,告诉我们估计结果的可靠程度。
然而,区间估计也存在一定的局限性,例如需要满足一些假设条件,样本量要求较大等。
区间估计是数理统计中一种重要的推断方法。
通过构造一个区间来估计总体参数,并给出一个置信水平,我们可以在实际应用中对未知参数进行推断。
区间估计的方法和步骤需要根据不同的问题进行选择和应用,以确保估计结果的准确性和可靠性。
区间估计的基本概念前面介绍了参数的点估计,讨论了估计量的优良性准则,给出了寻求估计量最常用的矩估计法和最大似然估计法.参数的点估计是用一个确定的值去估计未知参数,看似精确,实际上把握不大,没有给出误差范围,为了使估计的结论更可信,需要引入区间估计.Neyman(1894–1981)引例在估计湖中鱼数的问题中,若根据一个实际样本,得到鱼数N的最大似然估计为1000条.实际上,N的真值可能大于1000,也可能小于1000.为此,希望确定一个区间来估计参数真值并且满足:1.能以比较高的可靠程度相信它包含参数真值.“可靠程度”是用概率来度量的.2.区间估计的精度要高.可靠度:越大越好估计你的年龄八成在21-28岁之间区间:越小越好被估参数可靠度范围、区间一、置信区间的定义(Confidence Interval )对于任意θ∈Θ,满足设总体X 的分布函数F (x ,θ)含有一个未知参数θ,θ∈Θ,对于给定常数α(0<α<1),若由抽自X 的样本X 1,X 2,…,X n 确定两个统计量112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα<<≥-112ˆ(,,,)nX X X θ212ˆ(,,,)nX X X θ和则称随机区间是θ的置信水平为1−α的置信区间.12ˆˆ(,)θθ和分别称为置信下限和置信上限.1ˆθ2ˆθ(1)当X 连续时,对于给定的α,可以求出置信区间满足此时,找区间使得至少为1−α,且尽可能接近1−α.12ˆˆ(,)θθ112212ˆˆ{(,,,)(,,,)}1nnP X X X X X X θθθα<<=-12ˆˆ(,)θθ112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα<<=-12ˆˆ()P θθθ<<(2)当X 离散时,对于给定的α,常常找不到区间满足12ˆˆ(,)θθ说明:(2)估计的精度要尽可能高. 如要求区间长度尽可能短,或者能体现该要求的其他准则.(1)要求θ以很大的可能被包含在区间内,即概率尽可能的大.可靠度与精度是一对矛盾,一般是在保证可靠度的条件下尽可能提高精度.12ˆˆ()P θθθ<<12ˆˆ(,)θθ21ˆˆθθ-(3)对于样本(X 1,X 2,…,X n )112212ˆˆ((,,,),(,,,))n n X X X X X X θθ以1−α的概率保证其包含未知参数的真值.随机区间112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα<<=-即有:(4)对于样本观测值(x 1,x 2,…,x n )可以理解为:该常数区间包含未知参数真值的可信程度为1−α.112212ˆˆ((,,,),(,,,))n n x x x x x x θθ常数区间只有两个结果,包含θ和不包含θ.此时,不能说:112212ˆˆ{(,,,)(,,,)}1n n P x x x x x x θθθα<<=-没有随机变量,自然不能谈概率如:取1−α=0.95.若反复抽样100次,样本观测值为112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα<<=-1121ˆˆ((,,),(,,))i i i in n x x x x θθ于是在100个常数区间中,包含参数真值的区间大约为95个,不包含真值的区间大约为5个.12,,,ii i nx x x1,2,,100i =对应的常数区间为1,2,,100i =对一个具体的区间而言,它可能包含θ,也可能不包含θ,包含θ的可信度为95%.1121ˆˆ((,,),(,,))i i i i nnx x x x θθ二、构造置信区间的方法枢轴量法1.寻求一个样本X 1,X 2,…,X n 和θ的函数W =W (X 1,X 2,…,X n ;θ),使得W 的分布不依赖于θ和其他未知参数,称具有这种性质的函数W 为枢轴量(Pivotal quantity ).3.若由不等式a <W (X 1,X 2,…,X n ;θ)<b 得到与之等价的θ的不等式2.对于给定的置信水平1−α,定出两个常数a 和b ,使得P {a <W (X 1,X 2,…,X n ;θ)<b }=1−α112212ˆˆ(,,,)(,,,)n n X X X X X X θθθ<<即有P {a <W (X 1, X 2,…, X n ;θ)<b }关键:1.枢轴量W (X 1, X 2,…, X n ;θ)的构造2.两个常数a ,b 的确定一般从θ的一个良好的点估计出发构造,比如MLE因此,是θ的一个置信水平为1−α的置信区间.112212ˆˆ{(,,,)(,,,)}1n n P X X X X X X θθθα=<<=-12ˆˆ(,)θθf (w )ababab1−α1−α1−α希望置信区间长度尽可能短.对于任意两个数a 和b ,只要使得f (w )下方的面积为1−α,就能确定一个1−α的置信区间.f(w)abab ab1−α1−α1−α当W 的密度函数单峰且对称时,如:N (0,1),t 分布等,当a =−b 时求得的置信区间的长度最短.如:b =z α/2或t α/2(n )当W 的密度函数不对称时,如χ2分布,F 分布,习惯上仍取对称的分位点来计算未知参数的置信区间.χ21−αα/2α/222()n αχ21-2()n αχ单个正态总体参数的区间估计一、单个正态总体的情形X 1, X 2,…, X n 为来自正态总体N (μ,σ2)的样本,置信水平1−α.样本均值样本方差11nii X X n ==∑2211()1nii S X X n ==--∑0-4-3-2-1012340.050.10.150.20.250.30.350.4是枢轴量W 是样本和待估参数的函数,其分布为N (0,1),完全已知由于是μ的MLE ,且是无偏估计,由抽样分布定理知X ~(0,1)X W N nμσ-=1.均值μ的置信区间(方差σ2已知情形)单峰对称-4-3-2-1012340.050.10.150.20.250.30.350.4即等价变形为选择两个常数b =−a =z α/222{}1X P z z nααμασ--<<=-22{}1P X z X z nnαασσμα-<<+=-1−αα/2α/2z α/2−z α/2简记为因此,参数μ的一个置信水平为1−α的置信区间为22(,)X z X z nnαασσ-+2()X z nασ±置信区间的长度为22n l z nασ=说明:2.置信区间的中心是样本均值;4.样本容量n 越大,置信区间越短,精度越高;1.l n 越小,置信区间提供的信息越精确;5.σ越大,则l n 越大,精度越低.因为方差越大,随机影响越大,精度越低.3.置信水平1−α越大,则z α/2越大.因此,置信区间长度越长,精度越低;22n l z nασ=22(,)X z X z nnαασσ-+2.均值μ的置信区间(方差σ2未知情形)想法:用样本标准差S 代替总体标准差σ.是枢轴量包含了未知未知参数σ,~(0,1)X W N nμσ-=此时,因此不能作为枢轴量.~(1)X T t n Snμ-=-由抽样分布理论知:使即枢轴量~(1)X T t n Snμ-=-22((1)(1))1X P t n t n Snααμα---<<-=-22{(1)(1)}1P t n T t n ααα--<<-=-选择两个常数b =−a =t α/2 (n -1)等价于因此,方差σ2未知情形下均值μ的一个置信水平为1−α的置信区间为22{(1)(1)}1S S P X t n X t n nnααμα--<<+-=-22((1),(1))X t n X t n nnαα--+-例1.现从中一大批糖果中随机取16袋,称得重量(以克记)如下:506508 499 503 504 510 497 512 514 505 493 496 506 502 509 496设每袋糖果的重量近似服从正态分布. 试求总体均值μ的置信水平为0.95的置信区间.解:这是单总体方差未知,总体均值的区间估计问题.均值μ的置信水平1−α的置信区间为22((1),(1))x t n x t n nnαα--+-根据给出的数据,算得这里10.95,16n α-==/20.025(1)(15) 2.1315t n t α-==503.75, 6.2022x s ==因此,μ的一个置信水平为0.95的置信区间为6.20226.2022(503.75 2.1315,503.75 2.1315)1616(500.4,507.1)-⨯+⨯=此区间包含μ的真值的可信度为95%.22((1),(1))x t n x t n nnαα--+-3.方差σ2的置信区间(均值μ未知)σ2的常用点估计为S 2,且是无偏估计。
数理统计12:枢轴量法、分位数、正态参数区间估计上篇⽂章中,我们探讨了区间估计的相关基本概念,也提出了Neyman置信区间,今天我们将聚焦于如何寻找置信区间的问题上,并对最常⽤的总体:正态总体给出⼀些置信区间的找法。
为了⽅便起见,以下我们都让置信⽔平为1−α。
由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:枢轴量法枢轴变量法是基于点估计量的。
我们知道,统计量是样本的函数,这意味着统计量中不能含有未知参数,⽽参数的点估计量是⽤统计量的观测值作为待估参数的估计值,其分布⼀定含有待估参数,枢轴量法的思想就是,通过⼀定的变换,让点估计的函数的分布不含待估参数,进⽽基于分布来构造区间估计。
举⼀个简单的例⼦,对于正态总体N(µ,4),显然¯X∼N(µ,4/n),这⾥¯X的分布含有未知参数µ。
构造其枢轴量,就是找到⼀个函数变换,使得新的随机变量分布不含未知参数。
注意,这⾥⽤了随机变量这个词⽽不是统计量,意味着枢轴量不是统计量,即不能由样本观测值计算出,这是因为虽然枢轴量的分布不含未知参数,但是枢轴量的表现形式含有未知参数。
显然,这⾥¯X−µ∼N(0,4 n),这样,¯X−µ的分布已知,⾃然容易找到⼀个常数区间[c,d],使得这个区间有1−α的概率包含¯X−µ的观测值,虽然此时我们不知道区间的端点是多少,但⾄少知道端点可以是固定的数c,d。
对枢轴量使⽤不等式变换,即¯X−µ∈[c,d]⇒µ∈[¯X−d,¯X−c],得到置信⽔平为1−α的置信区间。
这就是枢轴量法的操作步骤。
不同分布族的参数对于总体的意义是不同的。
像正态分布N(µ,σ2)的均值µ,均匀分布U(a,a+r)的起点a这种参数主要影响观测值的⼤⼩,可以直接通过X−µ,X−a的⼿段消除,这种参数称为位置参数;正态分布N(µ,σ2)的标准差σ,指数分布E(λ)的速率λ这种参数主要影响观测值的离散程度,可以通过X/σ,λX之类的⼿段消除,这种参数称为尺度参数。