高等数学函数的单调性和极值
- 格式:ppt
- 大小:1.29 MB
- 文档页数:31
大专大一高数知识点高等数学作为大一学生的必修课程,是一门基础且重要的学科。
掌握了高数的基本知识点,对于后续专业课程的学习以及日常生活中的实际问题解决都有着重要的帮助。
本文将对大专大一高数的知识点进行系统整理和介绍。
一、函数与极限1. 函数与映射关系:函数的定义,自变量、因变量和函数值的概念,函数图像的性质等。
2. 极限与连续:数列的极限概念,函数极限的定义与性质,常见极限运算法则,连续函数的定义与判定等。
3. 一元函数的导数与微分:导数的定义与性质,常见导数运算法则,函数的微分与微分近似计算等。
二、一元函数的应用1. 函数的增减性与极值:函数单调性的判定方法,函数的极大值与极小值的求解等。
2. 函数的单调性与曲线的凹凸性:函数的凹凸性与拐点的判定方法,曲线的拐点与凹凸区间等。
3. 常用函数与数学模型:幂函数、指数函数、对数函数、三角函数等常见函数的性质与应用。
三、二元函数与多元函数1. 二元函数的概念与性质:二元函数的定义与图像,二元函数的极限、连续与偏导数等。
2. 多元函数的极限与连续:多元函数的定义与性质,多元函数的极限定义与计算,多元函数的连续性与判定等。
3. 多元函数的偏导数与全微分:多元函数的偏导数与偏导数的计算方法,全微分的概念与计算等。
四、多元函数的应用1. 多元函数的极值与条件极值:多元函数的极值与条件极值的求解方法,拉格朗日乘数法等。
2. 多元函数的偏导数与梯度:多元函数的偏导数在几何上的意义,梯度的概念与性质等。
3. 二重积分与三重积分:二重积分的定义与计算方法,三重积分的定义与计算方法等。
五、常微分方程1. 常微分方程的基本概念:常微分方程的定义与分类,初值问题的理解与解的存在唯一性定理等。
2. 一阶常微分方程的解法:可分离变量方程、线性方程、齐次方程、一阶齐次线性方程等的求解方法。
3. 高阶线性常微分方程:高阶常微分方程的解法,常系数线性齐次方程的解法,常系数线性非齐次方程的特解与通解等。
函数单调性和求极值点、最值(知识点及相关练习)本文档将介绍函数的单调性以及如何求函数的极值点和最值。
这些概念是在研究高等数学中非常重要的一部分。
函数的单调性函数的单调性描述了函数图像在定义域内的变化趋势。
一个函数可以是递增的(单调递增),也可以是递减的(单调递减),或者在某个区间内既递增又递减。
判断函数的单调性需要观察函数的导数。
如果函数的导数恒大于零(导函数递增),则函数单调递增;如果导数恒小于零(导函数递减),则函数单调递减。
如果导数在某个区间内既大于零又小于零,则函数在该区间内既递增又递减。
下面是一些相关联系。
练题:1. 设函数 $f(x)=x^3-3x^2+2$,求 $f(x)$ 的单调区间。
- 解答:- 首先求导数:$f'(x)=3x^2-6x$- 然后求解 $f'(x)=0$ 的解,即 $3x^2-6x=0$ ,解得 $x=0, 2$- 将 $x=0$ 和 $x=2$ 代入 $f'(x)$ 的导数符号表,得到如下结果:| $x$ | $(-\infty,0)$ | $(0,2)$ | $(2,+\infty)$ |- 由上表可以看出,函数 $f(x)$ 在区间 $(-\infty, 0)$ 上递减,在区间 $(0,2)$ 上递增,而在区间 $(2,+\infty)$ 上递增,所以函数的单调区间分别为 $(-\infty, 0)$ 和 $(2,+\infty)$。
求函数的极值点和最值函数的极值点是函数某一段上的极大值或极小值点。
函数的最大值和最小值是函数在整个定义域上的最大值和最小值。
为了求函数的极值点和最值,我们需要找到函数的临界点和边界点。
- 临界点:函数定义域内导数为零或不存在的点。
- 边界点:函数定义域的端点。
对于一个函数,如果它有极值点,那么极值点一定在函数的临界点和边界点处。
下面是一些相关练。
练题:1. 设函数 $g(x)=x^3-6x^2+9x+2$,求 $g(x)$ 的极值点和最值。
函数的单调性及其极值单调性是函数的重要性态之一,它既决定着函数递增和递减的状况,又能帮助我们研究函数的极值,还能证明某些不等式和分析函数的图形。
本节将以导数为工具,给出函数单调性的判别法及极值的求法。
一、函数的单调性1、函数单调性的判定为利用导数研究函数的单调性,我们首先来看图133--)(a 、)(b 。
图133--)(a 中函数)(x f y =的图像在),(b a 内沿x 轴的正向上升,除点))(,(ξξf 处的切线平行于x 轴外,)(a )(b 图133--曲线上其余点处的切线与x 轴的夹角均为锐角,即曲线)(x f y =在区间),(b a 内除个别点外切线的斜率为正;而图133--)(b 中函数)(x f y =的图像在),(b a 内沿x 轴的正向下降,除个别点外,曲线上其余点处的切线与x 轴的夹角均为钝角,即曲线)(x f y =在区间),(b a 内除个别点外切线的斜率为负。
由此可见函数的单调性与导数的符号有着密切的联系。
反过来,能否用导数的符号来判定函数的单调性呢?下面我们利用拉格朗日中值定理来讨论。
设函数)(x f 在区间I 内可导,在I 内任取两点1x 和2x (21x x <),在区间],[21x x 上应用拉格朗日中值定理,得)()()()(1212x x f x f x f -'=-ξ (21x x <<ξ) (1)由于在(1)式中012>-x x ,因此,若在I 内导数)(x f '的符号保持为正,即0)(>'x f ,那么也有0)(>'ξf ,于是0)()()()(1212>-'=-x x f x f x f ξ即 )()(21x f x f <表明函数)(x f 在区间I 上单调增加。
同理,若在I 内导数)(x f '的符号保持为负,即0)(<'x f ,那么也有0)(<'ξf ,于是0)()()()(1212<-'=-x x f x f x f ξ即 )()(21x f x f > 表明函数)(x f 在区间I 上单调减少。
第一章 函数、极限和连续§ 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=fx, x ∈D定义域: Df, 值域: Zf.2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y 3.隐函数: Fx,y= 04.反函数: y=fx → x=φy=f -1y y=f -1 x定理:如果函数: y=fx, Df=X, Zf=Y 是严格单调增加或减少的; 则它必定存在反函数:y=f -1x, Df -1=Y, Zf -1=X且也是严格单调增加或减少的;㈡ 函数的几何特性1.函数的单调性: y=fx,x ∈D,x 1、x 2∈D 当x 1<x 2时,若fx 1≤fx 2,则称fx 在D 内单调增加 ;若fx 1≥fx 2,则称fx 在D 内单调减少 ;若fx 1<fx 2,则称fx 在D 内严格单调增加 ;若fx 1>fx 2,则称fx 在D 内严格单调减少 ;2.函数的奇偶性:Df 关于原点对称 偶函数:f-x=fx 奇函数:f-x=-fx3.函数的周期性:周期函数:fx+T=fx, x ∈-∞,+∞ 周期:T ——最小的正数4.函数的有界性: |fx|≤M , x ∈a,b ㈢ 基本初等函数1.常数函数: y=c , c 为常数2.幂函数: y=x n , n 为实数3.指数函数: y=a x , a >0、a ≠14.对数函数: y=log a x ,a >0、a ≠15.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=fu , u=φxy=f φx , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算加、减、乘、除和复合所构成的,并且能用一个数学式子表示的函数§ 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:Aynn =∞→lim称数列{}n y 以常数A 为极限; 或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限:⑴当∞→x 时,)(x f 的极限:⑵当0x x →时,)(x f 的极限:左极限:Ax f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件:定理:AxfxfAxfxxxxxx==⇔=+-→→→)(lim)(lim)(lim㈡无穷大量和无穷小量1.无穷大量:+∞=)(lim xf称在该变化过程中)(xf为无穷大量;X再某个变化过程是指:2.无穷小量:)(lim=xf称在该变化过程中)(xf为无穷小量;3.无穷大量与无穷小量的关系:定理:)0)((,)(1lim)(lim≠+∞=⇔=xfxfxf4.无穷小量的比较:lim,0lim==βα⑴若lim=αβ,则称β是比α较高阶的无穷小量;⑵若c=αβlimc为常数,则称β与α同阶的无穷小量;⑶若1lim=αβ,则称β与α是等价的无穷小量,记作:β~α;⑷若∞=αβlim ,则称β是比α较低阶的无穷小量; 定理:若:;,2211~~βαβα则:2121limlim ββαα=㈢两面夹定理1. 数列极限存在的判定准则:设:n n n z x y ≤≤ n=1、2、3…且: a z y n n n n ==∞→∞→lim lim则: a x n n =∞→lim2. 函数极限存在的判定准则: 设:对于点x 0的某个邻域内的一切点 点x 0除外有:且:Ax h x g x x x x ==→→)(lim )(lim 0则:A x f x x =→)(lim 0㈣极限的运算规则若:B x v A x u ==)(lim ,)(lim则:①B A x v x u x v x u ±=±=±)(lim )(lim )]()(lim[②B A x v x u x v x u ⋅=⋅=⋅)(lim )(lim )]()(lim[③BA x v x u x v x u ==)(lim )(lim )()(lim )0)((lim ≠x v 推论:①)]()()(lim [21x u x u x u n ±±±②)(lim )](lim[x u c x u c ⋅=⋅③nnx u x u )]([lim )](lim [=㈤两个重要极限1.1sin lim 0=→xxx 或 1)()(sin lim 0)(=→x x x ϕϕϕ 2.e xxx =+∞→)11(lim e x xx =+→10)1(lim§ 连续一、主要内容㈠ 函数的连续性 1. 函数在0x 处连续:)(x f 在0x 的邻域内有定义,1o 0)]()([lim lim 000=-∆+=∆→∆→∆x f x x f y x x2o)()(lim 00x f x f x x =→左连续:)()(lim 00x f x f x x =-→右连续:)()(lim 00x f x f x x =+→2. 函数在0x 处连续的必要条件:定理:)(x f 在0x 处连续⇒)(x f 在0x 处极限存在3. 函数在0x 处连续的充要条件:定理:)()(lim )(lim )()(lim 000x f x f x f x f x f x x x x x x ==⇔=+-→→→4. 函数在[]b a ,上连续:)(x f 在[]b a ,上每一点都连续;在端点a 和b 连续是指:)()(lim a f x f ax =+→ 左端点右连续;)()(lim b f x f b x =-→ 右端点左连续;a + 0b - x 5. 函数的间断点:若)(x f 在0x 处不连续,则0x 为)(x f 的间断点;间断点有三种情况:1o)(x f在0x 处无定义;2o)(lim 0x f x x →不存在;3o)(x f在0x 处有定义,且)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→;两类间断点的判断: 1o 第一类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→都存在;可去间断点:)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→,或)(x f在0x 处无定义;2o 第二类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞,或)(lim 0x f x x →振荡不存在;无穷间断点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞㈡函数在0x 处连续的性质1.连续函数的四则运算:设)()(lim 00x f x f x x =→,)()(lim 00x g x g x x =→1o)()()]()([lim 000x g x f x g x f x x ±=±→2o)()()]()([lim 000x g x f x g x f x x ⋅=⋅→3o)()()()(lim 000x g x f x g x f x x =→ ⎪⎭⎫ ⎝⎛≠→0)(lim 0x g x x2. 复合函数的连续性:则:)]([)](lim [)]([lim 00x f x f x f x x x x ϕϕϕ==→→3.反函数的连续性:㈢函数在],[b a 上连续的性质1.最大值与最小值定理:)(x f 在],[b a 上连续⇒)(x f 在],[b a 上一定存在最大值与最小值;fx0 a b xm-M0 ab x2.有界定理:) (xf在],[ba上连续⇒)(x f在],[b a上一定有界;3.介值定理:) (xf在],[ba上连续⇒在),(b a内至少存在一点ξ,使得:cf=)(ξ,其中:Mcm≤≤y yCfx0 a ξm0 a ξ1 ξ2 b x 推论:)(x f 在],[b a 上连续,且)(a f 与)(b f 异号⇒在),(b a 内至少存在一点ξ,使得:0)(=ξf ;4.初等函数的连续性:初等函数在其定域区间内都是连续的; 第二章 一元函数微分学 § 导数与微分 一、主要内容 ㈠导数的概念1.导数:)(x f y =在0x 的某个邻域内有定义, 2.左导数:00)()(lim )(0x x x f x f x f x x --='-→- 右导数:00)()(lim )(0x x x f x f x f x x --='+→+ 定理:)(x f 在0x 的左或右邻域上连续在其内可导,且极限存在;则:)(lim )(00x f x f x x '='-→-或:)(lim )(00x f x f x x '='+→+3.函数可导的必要条件:定理:)(x f 在0x 处可导⇒)(x f 在0x 处连续4. 函数可导的充要条件:定理:)(00x f y x x '='=存在)()(00x f x f +-'='⇒,且存在;5.导函数: ),(x f y '=' ),(b a x ∈)(x f 在),(b a 内处处可导; y )(0x f '6.导数的几何性质: y ∆)(0x f '是曲线)(x f y =上点 ∆()00,y x M 处切线的斜率; o x 0㈡求导法则 1.基本求导公式: 2.导数的四则运算: 1o v u v u '±'='±)(2ov u v u v u '⋅+⋅'='⋅)(3o2v v u v u v u '⋅-⋅'='⎪⎭⎫⎝⎛ )0(≠v 3.复合函数的导数:dxdu du dy dx dy ⋅=,或 )()]([})]([{x x f x f ϕϕϕ'⋅'=' ☆注意})]([{'x f ϕ与)]([x f ϕ'的区别:})]([{'x f ϕ表示复合函数对自变量x 求导;)]([x f ϕ'表示复合函数对中间变量)(x ϕ求导;4.高阶导数:)(),(),()3(x f x f x f 或'''''函数的n 阶导数等于其n-1导数的导数; ㈢微分的概念 1.微分:)(x f 在x 的某个邻域内有定义,其中:)(x A 与x ∆无关,)(x o ∆是比x ∆较高阶的无穷小量,即:0)(lim 0=∆∆→∆x x o x 则称)(x f y =在x 处可微,记作:2.导数与微分的等价关系: 定理:)(x f 在x 处可微)(x f ⇒在x 处可导,且:)()(x A x f ='3.微分形式不变性:不论u 是自变量,还是中间变量,函数的微分dy 都具有相同的形式;§ 中值定理及导数的应用 一、主要内容 ㈠中值定理1.罗尔定理: )(x f 满足条件:y)(ξf ' )(x fa o ξb x a o x2.拉格朗日定理:)(x f 满足条件:㈡罗必塔法则:∞∞,型未定式 定理:)(x f 和)(x g 满足条件:1o)或)或∞=∞=→→(0)(lim (0)(lim x g x f ax ax ;2o 在点a 的某个邻域内可导,且0)(≠'x g ;3o)(或∞=''∞→,)()(lim )(A x g x f a x则:)(或∞=''=∞→∞→,)()(lim )()(lim )()(A x g x f x g x f a x a x☆注意:1o 法则的意义:把函数之比的极限化成了它们导数之比的极限; 2o若不满足法则的条件,不能使用法则;即不是型或∞∞型时,不可求导;3o 应用法则时,要分别对分子、分母 求导,而不是对整个分式求导; 4o 若)(x f '和)(x g '还满足法则的条件,可以继续使用法则,即: 5o 若函数是∞-∞∞⋅,0型可采用代数变形,化成或∞∞型;若是0,0,1∞∞型可采用对数或指数变形,化成或∞∞型;㈢导数的应用 1.切线方程和法线方程:设:),(),(00y x M x f y =切线方程:))((000x x x f y y -'=-法线方程:)0)((),()(10000≠'-'-=-x f x x x f y y 2. 曲线的单调性:⑴),(0)(b a x x f ∈≥'内单调增加;在),()(b a x f ⇒⑵),(0)(b a x x f ∈>'内严格单调增加;在),(b a ⇒3.函数的极值: ⑴极值的定义:设)(x f 在),(b a 内有定义,0x 是),(b a 内的一点;若对于x 的某个邻域内的任意点x x ≠,都有:则称)(0x f 是)(x f 的一个极大值或极小值,称x 为)(x f 的极大值点或极小值点;⑵极值存在的必要条件:定理:)()(.2)()(.1=⇒⎭⎬⎫'xfxfxfxf存在。
高数大一第一章知识点总结大一的高等数学课程是大多数理工科学生的必修课程之一。
第一章是高等数学基础知识的引入部分,通过对实数、数列、函数的介绍和探讨,为后续的学习打下了坚实的基础。
本文将对第一章的主要知识点进行总结和归纳,帮助大家更好地理解和掌握这些概念。
一、实数集在第一章的开头,我们首先学习了实数集的概念。
实数集包括有理数和无理数两个部分,有理数可以表示为两个整数的比值,而无理数则不能用有理数表示。
实数集是一个无限且连续的集合,在数轴上可以无间断地排列。
二、数列数列是指按照一定规律依次排列的一组数,其中每个数被称为数列的项。
我们学习了等差数列和等比数列两种特殊的数列。
等差数列的相邻两项之差相等,而等比数列的相邻两项之比相等。
通过数列的概念和性质,我们可以在实际问题中进行抽象和分析,进而解决问题。
三、函数函数是一个非常重要的数学概念,它描述了一种变化关系。
在第一章中,我们主要学习了常用的一元函数,即自变量只有一个的函数。
函数可以用图像、公式和数据表达,在不同的形式中都会有各自的特点和应用。
通过函数,我们可以描绘出数学模型,进行定性和定量的分析,从而更好地理解和解决实际问题。
四、数学归纳法数学归纳法是一种重要的证明方法,它常用于证明数学命题和推导结论。
归纳法分为数学归纳法的第一原理和第二原理。
第一原理是指证明基线的真实性,即当 n 取某个特定值时命题成立;第二原理是指证明当 n=k 成立时,n=k+1 也成立。
通过数学归纳法的使用,我们可以简化证明的步骤,并提高证明的准确性。
五、反证法反证法是另一种常用的证明方法。
它通过假设命题的反面是成立的,然后引出矛盾,从而推导出最初的命题是正确的。
反证法在证明某些数学规律或命题时非常有效,能够极大地提高证明的简洁性和可靠性。
六、函数的单调性和极值在学习了函数的定义和性质后,我们接着研究了函数的单调性和极值。
函数的单调性描述了函数在定义域内的增减关系,可以分为单调递增和单调递减两种情况。
大一高数知识点笔记高等数学是大学理工科专业的重要基础课程,对于大一新生来说,掌握好这门课程的知识点至关重要。
以下是我整理的大一高数的一些重要知识点,希望能对大家的学习有所帮助。
一、函数与极限1、函数的概念函数是一种从一个集合(定义域)到另一个集合(值域)的对应关系。
简单来说,对于定义域内的每一个输入值,都有唯一的输出值与之对应。
函数的表示方法有解析式法、图像法和列表法。
2、函数的性质(1)奇偶性:若对于定义域内的任意 x ,都有 f(x) = f(x) ,则函数为偶函数;若 f(x) = f(x) ,则函数为奇函数。
(2)单调性:若对于定义域内的任意 x₁< x₂,都有 f(x₁) <f(x₂) ,则函数在该区间上单调递增;若 f(x₁) > f(x₂) ,则函数在该区间上单调递减。
3、极限的概念极限是指当自变量趋近于某个值或无穷大时,函数值趋近于的一个确定的值。
4、极限的计算(1)直接代入法:若函数在极限点处连续,则可直接将极限点代入函数计算。
(2)有理化法:对于含有根式的分式,可通过有理化来消除根式,从而计算极限。
(3)等价无穷小替换:当x → 0 时,sin x ~ x ,tan x ~ x ,e^x1 ~ x 等,利用等价无穷小可以简化极限的计算。
5、两个重要极限(1)lim(x→0) (sin x / x) = 1(2)lim(x→∞)(1 + 1/x)^x = e二、导数与微分1、导数的定义函数在某一点的导数是函数在该点的瞬时变化率,即 f'(x₀) =lim(Δx→0) f(x₀+Δx) f(x₀) /Δx2、导数的几何意义函数在某一点的导数就是该点处切线的斜率。
3、基本初等函数的导数公式(1)(C)'= 0 (C 为常数)(2)(x^n)'= nx^(n 1)(3)(sin x)'= cos x(4)(cos x)'= sin x(5)(e^x)'= e^x(6)(ln x)'= 1 / x4、导数的四则运算(1)(u ± v)'= u' ± v'(2)(uv)'= u'v + uv'(3)(u / v)'=(u'v uv')/ v²(v ≠ 0)5、复合函数的求导法则设 y = f(u) ,u = g(x) ,则复合函数 y = fg(x) 的导数为 y' = f'(u) g'(x)6、微分的定义函数的微分是函数增量的线性主部,即 dy = f'(x)dx三、中值定理与导数的应用1、罗尔定理如果函数 f(x) 满足:(1)在闭区间 a, b 上连续;(2)在开区间(a, b) 内可导;(3)f(a) = f(b) ,那么在区间(a, b) 内至少存在一点ξ ,使得 f'(ξ) = 0 。
第二节 导数在研究函数中的应用第1课时 系统知识牢基础——导数与函数的单调性、极值与最值知识点一 利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与f ′(x )的关系 (1)若f ′(x )>0,则f (x )在这个区间上单调递增. (2)若f ′(x )<0,则f (x )在这个区间上单调递减. (3)若f ′(x )=0,则f (x )在这个区间上是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f ′(x ).(2)在定义域内解不等式f ′(x )>0或f ′(x )<0. (3)根据结果确定f (x )的单调性及单调区间.[提醒] (1)讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.(2)有相同单调性的单调区间不止一个时,用“,”隔开或用“和”连接,不能用“∪”连接. (3)若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.[重温经典]1.(多选·教材改编题)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下列判断正确的是( ) A .在区间(-2,1)上f (x )是增函数 B .在区间(2,3)上f (x )是减函数 C .在区间(4,5)上f (x )是增函数 D .当x =2时,f (x )取到极大值 答案:BCD2.(教材改编题)函数y =x 4-2x 2+5的单调递减区间为( ) A .(-∞,-1)和(0,1) B .[-1,0]和[1,+∞) C .[-1,1] D .(-∞,-1]和[1,+∞)答案:A3.(易错题)若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是( ) A.⎝⎛⎭⎫13,+∞ B .⎝⎛⎦⎤-∞,13C.⎣⎡⎭⎫13,+∞ D .⎝⎛⎭⎫-∞,13 解析:选C y ′=3x 2+2x +m ,由条件知y ′≥0在R 上恒成立,∴Δ=4-12m ≤0,∴m ≥13.4.若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x .因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k ≥1x 在区间(1,+∞)上恒成立.因为x >1,所以0<1x <1,所以k ≥1.故选D.5.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围是________.解析:∵y ′=-4x 2+a ,且y 有三个单调区间,∴方程y ′=-4x 2+a =0有两个不等的实根,∴Δ=02-4×(-4)×a >0,∴a >0. 答案:(0,+∞)6.设函数f (x )在(a ,b )上的导函数为f ′(x ),f ′(x )在(a ,b )上的导函数为f ″(x ),若在(a ,b )上,f ″(x )<0恒成立,则称函数f (x )在(a ,b )上为“凸函数”.已知f (x )=x 44-t 3x 3+32x 2在(1,4)上为“凸函数”,则实数t 的取值范围是________.解析:由f (x )=x 44-t 3x 3+32x 2可得f ′(x )=x 3-tx 2+3x ,f ″(x )=3x 2-2tx +3,∵f (x )在(1,4)上为“凸函数”,∴x ∈(1,4)时,3x 2-2tx +3<0恒成立,∴t >32⎝⎛⎭⎫x +1x 恒成立. 令g (x )=32⎝⎛⎭⎫x +1x ,∵g (x )在(1,4)上单调递增, ∴t ≥g (4)=518.∴实数t 的取值范围是⎣⎡⎭⎫518,+∞. 答案:⎣⎡⎭⎫518,+∞知识点二 利用导数研究函数的极值 1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值. 2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.[提醒] (1)极值点不是点,若函数f (x )在x 1处取得极大值,则x 1为极大值点,极大值为f (x 1);在x 2处取得极小值,则x 2为极小值点,极小值为f (x 2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.(3)f ′(x 0)=0是x 0为f (x )的极值点的必要而非充分条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点.[重温经典]1.(多选)(2021·福州模拟)下列函数中,存在极值点的是( ) A .y =x -1xB .y =2|x |C .y =-2x 3-xD .y =x ln x解析:选BD 由题意函数y =x -1x ,则y ′=1+1x2>0,所以函数y =x -1x 在(-∞,0),(0,+∞)内单调递增,没有极值点;函数y =2|x |=⎩⎪⎨⎪⎧2x ,x ≥0,2-x ,x <0,根据指数函数的图象与性质可得,当x <0时,函数y =2|x |单调递减,当x >0时,函数y =2|x |单调递增,所以函数y =2|x |在x =0处取得极小值;函数y =-2x 3-x ,则y ′=-6x 2-1<0,所以函数y =-2x 3-x 在R 上单调递减,没有极值点;函数y =x ln x ,则y ′=ln x +1,当x ∈⎝⎛⎭⎫0,1e 时,y ′<0,函数单调递减,当x ∈⎝⎛⎭⎫1e ,+∞时,y ′>0,函数单调递增,当x =1e 时,函数取得极小值,故选B 、D.2.(教材改编题)如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( ) A .1 B .2 C .3D .4解析:选A 由图象及极值点的定义知,f (x )只有一个极小值点.3.(教材改编题)若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 的值为( ) A .2 B .3 C .4D .5解析:选D f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2a ×(-3)+3=0,解得a =5.4.(多选)材料:函数是描述客观世界变化规律的重要数学模型,在现行的高等数学与数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的,如函数f(x)=x x(x>0),我们可以作变形:f(x)=x x=eln x x=e x ln x=e t(t=x ln x),所以f(x)可看作是由函数f(t)=e t和g(x)=x ln x复合而成的,即f(x)=x x(x>0)为初等函数.根据以上材料,对于初等函数h(x)=x 1x(x>0)的说法正确的是()A.无极小值B.有极小值1C.无极大值D.有极大值e 1 e解析:选AD根据材料知:h(x)=x 1x=e1ln xx=e1ln xx,所以h′(x)=e 1ln xx·⎝⎛⎭⎫1x ln x′=e1ln xx·⎝⎛⎭⎫-1x2ln x+1x2=1x2e1ln xx(1-ln x),令h′(x)=0得x=e,当0<x<e时,h′(x)>0,此时函数h(x)单调递增;当x>e时,h′(x)<0,此时函数h(x)单调递减.所以h(x)有极大值且为h(e)=e 1e,无极小值.5.若x=-2是函数f(x)=(x2+ax-1)e x的极值点,则f′(-2)=________,f(x)的极小值为________.解析:由函数f(x)=(x2+ax-1)e x可得f′(x)=(2x+a)e x+(x2+ax-1)e x,因为x=-2是函数f(x)的极值点,所以f′(-2)=(-4+a)e-2+(4-2a-1)e-2=0,即-4+a+3-2a=0,解得a=-1.所以f′(x)=(x2+x-2)e x.令f′(x)=0可得x=-2或x=1.当x<-2或x>1时,f′(x)>0,此时函数f(x)为增函数,当-2<x<1时,f′(x)<0,此时函数f(x)为减函数,所以当x=1时函数f(x)取得极小值,极小值为f(1)=(12-1-1)×e1=-e.答案:0-e6.设x1,x2是函数f(x)=x3-2ax2+a2x的两个极值点,若x1<2<x2,则实数a的取值范围是________.解析:由题意得f′(x)=3x2-4ax+a2的两个零点x1,x2满足x1<2<x2,所以f′(2)=12-8a+a2<0,解得2<a<6.答案:(2,6)知识点三 函数的最值1.在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.2.若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.[提醒] 求函数最值时,易误认为极值点就是最值点,不通过比较就下结论,这种做法是错误的.[重温经典]1.(教材改编题)函数f (x )=ln x -x 在区间(0,e]上的最大值为( ) A .1-e B .-1 C .-eD .0解析:选B 因为f ′(x )=1x -1=1-x x ,当x ∈(0,1)时,f ′(x )>0;当x ∈(1,e]时,f ′(x )<0,所以f (x )的单调递增区间是(0,1),单调递减区间是(1,e],所以当x =1时,f (x )取得最大值f (1)=ln 1-1=-1.2.(教材改编题)函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值 C .无最大值,有最小值D .既无最大值,也无最小值解析:选D f ′(x )=4x 3-4=4(x -1)(x 2+x +1).令f ′(x )=0,得x =1.又x ∈(-1,1)且1∉(-1,1),∴该方程无解,故函数f (x )在(-1,1)上既无极值也无最值.故选D. 3.(教材改编题)函数y =x +2cos x 在区间⎣⎡⎦⎤0,π2上的最大值是________. 答案:3+π64.(易错题)已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________. 答案:(-4,-2)5.函数f (x )=x e -x ,x ∈[0,4]的最小值为________. 解析:f ′(x )=e -x -x e -x =e -x (1-x ). 令f ′(x )=0,得x =1(e -x >0), 又f (1)=1e >0,f (0)=0,f (4)=4e 4>0,所以f (x )的最小值为0. 答案:06.已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________.解析:f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1).∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增.∴当cos x =12时,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝⎛⎭⎫-32×⎝⎛⎭⎫1+12=-332.答案:-332。
大一高数基本知识点总结高等数学是大一学生必修的一门课程,对于在大学学习数理科学专业的学生而言,高等数学承载着重要的基础知识。
在这篇文章中,我们将总结大一高数的基本知识点,以帮助你更好地理解和应用这些概念。
1. 极限与连续1.1 定义极限:数列与函数的极限定义,以及极限存在的条件。
1.2 极限性质与运算:极限的四则运算法则,夹逼定理。
1.3 函数连续:连续函数的定义,连续性的性质与判定方法。
2. 导数与微分2.1 导数的定义与求导法则:利用定义求导,常见函数求导法则。
2.2 高阶导数与应用:求解高阶导数,应用于曲线的切线与凹凸性等问题。
2.3 微分与局部线性化:微分的定义,微分的应用于近似计算问题。
3. 积分与定积分3.1 不定积分:不定积分的定义及性质,不定积分求解方法。
3.2 定积分的定义:定积分的概念与性质,定积分求解方法。
3.3 基本积分公式与换元积分法:常用的基本积分公式,换元积分法的运用。
4. 一元函数的应用4.1 函数的极值与最值:函数极大值与极小值,最大值与最小值的求解。
4.2 函数的增减与凹凸性:函数的单调性与凹凸性,求解拐点与区间分析。
4.3 参数方程与极坐标系:参数方程的定义与应用,极坐标系的转换与应用。
5. 多元函数与偏导数5.1 二元函数的极值:二元函数的极大值与极小值,求解问题的最优解。
5.2 偏导数与全微分:偏导数的定义与求解,全微分的概念与计算。
6. 多元函数的积分与曲线积分6.1 二重积分:二重积分的定义与性质,计算方法与应用。
6.2 三重积分:三重积分的定义与性质,计算方法与应用。
6.3 曲线积分:曲线积分的定义与运算,计算方法与应用。
通过学习以上的知识点,你将能够掌握和运用大一高数的基本概念与技巧。
高等数学是一门重要的学科,其对于理工科学生以及涉及数学建模等领域的学习与研究具有重要作用。
希望这篇总结能够帮助你在大一学习中更好地消化与吸收高等数学的内容。
共勉之!。
高等数学f教材答案一、导数与微分导数的定义:对函数y=f(x),若极限lim[(f(x+Δx)-f(x))/Δx]存在,则称该极限为函数f(x)在点x处的导数,记作f'(x),即f'(x)=lim[(f(x+Δx)-f(x))/Δx]。
常见函数求导法则:1. 常数函数求导法则:若f(x)=c,其中c为常数,则f'(x)=0。
2. 幂函数求导法则:若f(x)=x^n,其中n为常数,则f'(x)=nx^(n-1)。
3. 指数函数求导法则:若f(x)=a^x,其中a为常数且a>0且a≠1,则f'(x)=a^x·lna。
4. 对数函数求导法则:若f(x)=log_a(x),其中a为常数且a>0且a≠1,则f'(x)=1/(x·lna)。
5. 三角函数求导法则:若f(x)=sinx,则f'(x)=cosx;若f(x)=cosx,则f'(x)=-sinx。
6. 反三角函数求导法则:若f(x)=arcsinx,则f'(x)=1/√(1-x^2);若f(x)=arccosx,则f'(x)=-1/√(1-x^2)。
二、微分中值定理与导数应用微分中值定理:设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则存在一点c∈(a,b),使得f'(c)=0。
导数应用:1. 函数的单调性与极值:若函数f(x)在区间(a,b)上可导,且f'(x)≥0,则f(x)在区间(a,b)上单调递增;若f'(x)≤0,则f(x)在区间(a,b)上单调递减。
若函数f(x)在区间(a,b)上可导,且f'(x)>0,则f(x)在区间(a,b)上严格单调递增;若f'(x)<0,则f(x)在区间(a,b)上严格单调递减。
若函数f(x)在区间(a,b)上可导,且f'(x)在x=x0处由正变负,则称f(x0)为函数f(x)在区间(a,b)上的极大值点;若f'(x)在x=x0处由负变正,则称f(x0)为函数f(x)在区间(a,b)上的极小值点。
高数知识点总结高等数学是大学必修课程,也是各个理工科专业的基础课程。
在学习高等数学的过程中,我们需要掌握和理解一些重要的知识点。
下面将对一些常见的高数知识点进行总结。
一. 极限与连续1. 极限的定义和性质:极限是函数在某点逼近的结果,可以通过函数的左右极限来判断。
常用的极限性质有极限的唯一性、四则运算法则、夹逼准则等。
2. 连续与不连续:连续是指函数在某点和周围的点都存在极限并且这些极限相等。
常见的不连续点有可去间断点、跳跃间断点和无穷间断点。
二. 导数与微分1. 导数的定义和性质:导数是函数在某点处的变化率,可以描述函数曲线的陡峭程度。
导数的性质包括可导的充分必要条件、导数与函数连续的关系、导数的四则运算法则等。
2. 微分与高阶导数:微分是导数的一种表示形式,通过微分可以求得函数值的近似值。
高阶导数表示导数的导数,可以描述更加复杂的曲线变化。
三. 积分与定积分1. 不定积分和定积分的定义:不定积分是求导的逆运算,可以得到函数的原函数。
定积分是求函数在一定区间上的累积值,可以计算曲线下的面积或弧长。
2. 积分的性质和计算方法:积分的性质包括线性性质、区间可加性等。
计算积分可以通过换元法、分部积分法、定积分的几何应用等方法。
四. 一元函数的应用1. 函数的最值和极值点:函数的最值是函数在定义域上的最大值和最小值,极值点是函数的导数等于零或不存在的点。
通过求函数的导数可以找到函数的极值点。
2. 函数的图像与曲线的特性:函数的图像可以通过绘制函数的曲线来了解其性质。
常见的曲线特性有单调性、凹凸性、拐点等。
五. 多元函数的极限、偏导数与全微分1. 多元函数的极限:多元函数的极限是指在多元空间中某点的邻域内,函数值无限接近于某个值。
可以通过多元极限的定义和性质进行计算和推导。
2. 偏导数和全导数:偏导数是多元函数对于某个自变量的导数,全导数是多元函数所有自变量的偏导数的集合。
可以通过偏导数和全导数来分析多元函数的性质和曲线变化。
高数知识点总结(上册).doc 高等数学知识点总结(上册)第一章:函数、极限与连续性1.1 函数定义:变量之间的依赖关系。
性质:单调性、奇偶性、周期性、有界性。
1.2 极限定义:函数在某一点或无穷远处的趋势。
性质:唯一性、局部有界性、保号性。
1.3 无穷小与无穷大无穷小:当自变量趋于某一值时,函数值趋于零。
无穷大:函数值趋于无限。
1.4 连续性定义:在某点的极限值等于函数值。
性质:连续函数的四则运算结果仍连续。
第二章:导数与微分2.1 导数定义:函数在某一点的切线斜率。
几何意义:曲线在某点的瞬时速度。
2.2 基本导数公式幂函数、三角函数、指数函数、对数函数的导数。
2.3 高阶导数定义:导数的导数,用于描述函数的凹凸性。
2.4 微分定义:函数在某点的线性主部。
第三章:导数的应用3.1 切线与法线几何意义:曲线在某点的切线和法线方程。
3.2 单调性与极值单调性:导数的符号与函数的增减性。
极值:导数为零的点可能是极大值或极小值。
3.3 曲线的凹凸性与拐点凹凸性:二阶导数的符号。
拐点:凹凸性改变的点。
第四章:不定积分4.1 不定积分的概念定义:原函数,即导数等于给定函数的函数。
4.2 基本积分公式幂函数、三角函数、指数函数、对数函数的积分。
4.3 积分技巧换元积分法:凑微分法、代换法。
分部积分法:适用于积分中存在乘积形式的函数。
第五章:定积分5.1 定积分的概念定义:在区间上的积分,表示曲线与x轴围成的面积。
5.2 定积分的性质线性:可加性、可乘性。
区间可加性:积分区间的可加性。
5.3 定积分的计算数值计算:利用微积分基本定理计算定积分。
5.4 定积分的应用面积计算:曲线与x轴围成的面积。
物理意义:质量、功、平均值等。
第六章:多元函数微分学6.1 多元函数的极限与连续性定义:多元函数在某点的极限和连续性。
6.2 偏导数与全微分偏导数:多元函数对某一变量的局部变化率。
全微分:多元函数的微分。
6.3 多元函数的极值定义:多元函数在某点的最大值或最小值。