《高等数学》函数的单调性与曲线的凹凸性
- 格式:pdf
- 大小:545.63 KB
- 文档页数:13
§3.4 函数的单调性与曲线的凹凸性一、函数单调性的判别法 定理1 设)(x f 在区间I 上可导,则)(x f 在I 上递增(减)的充要条件是)()('00≤≥x f .证 若f为增函数,则对每一I x ∈0,当0x x ≠时,有()()000≥--x x x f x f 。
令0x x →,即得00≥)('x f 。
反之,若)(x f 在区间I 上恒有0≥)('x f ,则对任意I x x ∈21,(设21x x <),应用拉格朗日定理,存在,使得()()()01212≥-=-x x f x f x f ξ')(。
由此证得f 在I 上为增函数。
定理2 若函数f 在),(b a 内可导,则f 在),(b a 内严格递增(递减)的充要条件是:(1)),(b a x ∈∀有)()('00≤≥x f ;(2) 在),(b a 内的任何子区间上0≠)('x f .推论 设函数在区间I 上可微,若))('()('00<>x f x f , 则f 在I 上(严格)递增(递减).注1 若函数f 在),(b a 内(严格)递增(递减),且在点a 右连续,则f在),[b a 上亦为(严格)递增(递减), 对右端点b 可类似讨论.注2 如果函数)(x f 在定义区间上连续,除去有限个导数不存在的点外,导数存在且连续,那么只要用方程0=)('x f 的根及)('x f 不存在的点来划分函数)(x f 的定义区间就能保证)('x f 在各个部分区间保持固定符号,因而函数)(x f 在每个部分区间上单调。
注意:如果函数)(x f 在区间],[b a 上连续,在),(b a 内除个别点处一阶导数为零或不存在外,在其余点上都有0>)('x f (或0<)('x f ),那么由于连续性,)(x f 在区间],[b a 上仍然是单调增加(或单调减少)的。
§3.4 函数的单调性与曲线的凹凸性教学内容:一.函数的单调性1.定理:设函数()f x 在区间I 上可导,对一切x I ∈有(1)()0f x '>,则函数()f x 在I 上单调增加;(2)()0f x '<,则函数()f x 在I 上单调减少.2.讨论函数单调性的步骤如下:(1) 确定()f x 的定义域;(2) 求f x '(),并求出()f x 单调区间所有可能的分界点(包括()0'=f x 的驻点、()'f x 不存在的点、()f x 的间断点),并根据分界点把定义域分成相应的区间;(3) 判断一阶导数()'f x 在各区间内的符号,从而判断函数在各区间中的单调性.二.曲线的凹凸性与拐点1.定义:设函数()f x 在区间I 上连续,如果对I 上任意两点1x 和2x ,总有1212()()22++⎛⎫< ⎪⎝⎭x x f x f x f ,则称在区间I 上的图形是凹的(或下凸的);如果总有1212()()22++⎛⎫> ⎪⎝⎭x x f x f x f ,则称在区间I 上的图形是凸的(或下凸的).2.定义:设函数()f x 在开区间(,)a b 内可导, 如果在该区间内()f x 的曲线位于其上任何一点切线的上方,则称该曲线在(,)a b 内是凹的,区间(,)a b 称为凹区间;反之,如果()f x 的曲线位于其上任一点切线的下方,则称该曲线在(,)a b 内是凸的,区间(,)a b 称为凸区间.曲线上凹凸区间的分界点称为曲线的拐点.注:拐点是位于曲线上而不是坐标轴上的点,因此应表示为00(,())x f x ,而0x x =仅是拐点的横坐标,若要表示拐点,必须算出相应的纵坐标0()f x .3.定理:设函数()f x 在[,]a b 上连续,在(,)a b 内二阶可导,那么(1)若对(,)x a b ∀∈,()0f x ''>,则()f x 在[,]a b 上的图形是凹的;(2)若对(,)x a b ∀∈,()0f x ''<,则()f x 在[,]a b 上的图形是凸的.4.求函数的凹凸区间和拐点的步骤:(1)确定函数的连续区间(初等函数即为定义域);(2)求出函数二阶导数,并解出二阶导数为零的点和二阶导数不存在的点,划分连续区间;(3)依次判断每个区间上二阶导数的符号,确定每个区间的凹凸性,并进一步求出拐点坐标.。