大学数学(高数微积分)函数的单调性(课堂讲义)
- 格式:ppt
- 大小:1.31 MB
- 文档页数:30
《函数的单调性与导数》讲义一、函数单调性的定义在数学中,函数的单调性是指函数在某个区间上的增减性质。
具体来说,如果对于区间内的任意两个自变量的值\(x_1\)和\(x_2\),当\(x_1 < x_2\)时,都有\(f(x_1) < f(x_2)\),那么就称函数在这个区间上是单调递增的;反之,如果当\(x_1 < x_2\)时,都有\(f(x_1) > f(x_2)\),则称函数在这个区间上是单调递减的。
我们可以通过图像来直观地理解函数的单调性。
单调递增的函数图像是从左往右逐渐上升的,而单调递减的函数图像则是从左往右逐渐下降的。
二、导数的定义导数是微积分中的一个重要概念。
对于函数\(y = f(x)\),在点\(x\)处的导数定义为:\f'(x) =\lim_{\Delta x \to 0} \frac{f(x +\Delta x) f(x)}{\Delta x}\导数表示了函数在某一点处的变化率,也就是函数曲线在该点处的切线斜率。
三、函数单调性与导数的关系函数的单调性与导数之间有着密切的联系。
若函数\(f(x)\)在区间\((a,b)\)内可导,那么:(1)如果在\((a,b)\)内,\(f'(x) >0\),则函数\(f(x)\)在\((a,b)\)上单调递增。
这是因为导数大于零,意味着函数在每一点处的变化率都是正的,即函数值随着自变量的增加而增加,所以函数是单调递增的。
(2)如果在\((a,b)\)内,\(f'(x) <0\),则函数\(f(x)\)在\((a,b)\)上单调递减。
导数小于零,说明函数在每一点处的变化率为负,函数值随着自变量的增加而减小,从而函数是单调递减的。
(3)如果在\((a,b)\)内,\(f'(x) =0\),则函数\(f(x)\)在\((a,b)\)上是常函数。
导数为零,意味着函数在该区间内的变化率为零,函数值保持不变,即为常函数。
都江堰校区 (数学) 辅导讲义任课教师: 岳老师 Tel:课题函数的单调性基础盘查一 函数的单调性1.判断正误(1)所有的函数在其定义域上都具有单调性( ) (2)函数f (x )为R 上的减函数,则f (-3)>f (3)( )(3)在增函数与减函数的定义中,可以把“任意两个自变量”改为“存在两个自变量”( ) (4)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞)( )(5)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞)( ) 2.(人教A 版教材习题改编)函数y =x 2-2x (x ∈[2,4])的增区间为________.3.若函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则k 的取值范围是________. 基础盘查二 函数的最值4.判断正误(1)所有的单调函数都有最值( ) (2)函数y =1x 在[1,3]上的最小值为13( )5.(人教A 版教材例题改编)已知函数f (x )=2x -1(x ∈[2,6]),则函数的最大值为________.【答案】1.(1)× (2)√ (3)× (4)× (5)×;2.[2,4];3.⎝⎛⎭⎫-∞,-12;4.(1)× (2)√;5.2考点一 函数单调性的判断[必备知识1]:单调性的定义设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则有: (1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2).设x 1,x 2∈[a ,b ],如果f (x 1)-f (x 2)x 1-x 2>0,则f (x )在[a ,b ]上是单调递增函数,如果f (x 1)-f (x 2)x 1-x 2<0,则f (x )在[a ,b ]上是单调递减函数. [必备知识2]:确定单调性的方法(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间.(2)定义法:先求定义域,再取值—作差—变形—确定符号—下结论.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性写出它的单调区间.[典题例析]【例1】下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |【解析】选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.故选C.【例2】判断函数g (x )=-2xx -1在(1,+∞)上的单调性.【解】任取x 1,x 2∈(1,+∞),且x 1<x 2,则g (x 1)-g (x 2)=-2x 1x 1-1--2x 2x 2-1=2(x 1-x 2)(x 1-1)(x 2-1), 因为1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0,因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数.考点二 求函数的单调区间[必备知识2]:求函数的单调区间与确定单调性的方法一致[典题例析]【例3】 求下列函数的单调区间.(1)f (x )=3|x |; (2)f (x )=|x 2+2x -3|; (3)y =-x 2+2|x |+1.【解】(1)∵f (x )=3|x |=⎩⎪⎨⎪⎧3x , x ≥0,-3x , x <0.图象如图所示.f (x )在(-∞,0]上是减函数, 在[0,+∞)上是增函数.(2)令g (x )=x 2+2x -3=(x +1)2-4.先作出g (x )的图象,保留其在x 轴及x 轴上方部分,把它在x 轴下方 的图象翻到x 轴上方就得到f (x )=|x 2+2x -3|的图象,如图所示. 由图象易得:函数的递增区间是[-3,-1],[1,+∞); 函数的递减区间是(-∞,-3],[-1,1].(3)由于y =⎩⎪⎨⎪⎧ -x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1], 单调递减区间为[-1,0]和[1,+∞). 【例4】求函数y =x 2+x -6的单调区间. 【解】令u =x 2+x -6,y =x 2+x -6可以看作有y =u 与u =x 2+x -6的复合函数.由u =x 2+x -6≥0,得x ≤-3或x ≥2.∵u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数, 而y =u 在(0,+∞)上是增函数. ∴y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞).考点三 函数单调性的应用[必备知识3]复合函数单调性的判断利用函数单调性求最值的常用结论:如果函数y =f (x )在区间[a ,b ]上单调递增,在区间[b ,c ]上单调递减,则函数y =f (x ),x ∈[a ,c ]在x =b 处有最大值f (b );如果函数y =f (x )在区间[a ,b ]上单调递减,在区间[b ,c ]上单调递增,则函数y =f (x ),x ∈[a ,c ]在x =b 处有最小值f (b ).【多角探明】函数单调性的应用,归纳起来常见的命题角度有:(1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值.角度一:求函数的值域或最值【例5】函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.【解析】当x ≥1时,函数f (x )=1x为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.角度二:比较函数值或自变量的大小【例6】设函数f (x )是(-∞,+∞)上的减函数,则( ) A .f (a )>f (2a ) B .f (a 2)<f (a ) C .f (a 2+a )<f (a )D .f (a 2+1)<f (a )【解析】选D 由a 2+1-a =⎝⎛⎭⎫a -122+34,得a 2+1>a ,又∵f (x )是R 上的减函数,∴f (a 2+1)<f (a ). 【例7】(2014·广州模拟)已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为 ( )A .c <b <aB .b <a <cC .b <c <aD .a <b <c【解析】选B ∵函数图象关于x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,又y =f (x )在(1,+∞)上单调递增,∴f (2)<f ⎝⎛⎭⎫52<f (3),即b <a <c . 角度三:解函数不等式【例8】f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)【解析】选B 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.角度四:利用单调性求参数的取值范围或值【例9】已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2满足对任意的实数x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2)B .⎝⎛⎦⎤-∞,138 C .(-∞,2]D .⎣⎡⎭⎫138,2【解析】选B 由题意可知,函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,(a -2)×2≤⎝⎛⎭⎫122-1,由此解得a ≤138,即实数a 的取值范围是⎝⎛⎦⎤-∞,138 .[类题通法]函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数单调区间,与已知单调区间比较求参数; ②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的. (4)利用单调性求最值.应先确定函数的单调性,然后再由单调性求出最值.一、选择题1.下列说法中正确的有( )①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数;②函数y =x 2在R 上是增函数;③函数y =-1x 在定义域上是增函数;④y =1x的单调区间是(-∞,0)∪(0,+∞).A .0个B .1个C .2个D .3个【解析】选A 函数的单调性的定义是指定义在区间I 上任意两个值x 1,x 2,强调的是任意,从而①不对;②y =x 2在x ≥0时是增函数,x <0时是减函数,从而y =x 2在整个定义域上不具有单调性;③y =-1x 在整个定义域内不是单调递增函数,如-3<5而f (-3)>f (5);④y =1x 的单调递减区间不是(-∞,0)∪(0,+∞),而是(-∞,0)和(0,+∞),注意写法.2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)【解析】选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].3.(2015·黑龙江牡丹江月考)设函数f (x )定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f (x )=3x -1,则( )A .f ⎝⎛⎭⎫13<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫23 B .f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫13 C .f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫13<f ⎝⎛⎭⎫32D .f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫13【解析】选B 由题设知,当x <1时,f (x )单调递减,当x ≥1时,f (x )单调递增,而x =1为对称轴,∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫1+12=f ⎝⎛⎭⎫1-12=f ⎝⎛⎭⎫12,又13<12<23<1,∴f ⎝⎛⎭⎫13>f ⎝⎛⎭⎫12>f ⎝⎛⎭⎫23,即f ⎝⎛⎭⎫13>f ⎝⎛⎭⎫32>f ⎝⎛⎭⎫23. 4.(创新题)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12【解析】选C 由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.5.函数y =|x -3|-|x +1|的( )A .最小值是0,最大值是4B .最小值是-4,最大值是0C .最小值是-4,最大值是4D .没有最大值也没有最小值 【解析】选C y =|x -3|-|x +1|=⎩⎪⎨⎪⎧-4 (x ≥3)-2x +2 (-1≤x <3)4 (x <-1)作出图象可求.6.(2015·长春调研)已知定义在R 上的函数f (x )满足f (x )+f (-x )=0,且在(-∞,0)上单调递增,如果x 1+x 2<0且x 1x 2<0,则f (x 1)+f (x 2)的值( )A .可能为0B .恒大于0C .恒小于0D .可正可负【解析】选C 由x 1x 2<0不妨设x 1<0,x 2>0. ∵x 1+x 2<0,∴x 1<-x 2<0. 由f (x )+f (-x )=0知f (x )为奇函数.又由f (x )在(-∞,0)上单调递增得,f (x 1)<f (-x 2)=-f (x 2),所以f (x 1)+f (x 2)<0.故选C. 二、填空题7.已知函数f (x )为R 上的减函数,若f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1),则实数x 的取值范围是________. 【解析】由题意知f (x )为R 上的减函数且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1);则⎪⎪⎪⎪1x >1,即|x |<1,且x ≠0.故-1<x <1且x ≠0. 8.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________. 【解析】函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a , 画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性, 因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞)9.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.【解析】由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).10.设函数f (x )=ax +1x +2a 在区间(-2,+∞)上是增函数,那么a 的取值范围是________.【解析】f (x )=ax +2a 2-2a 2+1x +2a =a -2a 2-1x +2a,∵函数f (x )在区间(-2,+∞)上是增函数.∴⎩⎪⎨⎪⎧2a 2-1>0,-2a ≤-2⇒⎩⎨⎧2a 2-1>0,a ≥1⇒a ≥1.答案 [1,+∞)三、解答题11.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.【解】(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)∵f (x )在(0,+∞)上是单调递减函数.∴f (x )在[2,9]上的最小值为f (9). 由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.12.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数; (2)求f (x )在[-3,3]上的最大值和最小值.【证明】(1)设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2).又∵当x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),∴f(x)在R上为减函数.(2)∵f(x)在R上是减函数,∴f(x)在[-3,3]上也是减函数,∴f(x)在[-3,3]上的最大值和最小值分别为f(-3)与f(3).而f(3)=3f(1)=-2,f(-3)=-f(3)=2.∴f(x)在[-3,3]上的最大值为2,最小值为-2.13.函数f(x)对任意的m、n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(3)=4,解不等式f(a2+a-5)<2.【解】(1)设x1<x2,∴x2-x1>0,∵当x>0时,f(x)>1,∴f(x2-x1)>1.f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1,∴f(x2)-f(x1)=f(x2-x1)-1>0⇒f(x1)<f(x2),∴f(x)在R上为增函数.(2)∵m,n∈R,不妨设m=n=1,∴f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴f(1)=2,∴f(a2+a-5)<2=f(1),∵f(x)在R上为增函数,∴a2+a-5<1⇒-3<a<2,即a∈(-3,2).。
函数的单调性讲义(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--海豚教育个性化简案海豚教育错题汇编海豚教育个性化教案海豚教育个性化教案(真题演练)海豚教育1对1出门考(_______年______月______日周_____)学生姓名_____________ 学校_____________ 年级______________ 等第1. 函数2()2f x x x=-的单调增区间是()A. (,1]-∞ B. [1,)+∞ C. R D.不存在2. 在区间(,0)-∞上为增函数的是()A.2y x=- B.2yx= C.||y x= D.2y x=-3.若函数f(x)=4x2-kx-8在[5,8]上是单调函数,则k的取值范围是( )A.(-∞,40] B.[40,64] C.(-∞,40]∪[64,+∞) D.[64,+∞)4.如果二次函数y=5x2-nx-10在区间(-∞,1]上是减函数,在[1,+∞)上是增函数,则n的值是( )A.1 B.-1 C.10 D.-105.函数()|2|f x x=-的单调递增区间是,6.函数f(x)图象如下图所示,函数的单调递减区间是________.7. 函数f(x)=822+--xx的单调减区间。
8. 若函数f(x)在(-2,3)上是增函数,则y=f(x+5)的递增区间是。
9. 已知函数21)(-=xxf.(1)求f(x)的定义域;(2)证明:函数f(x)在(0,+∞)上为减函数.评语:3A作业:周一:周二:周三:周四:周五:作业要求在月日之前完成。