5.3.2命题、定理
- 格式:doc
- 大小:29.50 KB
- 文档页数:2
教学反思5.3平行线的性质5.3.2命题、定理、证明教学目标1. 了解命题的概念以及命题的构成.2. 知道什么是真命题和假命题,并会判断命题的真假.3. 理解什么是定理和证明.4. 初步体会命题在数学中的应用,感受数学语言的严谨性,培养学生的语言表达能力和归纳能力. 教学重难点重点:区分命题的题设和结论.难点:找出题设和结论不明显的命题的题设和结论;举反例判断一个简单命题是假命题.课前准备多媒体课件教学过程导入新课导入模式教师:在我们日常讲话中,经常会遇到这样的语句(多媒体展示),如:(1) 中华人民共和国的首都是北京;(2) 我们班的同学多么聪明;(3) 浪费是可耻的;(4)春天万物更新.在几何里,我们同样会有这样的语句,如:(1) 平行于同一条直线的两条直线平行;(2)对顶角相等.观察一下,它们有什么共同点,在语文学习当中,我们把这样的句子叫做什么语句呢?师生活动先让学生交流,然后学生代表回答.设计意图在教学过程中,将创设的问题情境和语文联系起来,不仅容易激发学生的好奇心,引起学生的学习兴趣,而且渗透了“学科间的整合”,提升了学生的核心素养.教师:像这样的判断句,在数学当中经常遇到,如(多媒体展示):板书(1) 如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2) 等式两边都加上同一个数,结果仍是等式;(3) 对顶角相等;(4)如果两条直线不平行,那么同位角不相等.教师提问:你们能说一说这4个语句有什么共同点吗?学生在教师的引导下分析每个语句的特点,并能总结出这些语句都是对某一件事情作出“是”或“不是”的判断.初步感受到有些数学语言是对某一件事作出判断的.探究新知探究点一:命题的概念教师:像这些语句一样,判断一件事情的语句,叫做命题.现在同学们判断下列语句是不是命题.(1)两点之间,线段最短.(2)画出两条互相平行的直线.(3)过直线外一点,作已知直线的垂线.(4)a,b两条直线平行吗?(5)玫瑰花是动物.(6)若a2=b2,则a=b.一名学生判断回答,不对的题目,其他同学补充纠正.请同学们再举出“命题”的例子.师生共同判断,给予评价.教师归纳:判断语句是否为命题要紧扣两条:(1)命题必须是一个完整的句子,通常是陈述句,疑问句和命令性语句都不是命题;(2)必须对某一件事件作出肯定或否定的判断.这两条缺一不可.设计意图通过具体的实例,让学生了解命题.探究点二:命题的组成教师:观察黑板上的命题,思考:命题由哪几个部分组成?师生活动学生在明确命题概念的基础上分小组讨论命题的结构,让学生总结出命题的结构.命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.教师:你们是怎样寻找题设和结论的.学生代表回答,教师引导得出结论:任何一个命题,都可以写成“如果……那么……”的形式.“如果”后面的是题设,“那么”后面的是结论.请大家指出“对顶角相等”这一命题的题设,结论,并写成“如果……,那么……”的形式.师生活动结合我们学习的这一章内容,找出命题(本章中学到的结论),并指出命题的题设、结论.设计意图充分发挥小组讨论的优势,让学生积极参与到学习过程中,让学生总结出命题的结构.探究点三:真命题与假命题教师:判断下列语句是不是命题,是命题的指出命题的题设和结论,并判断此命题是否正确.(1)如果两条直线相交,那么它们只有一个交点;(2)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(3)相等的角是对顶角;(4)任意两个直角都相等.学生独立思考,学生代表回答,其他同学纠正补充,最后总结结果:四个语句都是命题.命题(1)的题设是“两直线相交”,结论是“只有一个交点”;命题(2)的题设是“两条直线被第三条直线所截形成的同旁内角互补”,结论是“这两条直线平行”;命题(3)的题设是“两个角相等”,结论是“它们是对顶角”;命题(4)的题设是“两个角是直角”,结论是“它们相等”.其中(1)(2)(4)是正确命题,(3)是错误命题.教师总结:如果命题的题设成立,那么结论一定成立,像这样的命题称为真命题;如果命题的题设成立时,不能保证结论一定成立,像这样的命题称为假命题.判断一个命题是真命题,必须经过推理证实;判断一个命题是假命题,只需举出一个反例即可.设计意图通过分析语句,练习了找命题的题设和结论,更容易回答出命题的正确与否.探究点四:定理教师:请同学们判断下列命题哪些是真命题?哪些是假命题?(1)在同一平面内,如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条;(2)如果两个角互补,那么它们是邻补角;(3)如果丨a l=lbl,那么a=b;(4)经过直线外一点有且只有一条直线与这条直线平行;(5)两点确定一条直线.师生活动学生代表回答,如果出现错误或不完整,请其他学生修正或补充,教师点评.教师归纳:上述问题中(1)(4)(5)的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据.前面学过的一些图形的性质,都是真命题,例如“两条直线平行,同旁内角互补”等.教师追问:经过推理证明得到的真命题叫做定理.同学们能说出我们学过的定理有哪些吗?学生独立思考,然后回答,师生共同补充学过的定理.设计意图学生积极思考教师所提出的问题,练习怎样判断真、假命题.以上面问题中的真命题为切入点引出定理的概念.让学生回顾学过的定理,进一步加深对定理概念的理解.探究点五:证明教师:请同学们判断下列两个命题的真假,并思考如何判断命题的真假.命题1:在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.教师:命题1是真命题还是假命题?学生抢答:真命题.教师:你能将命题1所叙述的内容用图形语言表达出来吗?学生画出图1:教师:这个命题的题设和结论分别是什么呢?学生回答:题设:在同一平面内,一条直线垂直于两条平行线中的一条;结论:这条直线也垂直于两条平行线中的另一条.教师:你能结合图形用几何语言表述命题的题设和结论吗?学生回答:在同一平面内,若b〃c,a丄b,则a丄c.教师:请同学们思考如何利用已经学过的定义、定理来证明这个结论呢?已知:在同一平面内,b〃c,a丄b.求证:a丄c.证明:如图1,T a丄b(已知),・•・Z1=90°(垂直的定义).又b〃c(已知),・•・Z1=Z2(两直线平行,同位角相等).・•・—1=90°(等量代换).・•・a丄c(垂直的定义).教师:在很多情况下,一个命题的正确性需要经过一系列推理,才能做出判断,这个推理的过程叫做证明.刚才我们对命题1作出了判断,经过一系列的过程对命题1进行了证明,回顾一下,证明一个命题的正确性要分为几个步骤.学生思考交流,学生代表回答,其他同学补充,教师引导得出结论.要证明一个命题的正确性要分为三步:第一步,分析命题的题设和结论;第二步,根据命题画出图形,结合图形,根据题设写出已知,根据结论写出求证;第三步书写证明过程.教师:对于命题1这个真命题,经过了三步,我们证明了它的正确性,大命题2:相等的角是对顶角.教师:判断这个命题的真假.学生回答:假命题.教师:这个命题的题设和结论分别是什么?学生回答:题设:两个角相等;结论:这两个角互为对顶角.教师:我们知道假命题是在题设成立的前提下,结论不一定成立,你能否利用图形举例说明当两个角相等时它们不一定是对顶角的关系?学生画图回答:如图2所示,OC是Z AOB的平分线,Z1=Z2,但它们不是对顶角.教师总结:要证明一个命题是假命题,只要举一个反例即可.设计意图通过分析两个命题,让学生学会如何判断命题的真假,怎样来证明命题的真假.通过对命题1正确性的推理,来说明什么是证明.证明一个命题为真命题的步骤又有哪些?渗透了“推理”与“证明”的联系、区别•判断一个命题是假命题,只要举出一个反例就可以了.新知应用例1把命题“同位角相等”改写成“如果……那么……”的形式,并分别指出命题的题设和结论.学生代表回答,其他同学补充纠正,教师引导,得出结论.解:可以写成“如果两个角是同位角,那么这两个角相等”•题设是“两个角是同位角”,结论是“这两个角相等”.设计意图练习命题的改写以及分清命题的题设和结论.例2下列命题哪些是正确的,哪些是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加上同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.师生活动学生独立完成,并回答.解:(1)(4)错误,(2)(3)(5)正确.设计意图练习判断命题的正确与错误.例3完成下面的证明过程:Z1=Z2,Z C=Z D,求证:Z A=Z F.证明:TZ1=Z2(已知),Z2=Z3(),・•・Z1=(等量代换),・•・〃(),・•・Z C=Z4().又•・•Z C=Z D(已知),・•・Z D=Z4(),・•・DF〃AC(),・•・Z A=Z F().学生独立完成,并回答.如果错误,其他同学补充.答案:对顶角相等Z3BDCE同位角相等两直线平行两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,内错角相等教师:除以上证明方法以外,还有其他的方法吗?请同学们独立思考,再交流相法.设计意图让学生熟悉证明的过程,会填写出一些证明的关键步骤和理由.通过不同方法的引导,拓展学生思维,逐步提高推理能力.课堂练习(见导学案“当堂达标”)参考答案l.A2.C3.若Za=50°,ZB=60°,则Za+ZB>90。
人教版数学七年级下册5.3.2《命题、定理、证明》教学设计4一. 教材分析《人教版数学七年级下册5.3.2命题、定理、证明》这一节主要介绍命题、定理和证明的概念。
通过本节课的学习,学生能够理解命题、定理和证明的定义,掌握判断命题真假的方法,了解证明的两种方法——演绎法和归纳法,并能够运用这些知识解决实际问题。
二. 学情分析七年级的学生已经掌握了基本的数学运算能力和逻辑思维能力,但对命题、定理和证明的概念接触较少。
因此,在教学过程中,需要引导学生从实际问题中抽象出命题、定理和证明的概念,并通过实例让学生理解和掌握这些概念。
三. 教学目标1.了解命题、定理和证明的概念。
2.掌握判断命题真假的方法。
3.掌握证明的两种方法——演绎法和归纳法。
4.能够运用命题、定理和证明的知识解决实际问题。
四. 教学重难点1.重点:命题、定理和证明的概念,判断命题真假的方法,证明的两种方法。
2.难点:证明的两种方法——演绎法和归纳法的理解和运用。
五. 教学方法1.情境教学法:通过实际问题引入命题、定理和证明的概念。
2.实例教学法:通过具体的实例让学生理解和掌握命题、定理和证明的概念。
3.小组讨论法:引导学生分组讨论,培养学生的合作能力和解决问题的能力。
4.教学反馈法:通过提问、练习等方式及时了解学生的学习情况,调整教学进度和方法。
六. 教学准备1.教学PPT:制作含有命题、定理和证明的实例的PPT。
2.练习题:准备一些判断命题真假和运用证明方法的练习题。
3.教学素材:准备一些实际问题作为教学素材。
七. 教学过程1.导入(5分钟)通过一个实际问题引入命题、定理和证明的概念。
例如:在三角形中,如果一个角是直角,那么它的两条边分别是斜边。
这个命题是如何判断真假的?如何用数学语言来表达这个命题?2.呈现(10分钟)介绍命题、定理和证明的定义。
命题是判断某个陈述真假的语句,定理是被证明为真的命题,证明是用逻辑推理的方法来证明定理的过程。
人教版数学七年级下册5.3.2-1《命题、定理、证明1》教学设计6一. 教材分析本节课的主题是“命题、定理、证明”,这是人教版数学七年级下册第五章第三节的一部分。
在这一部分中,学生将学习到什么是命题,如何判断一个命题是真命题还是假命题,以及如何使用定理来进行证明。
教材通过丰富的例子和实际问题,引导学生理解和掌握这些概念。
二. 学情分析学生在之前的学习中已经接触过一些基本的几何概念,如线段、角等,他们对数学的逻辑推理有一定的理解。
但是,对于命题、定理和证明这些较为抽象的概念,可能还有一定的困难。
因此,在教学过程中,需要引导学生通过具体的例子来理解和掌握这些概念。
三. 教学目标1.了解命题、定理和证明的概念,理解它们之间的关系。
2.能够判断一个命题是真命题还是假命题。
3.学会使用定理来进行证明。
四. 教学重难点1.重点:理解命题、定理和证明的概念,掌握判断命题真假的方法。
2.难点:如何引导学生理解和掌握证明的过程和方法。
五. 教学方法采用问题驱动的教学方法,通过丰富的例子和实际问题,引导学生理解和掌握命题、定理和证明的概念。
同时,结合小组合作学习,让学生在实践中运用所学知识,提高解决问题的能力。
六. 教学准备1.准备相关的教学PPT,包括文字、图片和例子。
2.准备一些实际问题,用于引导学生进行思考和讨论。
3.准备一些证明题,用于巩固学生对证明的理解和掌握。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考什么是命题,如何判断一个命题是真命题还是假命题。
2.呈现(10分钟)通过PPT展示命题、定理和证明的定义和例子,让学生理解和掌握这些概念。
3.操练(10分钟)让学生通过一些实际的例子,练习判断命题的真假,巩固对命题、定理和证明的理解。
4.巩固(10分钟)通过一些证明题,让学生运用所学知识,提高解决问题的能力。
5.拓展(10分钟)引导学生思考如何自己写出一条定理,并尝试证明。
6.小结(5分钟)对本节课的主要内容进行总结,强调命题、定理和证明的重要性。
5.3.2(1)命题、定理、证明一.【知识要点】1.判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
命题的分类(按正确、错误与否分)真命题(正确的命题)假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
定理用推理的方法判断为正确的命题叫做定理。
证明判断一个命题的正确性的推理过程叫做证明。
二.【经典例题】1.把命题“对顶角相等”写成“如果……,那么……”的形式为 .2.在下列命题中:①两条直线相交所成的角是对顶角;①有公共顶点的角是对顶角;①一个角的两个邻补角是对顶角;①有一边互为反向延长线,且相等的两个角是对顶角,其中正确的是.3.已知a、b.、c是同一平面内的3条直线,给出下面6个命题:a∥b, b∥c,a∥c ,a ⊥b,b⊥c,a⊥c,请从中选取3个命题(其中2个作为题设,1个作为结论)尽可能多地去组成一个真命题,并说出是运用了数学中的哪个道理。
举例如下:∵a∥b, b∥c,∴a∥c(平行于同一条直线的两条直线平行)三.【题库】【A】1.把下列命题写成“如果…那么…”的形式:不能被2整除的数是奇数:2.把命题“零没有倒数”改写成“如果……那么……”的形式:如果,那么。
【B】1.把命题“等角的余角相等”改写成“如果…,那么…”的形式是_______________________________. .【C】1.下列说法正确的是()A.延长射线OA到BB.经过两点M/N的直线有且仅有两条C.凡是大于900 的角都是钝角D.直线a经过点M,即是点M在直线a上。
【D】1.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③垂直于同一条直线的两条直线互相垂直。
第五章相交线与平行线5. 3.2 命题、定理、证明(1)教学设计教学目标:【知识与技能】1、了解什么是命题,并且会把一些简单命题改写成如果……那么……”的形式。
2、了解命题的题设和结论,并能够分析出命题的题设和结论。
3、了解什么是真命题和假命题,并能够判断哪些是真命题,哪些是假命题。
【过程与方法】通过对若干个命题的分析,了解什么叫命题及命题的组成,知道什么是真命题,什么是假命题;【情感态度】通过本节课的学习让同学们知道命题在数学上的重要作用,不仅如此,命题在其他许多学科上都有重要作用。
教学重点:命题的定义和命题的组成;教学难点:1、命题的判断;2、命题的题设和结论的区分;3、真假命题的判断;学情分析:七年级的学生自主学习能力和独立思考能力不强,但大部分学生对数学感兴趣,有些学生学习方法不对路。
虽然说时间花费很多,但效果不是最佳的,学习方法很重要,要养成良好的学习方法,才能有所上升。
教学过程:一、回顾旧知,导入新课:平行线的判定和性质设计目的:回顾旧知的同时给学生呈现命题的例句,让学生对命题有个初步的体会和认识,并导入新课。
二、学习目标1、了解什么是命题,并且会把一些简单命题改写成“如果…… 那么……”的形式。
2、了解命题的题设和结论,并能够分析出命题的题设和结论。
3、了解什么是真命题和假命题,并能够判断哪些是真命题,哪些是假命题。
设计目的:让学生有目的的学习。
三、预习板块通过预习,我学到了什么?在预习中,我存在的疑惑是什么?需要解决哪些问题?1什么是命题?命题由几部分组成?2、命题可以被改写成什么形式?并试着改写命题对顶角相等”。
3、什么是真命题?什么是假命题?设计目的:要求学生课前预习,养成良好的学习习惯。
四、合作探究一(设计目的:让同学们通过合作探究的方式将句子改写成“如果…..那么……”的形式来体会什么是命题)1、观察下列两组语句有什么区别?A组:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边加同一个数,结果仍是等式•B组:⑴画线段AB=CD(2)点P在直线AB外.(3)对顶角相等吗?总结:1、_____________________________ 的语句,叫做命题。
5.3.2《命题、定理、证明》重难点题型专项练习考查题型一命题的判断典例1.(2022春·湖南永州·七年级校考期中)下列语句中,属于命题的是().A.直线和垂直吗?B.过线段的中点画的垂线C.同旁内角互补,两直线平行D.连接,两点【答案】C【分析】分别根据命题的定义进行判断.【详解】解:A、直线和垂直吗?这是疑问句,不是命题,所以A选项错误;B、过线段的中点C画的垂线,这是描叙性语言,不是命题,所以B选项错误;C、同旁内角互补,两直线平行是命题,所以C选项正确;D、连接A、B两点,这是描叙性语言,不是命题,所以D选项错误.故选:C.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.变式1-1.下列语句属于命题的是()A.你今天打卡了吗?B.请戴好口罩!C.画出两条相等的线段D.同位角相等【答案】D【分析】根据命题的定义(判断一件事情的语句,叫做命题),逐项判断即可求解.【详解】解:A.你今天打卡了吗?没有作出判断,故该选项不是命题,不符合题意;B.请戴好口罩!没有作出判断,故该选项不是命题,不符合题意;C.画出两条相等的线段,没有作出判断,故该选项不是命题,不符合题意;D.同位角相等,作出判断,故该选项是命题,符合题意.故选:D.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.变式1-2.(2022秋·重庆璧山·七年级校联考期中)下列语句中.不是命题的是()A.内错角相等,两直线平行B.对顶角相等C.如果一个数能被2整除.那么它也能被4整除D.画一条线段【答案】D【分析】根据命题的定义,句子可以改写成“如果……那么……”形式,则为命题,如果不能就不是.【详解】解:A.内错角相等,两直线平行,改写成:如果两条直线被第三条直线所截所成的角中,内错角相等,那么这两条直线平行,是命题,故此选项不符合题意;B.对顶角相等,改写成:如果两个角是对顶角,那么这两角相等,是命题,故此选项不符合题意;C.如果一个数能被2整除,那么它也能被4整除,是命题,故此选项不符合题意;D.画—条线段,无法改写,不是命题,故此选项符合题意.故选:D.【点睛】本题考查命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果……那么……”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.正确理解命题的定义是解题的关键.变式1-3.(2022秋·安徽宣城·七年级校考期中)下列语句属于命题的个数是()①宣城市奋飞学校是市文明单位②直角等于③对顶角相等④奇数一定是质数吗?A.1B.2C.3D.4【答案】C【分析】根据命题的概念注意判断即可.【详解】解:由命题的概念可知,④不是命题,而①②③均是命题,故选C.【点睛】本题考查了命题的概念,解决本题的关键是掌握命题时表示判断的语句.考查题型二真假命题的判断典例2.(2021春·黑龙江哈尔滨·七年级哈尔滨市虹桥初级中学校校考期中)有下列命题是真命题的是( )A.相等的角是对顶角B.两条直线被第三条直线所截,同位角相等C.有一边互为反向延长线,且和为180°的两个角是邻补角D.过直线外一点有且只有一条直线与这条直线平行【答案】D【分析】根据对顶角的性质和定义,邻补角的定义,平行线的性质,平行线公理逐一判断即可.【详解】A、共顶点,且一个角的两边是另一个角的两边的反向延长线,这样的两个角是对顶角,但是,相等的两个角,若不满足对顶角的定义,也不是对顶角,故此命题是假命题;B、两条平行线被第三条直线所截,同位角相等,故此命题是假命题;C、有一边互为反向延长线,且共顶点与共一条边的两个角是邻补角,故此命题是假命题;D、过直线外一点有且只有一条直线与这条直线平行,是真命题;故选:D.【点睛】本题考查了命题真假的判断,掌握命题所涉的相关知识是关键.变式2-1.(2022春·湖南永州·七年级校考期中)下列不是真命题的是()A.三角形内角和为B.两条直线不相交,就是平行C.任意的等腰三角形都存在着“三线合一”的现象D.三角形至多有一个钝角【答案】B【分析】利用三角形的内角和,等腰三角形的性质、平行线的性质分别判断后即可确定正确的选项.【详解】解:A.三角形内角和为,正确,是真命题;B.同一平面内,两条直线不相交,就是平行,故原命题错误,是假命题;C.任意的等腰三角形都存在着“三线合一”的现象正确,是真命题;D.三角形至多有一个钝角,正确,是真命题,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形的内角和,等腰三角形的性质、平行线的性质,难度不大.变式2-2.(2022秋·福建福州·七年级校考期中)下列命题是真命题的是()A.同位角相等B.两个锐角的和是锐角C.若两个角的和为,则这两个角互补D.相等的角是对顶角【答案】C【分析】根据平行线的性质,补角的定义,锐角的定义,对顶角的定义逐项进行判断即可.【详解】解:、两直线平行,同位角相等,故原命题错误,是假命题,不符合题意;B、两个锐角的和可能是锐角、钝角,也可能是直角,故原命题错误,是假命题,不符合题意;C、若两个角的和为,则这两个角互补,正确,是真命题,符合题意;D、相等的角不一定是对顶角,故原命题错误,是假命题,不符合题意.故选:C.【点睛】本题主要考查了命题真假的判定,解题的关键是熟练掌握平行线的性质,补角的定义,锐角的定义,对顶角的定义.变式2-3.(2022秋·北京海淀·七年级校考期中)下列命题中,真命题的个数是( )①相等的角是对顶角;②同位角相等;③等角的余角相等;④如果,那么.A.1B.2C.3D.4【答案】A【分析】根据对顶角、平行线的性质、余角的概念、平方根的概念逐一判断,即可得到答案.【详解】解:①相等的角不一定是对顶角,原说法错误,是假命题;②两直线平行,同位角相等,原说法错误,是假命题;③等角的余角相等,原说法正确,是真命题;④如果,那么,原说法错误,是假命题,即真命题的个数为1,故选:A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.考查题型三命题的题设与结论典例3.(2022秋·福建福州·七年级福建省福州外国语学校校考阶段练习)命题“在同一平面内,垂直于同一条直线的两条直线相互平行”的题设是____________,结论是_____________.该命题是__________命题(填“真”或“假”).【答案】如果在同一平面内,两条直线垂直于同一条直线这两条直线相互平行真【分析】将命题转化为“如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线相互平行”即可找出题设和结论,根据平行线的判定方法判断该命题的真假.【详解】解:原命题可以转化为“如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线相互平行”,故题设是“如果在同一平面内,两条直线垂直于同一条直线”,结论是“这两条直线相互平行”,根据平行线的判定定理,可知该命题是真命题.故答案为:如果在同一平面内,两条直线垂直于同一条直线;这两条直线相互平行;真.【点睛】本题考查命题的概念和平行线的判定,当命题的题设和结论不明显时,可以将命题转化为“如果……,那么……”的形式,“如果”后面是题设,“那么”后面是结论.变式3-1.(2022秋·湖北宜昌·七年级校考期中)命题“内错角相等”的题设是_____,结论是____,它是________(“真”或“假”)命题.【答案】两个角是内错角这两个角相等假【分析】将这个命题改写成“如果,那么”的形式,由此即可得出它的题设和结论,再根据同位角的定义即可判断真假.【详解】解:命题“内错角相等”可改写为“如果两个角是内错角,那么这两个角相等”,则命题“内错角相等”的题设是两个角是内错角,结论是这两个角相等,因为两个内错角不一定相等,所以它是假命题,故答案为:两个角是内错角;这两个角相等;假.【点睛】本题考查了命题的题设与结论、判断命题的真假,熟练掌握将命题改写成“如果,那么”的形式是解题关键.变式3-2.命题“等边对等角”的题设是______结论是______【答案】同一个三角形中的两条边相等;这两条边所对的两个角也相等【分析】判断一件事情的语句叫做命题.任何一个命题都有题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.命题都可以写成“如果…,那么…”的形式,“如果”后接题设部分,“那么”后接结论部分.【详解】解:由于命题“在同一个三角形中,等边对等角”可改写成:在同一个三角形中,如果有两条边相等,那么这两条边所对的两个角相等.所以题设是同一个三角形中的两条边相等,结论是这两条边所对的两个角相等.故答案为:同一个三角形中的两条边相等;这两条边所对的两个角相等.【点睛】对于像本题这样简写的命题,题设和结论不明显,要经过分析,找出命题中的已知事项和由已知事项推出的事项,将命题改写成“如果…,那么…”的形式,从而区分命题的题设和结论.变式3-3.命题“两点之间线段最短"的题设是______________,结论是______________.【答案】连接两点,得到线段;线段最短【分析】命题常常可以写为“如果……那么……”的形式,如果后面接题设,而那么后面接结论;根据上步的知识,从命题的定义出发,寻找题设和结论就可以了.【详解】命题“两点之间线段最短"的题设是:连接两点,得到线段,结论是:线段最短,故答案为:连接两点;线段最短【点睛】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.考查题型四写出命题的逆命题典例4.写出命题“两个全等三角形的面积相等”的逆命题______.【答案】若两个三角形面积相等,则这两个三角形全等【分析】根据逆命题的定义,若两个三角形面积相等,则这两个三角形全等即可.【详解】解:命题“两个全等三角形的面积相等”的逆命题是:若两个三角形面积相等,则这两个三角形全等,故答案为:若两个三角形面积相等,则这两个三角形全等.【点睛】本题考查命题概念,弄清楚命题的条件和结论是写出逆命题的关键.变式4-1.“如果,那么”的逆命题为_____.【答案】如果,那么【分析】根据互逆命题的定义,把原命题的题设和结论交换即可.【详解】解:“如果,那么”的逆命题为“如果,那么”.故答案为:如果,那么.【点睛】本题考查了互逆命题的知识,解决本题的关键是掌握两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.变式4-2.写出命题“如果,那么或.”的逆命题:______.【答案】如果或,那么【分析】根据逆命题的写法,把原命题的条件作为结论,结论作为条件即可.【详解】解:命题“如果,那么或.”的逆命题是:如果或,那么,故答案为:如果或,那么.【点睛】题目主要考查命题与逆命题的写法,熟练掌握命题与逆命题的关系是解题关键变式4-3.命题“等腰三角形两底角的平分线相等”的逆命题是________________.【答案】有两条角平分线相等的三角形是等腰三角形【分析】根据逆命题的定义写出即可.【详解】解:命题“等腰三角形两底角的平分线相等”的逆命题是“有两条角平分线相等的三角形是等腰三角形”.故答案是:有两条角平分线相等的三角形是等腰三角形.【点睛】本题考查了互逆命题的知识,掌握逆命题的定义是解题的关键.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.考查题型五 互逆定理的判断典例5.下列说法正确的是( )A .真命题的逆命题是真命题B .原命题是假命题,则它的逆命题也是假命题C .命题一定有逆命题D .定理一定有逆命题【答案】C【分析】根据命题、逆命题,真假命题的关系对各选项分析判断后利用排除法求解.【详解】解:A .真命题的逆命题不一定是真命题,故本选项错误,不符合题意;B .原命题是假命题,则它的逆命题不一定是假命题,故本选项错误,不符合题意;C .命题一定有逆命题,故本选项正确,符合题意;D .定理不一定有逆命题,故本选项错误,不符合题意;故选:C .【点睛】本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,也考查了逆命题,逆定理.变式5-1.下列说法错误的是( )A .任何命题都有逆命题B .真命题的逆命题不一定是正确的C .任何定理都有逆定理D .一个定理若存在逆定理,则这个逆定理一定是正确的【答案】C【分析】根据命题,定理的定义对各选项分析判断后利用排除法求解即可.【详解】A.任何命题都有逆命题,故A正确,不符合题意;B.真命题的逆命题不一定为真,故B正确,不符合题意;C.任何定理不一定都有逆定理,故C错误,符合题意;D.定理一定是正确的,一个定理若存在逆定理,则这个逆定理一定是正确的,故D正确,不符合题意.故选:C.【点睛】本题考查了命题,定理的定义.如果一个命题的条件与结论分别是另一个命题的结论与条件,那么这两个命题称为互逆命题.定理是指用逻辑的方法判断为正确并作为推理的根据的真命题.一个命题是真命题,它的逆命题却不一定是真命题,如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理.变式5-2.下列说法正确的是()A.真命题的逆命题也是真命题B.每个命题都有逆命题C.每个定理都有逆定理D.假命题没有逆命题【答案】B【分析】根据命题、逆命题,真假命题的关系对各选项分析判断后利用排除法求解.【详解】解:A、真命题的逆命题可能是真命题,也可能是假命题,故本选项错误;B、一个命题一定有逆命题,正确,故本选项正确;C、一个定理不一定有逆定理,故本选项错误;D、假命题一定有逆命题,错误,故本选项错误.故选B.【点睛】本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.变式5-3.下列说法中,正确的是()A.真命题的逆命题一定是真命题B.假命题的逆命题一定是假命题C.所有的定理都有逆定理D.所有的命题都有逆命题【答案】D【分析】根据互逆命题的定义对A进行判断;根据命题与逆命题的真假没有联系可对B、C、D进行判断.【详解】解:A、真命题的逆命题不一定是真命题,所以A选项错误;B、假命题的逆命题不一定是假命题,所以B选项错误.C、每个定理不一定有逆定理,所以C选项错误;D、每个命题都有逆命题,所以D选项正确;故选:D.【点睛】本题考查了命题与定理:断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.。
5.3.2 命题、定理、证明一、教学目标【知识与技能】1.理解命题,定理及证明的概念,会区分命题的题设和结论.2.会判断真假命题,知道证明的意义及必要性,了解反例的作用.3.理解证明要步步有据,培养学生养成科学严谨的学习态度. 【过程与方法】经历判断命题真假的过程,对命题的真假有一个初步的了解. 【情感态度与价值观】初步培养学生不同几何语言相互转化的能力.二、课型新授课三、课时1课时四、教学重难点【教学重点】命题的概念和区分命题的题设与结论.【教学难点】区分命题的题设和结论.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)让学生阅读课件中的两个例子,讨论句子含义。
(二)探索新知1.出示课件4-5,探究命题的概念教师出示问题:完成下列问题:请同学读出下列语句:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边都加同一个数,结果仍是等式.这些句子有何特点?学生答:都对事情做出了判定.教师问:这样的句子叫做命题.什么叫做命题?学生答:像这样判断一件事情的语句,叫做命题.总结点拨:(出示课件5)教师强调:1.只要对一件事情作出了判断,不管正确与否,都是命题.如:相等的角是对顶角.2.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.如:画线段AB=CD.考点1:命题的识别判断下列四个语句中,哪个是命题,哪个不是命题?并说明理由:(1)对顶角相等吗?(2)画一条线段AB=2cm;(3)两条直线平行,同位角相等;(4)相等的两个角,一定是对顶角.(出示课件6)师生共同讨论解答如下:解:(3)(4)是命题,(1)(2)不是命题.理由如下:(1)是问句,故不是命题;(2)是做一件事情,也不是命题.总结点拨:①命题必须是一个完整的句子,而且必须做出肯定或否定的判断.疑问句、感叹句、作图过程的叙述都不是命题;②命题常见的关键词有“是”“不是”“相等”“不相等”“如果……那么……”.出示课件7,学生自主练习后口答,教师订正.2.出示课件8-10,命题的构成教师问:观察下列命题,你能发现这些命题有什么共同的结构特征?与同伴交流.(1)如果两个三角形的三条边相等,那么这两个三角形的周长相等;(2)如果两个数的绝对值相等,那么这两个数也相等;(3)如果一个数的平方等于9,那么这个数是3.学生答:都是“如果……那么……”的形式.教师问:命题一般都可以写成“如果……那么……”的形式.1.“如果”后接的部分是题设,2.“那么”后接的部分是结论.如命题:熊猫没有翅膀.改写为:“如果……那么……”的形式.学生答:如果这个动物是熊猫,那么它就没有翅膀.师生一起总结:添加“如果”“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套.总结点拨:(出示课件10)命题的组成:题设——已知事项命题结论——由已知事项推出的事项两直线平行,同位角相等题设(条件)考点2:命题表述形式的变换分别把下列命题写成“如果……那么……”的形式.(1)两点确定一条直线;(2)等角的补角相等;(3)内错角相等. (出示课件11)学生独立思考后,师生共同分析解答.教师依次展示学生解答过程:学生1解:(1)如果有两个定点,那么过这两点有且只有一条直线;学生2解:(2)如果两个角分别是两个等角的补角,那么这两个角相等;学生3解:(3)如果两个角是内错角,那么这两个角相等.总结点拨:把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺.出示课件12,学生自主练习后口答,教师订正.3.出示课件13,探究真假命题的概念.教师问:有些命题如果题设成立,那么结论一定成立;而有些命题题设成立时,结论不一定成立. 如命题:“如果一个数能被4整除,那么它也能被2整除”是条件也成立,结论也成立吗?学生答:如命题:“如果一个数能被4整除,那么它也能被2整除”是条件也成立,结论也成立.教师问:上面的命题:条件也成立,结论也成立.这样的命题是正确命题. 如命题:“如果一个数能被4整除,那么它也能被2整除”是一个正确的命题吗?学生答:是一个正确的命题.教师问:有些命题题设成立时,结论不一定成立.这样的命题是错误的命题.如命题:“如果两个角互补,那么它们是邻补角”就是一个怎样的命题呢?学生答:“如果两个角互补,那么它们是邻补角”就是一个错误的命题.教师问:正确的命题叫真命题,错误的命题叫假命题.则命题“内错角相等,两直线平行”是真命题还是假命题?学生答:是真命题.教师问:怎样确定定一个命题真假呢?师生一起解答:确定一个命题真假的方法:利用已有的知识,通过观察、验证、推理、举反例等方法.考点3:真假命题的识别下列命题哪些命题是正确的,哪些命题是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.学生独立思考后,师生共同解答.解:真命题有(2)、(3)、(5);假命题有(1)、(4).总结点拨:判断一个命题是真命题还是假命题,就是判断一个命题是否正确,即由条件能否得出结论.如果命题正确,就是真命题;如果命题不正确,就是假命题.出示课件15,学生自主练习后口答,教师订正.4.出示课件16-19,探究证明和反证法(举反例)教师出示问题:一天早上,张老汉来到公安局里告状说:王五刚刚在他地里偷了一袋子苹果.公安局长立即派干警将王五传唤到公安局审讯:公安局长问张老汉:“你怎知是王五偷了你的苹果?”“因为早上我发现王五从苹果园那边过来,把一袋东西背回家,还发现我果园的苹果被人偷了,我知道王五家没有苹果树.所以我家苹果肯定是王五偷的.”张老汉想证明什么?他是怎么证明的?学生答:张老汉想证明偷了他的苹果,王五从他家的苹果园那边经过,把一袋东西背回家.教师问:根据张老汉的证明,你能断定苹果是王五偷的吗?你觉得有疑点吗?学生答:根据张老汉的证明,不能断定苹果是王五偷的,有疑点:因为只是经过,张老汉的推断太牵强.总结点拨:(出示课件16)这种从已知条件出发(列出理由),推断出结论的证明方法,叫综合法.综合法是最常用的证明方法.教师出示问题:公安局长一时拿不定主意,就问旁边的梁副局长:“梁局长,你怎么看?”梁局长会如何回答呢?学生答:梁局长说“这事要证明是王五干的,还得弄清那袋子里装的是不是刚摘的苹果,还要看看地里的脚印是不是王五的才行.如果袋子里装的是刚摘的苹果,且地里的脚印是王五的,那就一定是他偷的.”总结点拨:(出示课件17)从结论出发,逆着寻找所需要的条件的思考过程,叫分析.在分析的过程中,如果发现所需要的条件,都已具备或可从已知条件中推得.那么证明就很容易了.总结点拨:(出示课件18)证明的概念在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫作证明.教师强调:证明的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.教师问:如何判定一个命题是假命题呢?学生答:举一个反例即可.教师问:例如,要判定命题“相等的角是对顶角”是假命题如何证明?师生一起解答:可以举出如下反例:如图,OC是∠AOB的平分线,∠1=∠2,但它们不是对顶角.总结点拨:(出示课件19)确定一个命题是假命题的方法:只要举出一个例子(反例):它符合命题的题设,但不满足结论即可.考点4:利用证明推理解决问题如图,∠1=∠2,试说明直线AB,CD平行.(出示课件20)师生共同分析:要证明AB,CD平行,就需要同位角相等的条件,图中∠1与∠3就是同位角.我们只要找到:能说明它们相等的条件就行了.从图中,我们可以发现:∠2与∠3是对顶角,所以∠3=∠2.这样我们就找到了∠1与∠3相等的确切条件了.学生独立思考后,师生共同解答.证明:∵∠2与∠3是对顶角,∴∠3=∠2.又∵∠1=∠2,∴∠1=∠3.∴AB∥CD.出示课件21,学生自主练习,教师给出答案。
5.3.2命题、定理、证明1.命题(1)定义:__判断__一件事情的语句.(2)构成:命题由__题设__和__结论__两部分组成.__题设__是已知事项,__结论__是由已知事项推出的事项.(3)形式:命题常写成“如果……那么……”的形式,“如果”后接的部分是__题设__,“那么”后接的部分是__结论__.(4)类型:①真命题:题设成立,结论__一定成立__的命题;②假命题:题设成立时,不能保证__结论一定成立__的命题.2.定理、证明(1)定理的定义:命题的正确性是通过推理证实的,这样得到的__真命题__叫做定理.定理可以作为继续推理的依据.(2)证明的定义:在很多情况下,一个命题的正确性需要经过__推理__,才能作出判断,这个推理过程叫做证明.1.掌握命题的概念要注意两点:(1)命题不一定是正确的;(2)疑问句、祈使句都不是命题.2.假命题也是命题.3.改写命题时,切忌改变命题的本意.1.(新疆伊犁模拟)下列句子中,属于命题的是(C)A.直线AB和CD垂直吗B.作线段AB的垂直平分线C.同位角相等,两直线平行 D.画∠AOB=45°2.(甘肃武威月考)下列说法正确的有(C)(1)命题不一定是定理,定理一定是命题;(2)定理不可能是假命题;(3)两点确定一条直线;(4)同一平面内,两条直线的位置关系只有相交和平行两种;(5)相等的角是对顶角;(6)垂线段最短.A.3个B.4个C.5个D.6个3.对于命题“若a>b,则a2>b2”,能说明它是假命题的反例为(A)A.a=0,b=-1 B.a=2,b=-1 C.a=2,b=1 D.a=1,b=2 4.(青海玉树模拟)判断命题“如果n<1,那么n2-1<0”是假命题,只需举出一个反例.反例中的n可以为(A)A.-2B.-12C.0 D.125.“如果∠α和∠β的两边分别平行,那么∠α和∠β相等”是(B)A.真命题B.假命题C.定理D.以上说法都不正确6.(甘肃天水月考)下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直,其中真命题的个数为(C)A.4 B.3 C.2 D.17.(新疆和田模拟)命题“在同一平面内垂直于同一条直线的两条直线平行”的题设是__在同一平面内,两条直线垂直于同一条直线__,结论是__这两条直线互相平行__.8.(甘肃定西月考)对于同一平面内的三条直线a,b,c,给出下列五个论断:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c.以其中两个论断为条件,一个论断为结论,组成一个真命题:如果__①②__,那么__④(答案不唯一)__(答案不唯一). 9.(内蒙古乌海模拟)下列各语句中,哪些是命题?是命题的,请你先将它改写为:“如果……那么……”的形式,再找出命题的题设和结论.(1)画一个角等于已知角;(2)互为相反数的两个数的和为0;(3)当a=b时,有a2=b2;(4)当a2=b2时,有a=b.【解析】(1)画一个角等于已知角,不是命题;(2)互为相反数的两个数的和为0,是命题,改写为:如果两个数互为相反数,那么这两个数的和为0,命题的题设是两个数互为相反数,结论是这两个数的和为0;(3)当a=b时,有a2=b2,是命题,改写为:如果a=b,那么a2=b2,命题的题设是a=b,结论是a2=b2;(4)当a2=b2时,有a=b,是命题,改写为:如果a2=b2,那么a=b,命题的题设是a2=b2,结论是a=b.10.(新疆克拉玛依模拟)(1)如图,请在直线AB∥CD,∠A=30°,∠CDA=30°三项中选择两个作为题设,一个作为结论,写一个真命题:如果__________且____________,那么__________;(2)请说明你写的命题是真命题的理由.【解析】(答案不唯一)(1)如果AB∥CD且∠A=30°,那么∠CDA=30°.答案:AB∥CD∠A=30°∠CDA=30°(2)∵AB∥CD,∴∠CDA=∠A=30°(两直线平行,内错角相等).1.阅读材料:“同位角相等,两直线平行”和“两直线平行,同位角相等”这两个命题的题设和结论在命题中的位置恰好对调,我们把其中一个命题叫做另一个命题的逆命题,则命题“角平分线上的点到角两边的距离相等”的逆命题是__在角的内部到角两边距离相等的点在这个角的平分线上__,该命题的题设是__在角的内部到角两边距离相等的点__,结论是__在这个角的平分线上__.2.(兰州模拟)请指出下列命题的题设和结论,并判断它们的真假,若是假命题,请举出一个反例.(1)等角的补角相等;(2)绝对值相等的两个数相等.【解析】(1)题设:有两个角相等;结论:这两个角的补角相等;是真命题;(2)题设:有两个数的绝对值相等;结论:这两个数相等;是假命题;反例:|2|=|-2|,2≠-2.3.(内蒙古乌兰察布模拟)探究问题:已知∠ABC,画一个角∠DEF,使DE∥AB,EF∥BC,且DE交BC于点P.∠ABC与∠DEF有怎样的数量关系?(1)我们发现∠ABC与∠DEF有两种位置关系:如图1与图2所示.①图1中∠ABC与∠DEF数量关系为________;图2中∠ABC与∠DEF数量关系为________;请选择其中一种情况说明理由.②由①得出一个真命题(用文字叙述):________.(2)应用②中的真命题,解决以下问题:若两个角的两边分别平行,且一个角比另一个角的2倍少30°,请直接写出这两个角的度数.【解析】(1)①如题图1中,∠ABC+∠DEF=180°.如题图2中,∠ABC=∠DEF.理由:如题图1中,∵BC∥EF,∴∠DPB=∠DEF,∵AB∥DE,∴∠ABC+∠DPB=180°,∴∠ABC+∠DEF=180°.如题图2中,∵BC∥EF,∴∠DPC=∠DEF,∵AB∥DE,∴∠ABC=∠DPC,∴∠ABC=∠DEF.答案:∠ABC+∠DEF=180°∠ABC=∠DEF②如果两个角的两边分别平行,那么这两个角相等或互补.(2)设两个角度数分别为x和2x-30°,由题意x=2x-30°或x+2x-30°=180°,解得x=30°或x=70°,∴这两个角的度数为30°和30°或70°和110°.。
5.3.2命题、定理与证明教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级下册(以下统称“教材”)第五章“相交线与平行线”5.3.2命题、定理与证明,内容包括:命题、定理及证明的概念;命题的题设和结论;真假命题.2.内容解析新课标提出了对学生“数学思考”的要求:“经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.”在学段目标中,进一步指出:在探索图形性质、与他人合作交流等活动中,发展合情推理,进一步学习有条理地思考与表达.而命题是数学教学的基本依据,经过推理证实的命题如定理可以作为继续推理的依据,所以认识命题的定义、结构、真假是数学学习的重要任务之一.而正确找出命题的题设和结论是基础,特别是题设和结论不明显的命题和难以判断真假的命题是学习的重点.本节课将通过一些具体的例子来了解基本概念,不必深究,不钻难题,所以学习本节课特别重要,是后面学习定理和证明的前提和基础,具賄承上启下的作用.基于以上分析,确定本节课的教学重点为:理解命题、定理及证明的概念,会区分命题的题设和结论.二、目标和目标解析1.目标(1)理解命题、定理及证明的概念,会区分命题的题设和结论;(2)会判断真假命题,知道证明的意义及必要性,了解反例的作用.2.目标解析理解命题的概念及构成;会判断所给命题的真假;初步感知什么是证明;通过对命题及其真假的判断,提高学生的理性判断能力;通过对证明的学习,培养学生严谨的数学思维;初步体会命题在数学中的应用、用证明论证自己的判断;为今后的学习打好基础,发展应用意识;通过对命题、定理、证明的学习,让学生学会从理性的角度判断一件事情的真假,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心.三、教学问题诊断分析学生在此之前已经学习了平行线的判定等内容,对命题已经有了初步的认识,为顺利完成本节课的教学任务打下了基础,但对于命题、真假命题的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析.于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性.基于以上学情分析,确定本节课的教学难点为:会区分命题的条件和结论,会判断命题的真假.四、教学过程设计问题引入我们日常讲话中,有些话是对某件事情作出判断的,有些话只是对事物进行描述的,如:(1)中华人民共和国的首都是北京.……()(2)我们班的同学多么聪明!……………()(3)浪费是可耻的.………………………()(4)春天到了,花儿开了.………………()在数学学习中,同样有判断和描述这两类语言,如:(1)画线段AB=3厘米.……………………()(2)两条直线相交,只有一个交点.……()自学导航观察下列语句,它们有什么共同点?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边加同一个数,结果仍是等式.像上面这样,判断一件事情的语句,叫做命题.命题的组成一般地,命题由题设和结论两部分组成.题设:是已知事项;结论:是由已知事项推出的事项.数学中的命题常可以写成“如果……,那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_____.例如,命题(1)中,“两条直线都与第三条直线平行”是_____,“这两条直线也互相平行”是_____.(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;有些命题的题设和结论不明显,要经过分析才能找出题设和结论,从而将它写成“如果……,那么……”的形式.例如,命题(3)“对顶角相等”可以写成“如果两个角是对顶角,那么这两个角相等”.(2)两条平行线被第三条直线所截,同旁内角互补;______________________________________________________________________________ (4)等式两边加同一个数,结果仍是等式.______________________________________________________________________________考点解析考点1:命题的定义和结构例1.判断下列语句是不是命题,如果是,改写成“如果……那么……”的形式,并指出它们的题设和结论.(1)画线段AB=2cm;(2)你喜欢画画吗?(3)分数一定是有理数;(4)同角的补角相等;(5)两个锐角余.解:(1)不是命题,因为没有对事情作出判断;(2)不是命题,因为没有对事情作出判断;(3)是命题.改写:如果一个数是分数,那么它一定是有理数.题设:一个数是分数;结论:它一定是有理数.(4)是命题.改写:如果两个角是同一个角的补角,那么这两个角相等.题设:两个角是同一个角的补角;结论:这两个角相等.(5)是命题.改写:如果两个角是锐角,那么这两个角互余.题设:两个角是锐角;结论:这两个角互余.【迁移应用】1.下列语句中,不是命题的是()A.两点之间,线段最短B.内错角都相等C.连接A,B两点D.平行于同一直线的两直线平行2.下列语句中,是命题的有()①两直线平行,同旁内角相等;②π不是有理数;③若a≠b,则a≠b;④明天会下雨吗?⑤在直线AB上取一点P.A.2个B.3个C.4个D.5个3.把“在同一平面内,垂直于同一条直线的两条直线互相平行”改写成“如果……那么……”的形式是___________________________________________________________.4.指出下列命题的题设和结论:(1)如果∠1与∠2是内错角,那么∠1=∠2;(2)对顶角相等;(3)两个负数的和是负数.解:(1)题设:∠1与∠2是内错角;结论:∠1=∠2.(2)题设:两个角是对顶角;结论:这两个角相等.(3)题设:两个数是负数;结论:这两个数的和是负数.自学导航真假命题真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题;假命题:命题中题设成立时,不能保证结论一定成立,这样的命题叫做假命题.(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边加同一个数,结果仍是等式.判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.考点解析考点2:真命题和假命题例2.判断下列命题是真命题还是假命题,如果是假命题举出一个反例.(1)钝角大于它的补角;(2)互补的两个角一个是钝角,一个是锐角;(3)在同一平面内,过直线外一点有且只有一条直线与已知直线垂直;(4)若||=||,则a=b;(5)若a+b=0,则||=||.解:(1)是真命题;(2)是假命题.反例:两个角都是直角,这两个角互补,但不是钝角和锐角.(3)是真命题;(4)是假命题.反例:当a=-1,b=1时,||=||,但a≠b.(5)是真命题.【迁移应用】1.下列选项中,可以用来说明命题“若a2>4,则a>2”是假命题的反例是()A.a=-3B.a=-2C.a=2D.a=32.“两直线被第三条直线所截,同位角相等”是____命题(填“真”或“假”)3.下列命题:①同旁内角互补;②垂线段最短;③同一平面内,不重合的两条直线相交,则它们只有一个交点;④若一个角的两边与另一个角的两边分别平行,则这两个角相等.其中是真命题的是________(填序号)自学导航定理、证明如何证实一个命题是真命题呢?我们学过的一些图形的性质,都是真命题.其中有些命题是基本事实(公理),如“两点确定一条直线”“经过直线外一点有且只有一条直线与这条直线平行”等.还有一些命题,如“对顶角相等”“内错角相等,两直线平行”等,它们的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据.在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.考点解析考点3:定理与证明例3.如图,AB//CD,∠1=∠2,求证:AF//CG.证明:∵AB//CD(已知),∴∠EAB=∠ECD(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠EAB-∠1=∠ECD-∠2(等式的性质),即∠EAF=∠ECG,∴AF∥CG(同位角相等,两直线平行).【迁移应用】1.填空完成推理过程:如图,∠1=∠2,求证:∠B=∠BCD.证明:∵∠1=_______,∠1=∠2,∴∠2=_______.∴AB//CD(_______________________).∴∠B=∠BCD(_______________________).2.如图,已知∠A=∠ADE,∠C=∠E.求证:BE//CD.证明:∵∠A=∠ADE(已知),∴DE//AC(内错角相等,两直线平行),∴∠ABE=∠E(两直线平行,内错角相等).又∠C=∠E(已知),∴∠ABE=∠C(等量代换),∴BE//CD(同位角相等,两直线平行).考点4:填写推理过程和依据例4.完成下面的证明:如图,BC//DE,BE,DF分别是∠ABC,∠ADE的平分线.求证:∠1=∠2.证明:∵BC//DE,∴∠ABC=∠ADE(________________________).∵BE,DF分别是∠ABC,∠ADE的平分线,12∠ABC,∠4=12∠ADE.∴∠3=∠4∴_____∥______(________________________).∴∠1=∠2(________________________).【迁移应用】1.完成下面的证明:如图,AB⊥BC,BC⊥CD,且∠1=∠2.求证:BE//CF证明:∵AB⊥BC,BC⊥CD,∴________=________=90°(___________)∵∠1=∠2,∴∠ABC-∠1=∠DCB-∠2,即________=_________.∴BE//CF(_________________________).2.请补全证明过程及推理依据如图,D,E,F分别是三角形ABC的边AB,AC,BC上的点,若AB//EF,∠DEF=∠B.求证:∠AED=∠C.证明:∵AB//EF,∴_______=∠EFC(________________________).∴∠DEF=∠B,∴∠DEF=∠EFC(__________),∴DE//BC(______________________),∴∠AED=∠C.考点5:填写推理过程和依据例5.如图,∠ACD是∠ACB的邻补角,请从下面三个语句中,选出两个作为条件,另一个作为结论,构造一个真命题.①CE//AB;②∠A=∠B;③CE平分∠ACD.(1)由上述条件可构造出哪几个真命题?按“⊕⊕⇒⊕”的形式写出来;(2)选择(1)中的一个真命题进行证明.解:(1)可构造三个真命题,分别是:命题1:①②⇒③;命题2:①③⇒②;命题3:②③⇒①.(2)选择命题2:①③⇒②证明:∵CE//AB,∴∠ACE=∠A,∠DCE=∠B.∵CE平分∠ACD,∴∠ACE=∠DCE.∴∠A=∠B.(答案不唯一)【迁移应用】如图,现有以下三个条件:①AB//CD;②∠B=∠D;③∠E=∠F.请以其中两个为条件,第三个为结论构造新的命题;(1)请写出所有的命题:(写成“如果……那么……”的形式)(2)请选择其中的一个真命题进行证明.解:(1)命题1:如果AB//CD,∠B=∠D,那么∠E=∠F;命题2:如果AB//CD,∠E=∠F,那么∠B=∠D;命题3:如果∠B=∠D,∠E=∠F,那么AB//CD.(2)选择命题 1.证明:∵AB//CD,∴∠B=∠DCF∵∠B=∠D,∴∠D=∠DCF∴DE//BF,∴∠E=∠F.(答案不唯一)。
《5.3.2 命题、定理、证明》教学设计教材分析对于命题的相关知识,教材是分散安排的,本课时主要是命题的概念、命题的构成、真假命题的判断、什么是定理、初步感知证明过程,大部分内容是要求学生有一个初步的了解,不必探究,主要培养学生不同几何语言的转化,是后续学习的基础.备课素材一、新知导入【质疑导入】以下7个句子,有什么不同,你能对它们进行分类吗?如果你能分类,分类的依据是什么?①爸爸你去哪儿呢?②如果两条直线都和第三条直线平行,内错角相等;③邱波是喀山世锦赛十米跳台的冠军;④你不是调皮捣蛋的孩子;⑤奔跑吧兄弟!⑥舌尖上的中国;⑦对顶角相等.指出像②③④⑦这样判断一件事情的语句,叫做命题.【说明与建议】说明:将不同类型的句子放在一起,通过学生的分类、比较,理解命题与非命题的区别.建议:学生分类的标准可能不同,只要自己能讲出道理即可,不必强求统一,而后教师引导.【复习导入】由学生叙述平行线的判定方法及平行线的性质、等式的性质、对顶角的性质,指出它们都是命题.【说明与建议】说明:既复习了已学知识,又让学生认识了命题的多种表现形式,从而使学生明白命题他们已接触过,只是没有从概念上加以澄清,从而消除学生对新知识的恐惧感,增加亲切感.建议:选择的复习内容要既能体现命题的不同表现形式,又能让学生认识命题的叙述形式的多样性.二、命题热点命题角度1 命题的定义和结构1.下列句子中,属于命题的是(A)A.垂线段最短 B.延长线段AB到点CC.过点O作直线a∥b D.锐角都相等吗2.命题“钝角的补角是锐角”的题设为一个角是钝角的补角,结论为这个角是锐角.命题角度2 确定命题的真假3.下列命题中:①相等的角是对顶角;②两直线平行,同旁内角相等;③不相交的两条线段一定平行;④直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离.其中真命题有(A)A.0个 B.1个 C.2个 D.3个命题角度3 定理与证明4.对于命题“若x2=25,则x=5”,小江举了一个反例来证明它是假命题,则小江举的反例是(D)A.x=25 B.x=5 C.x=10 D.x=-5 5.如图,已知∠1与∠α互余,∠2与∠α互余.求证:∠1=∠2.证明:∵∠1与∠α互余(已知),∴∠1+∠α=90°(余角的定义),∴∠1=90°-∠α(等式的性质).又∵∠2与∠α互余(已知),∴∠2+∠α=90°(余角的定义).∴∠2=90°-∠α(等式的性质).∴∠1=∠2(等量代换).教学设计课题 5.3.2命题、定理、证明授课人教学目标1.掌握命题、定理的概念,并能分清命题的组成.2.了解证明的意义,知道要判断一个数学结论是否正确,仅仅依靠经验、观察或实验是不够的,必须一步一步、有理有据地进行推理.3.通过讨论、探究、交流等形式,让学生在辩论中获得知识体验.4.在学习过程中培养学生敢于怀疑、大胆探究的品质.教学重点掌握命题、定理的概念,了解证明的意义.教学难点1.分清命题的组成,说出一个命题是真命题还是假命题.2.掌握推理的方法和步骤.授课类型新授课课时教学活动教学步骤师生活动设计意图活动一:创设情境、导入新课【课堂引入】同学们,我们初次见面,为了让我们这堂课更加生动有趣,今天我给大家做个简单自我介绍,请同学们认真聆听,并判断每句话的对错.我是廖某某,我的年龄是28岁,身高是160 cm,今天我穿的是白色的上衣,我是你们这节课的数学老师.共同特点:都是对一件事的判断.以自身为例子来引入本节课的新概念,让学生增加好奇心,产生学习兴趣.活动二:【探究新知】 1.通过各类型的语句实践探究、交流新知【探究1】命题的概念下列句子中,哪些是命题?①正数都大于0;②如果∠1+∠2=180°,那么∠1与∠2互补;③太阳不是行星;④对顶角相等吗?⑤作一个角等于已知角.分析:①②是命题,它们都对事情做出了肯定判断;③是命题,它对事情做出了否定判断;④不是命题,只表示疑问,并未做出判断;⑤不是命题,只是描述了一个作图的过程,没有做出判断.解:①②③是命题,④⑤不是命题.师生共同总结判断命题的依据:对一件事做出了肯定或否定的判断的句子为命题,否则不是命题.【探究2】命题的题设和结论命题由题设和结论两部分组成,其中“题设”是已知事项,即命题中的已知条件;“结论”是由已知事项推出的事项,即结论是在已知条件的前提下可得到的结果.命题的表述有标准形式:“如果……那么……”,另外还有“若……则……”等.一般地,“如果……”和“若……”是题设部分,“那么……”和“则……”是结论部分.一些命题前面的“附加部分”属题设.要准确找出一个命题的题设和结论,特别是一些没有关联词语、题设和结论不明显的命题.判断下列语句是不是命题,是命题的指出命题的题设和结论,并判断此命题是真命题还是假命题.(1)画射线AC;(2)同位角相等吗?(3)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(4)任意两个直角都相等;(5)如果两条直线相交,那么它们只有一个交点;(6)若|x|=|y|,则x=y.解:(1)(2)不是命题;(3)(4)(5)(6)是命题.(3)题设是两条直线被第三条直线所截,内错角相等,结论是这两条直线平探究命题的概念.2.师生通过例题共同探究命题的题设和结论的确定方法.3.引导学生区分命题与定理的关系,且体会证明数学命题的必要性.4.归纳证明的过程有助于培养学生严密的逻辑推理能力,为后续的学习打好基础.行,是真命题;(4)题设是两个角是直角,结论是这两个角相等,是真命题;(5)题设是两条直线相交,结论是它们只有一个交点,是真命题;(6)题设是|x|=|y|,结论是x=y,是假命题.有些数学命题,如“对顶角相等”,没有写成标准形式,条件和结论不明显,要认真分析是由什么来推断什么,把它恢复成标准形式,这样就容易找到它的题设和结论.如“对顶角相等”恢复成标准形式是“如果两个角是对顶角,那么这两个角相等”.有些命题的题设之前还有题设,那么这两个题设合起来作为命题的题设,如“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”.题设是两条直线被第三条直线所截,同位角相等;结论是这两条直线平行.【探究3】定理与证明我们已经知道下列各命题都是正确的,即都是公认的真命题:(1)两点确定一条直线;(2)两点之间线段最短;(3)过一点有且只有一条直线与已知直线垂直;(4)过直线外一点有且只有一条直线与这条直线平行.有些命题可以从基本事实或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.归纳:定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.探究证明:根据条件、定义以及基本事实、定理等,经过演绎推理,来判断一个命题是否正确,这样的推理过程叫做证明.如图,有下列三个条件:①DE∥BC:②∠1=∠2;③∠B=∠C.(1)若从这三个条件中任选两个作为题设,另一个作为结论,组成一个命题,一共能组成几个命题,请你把它们写出来;(2)请你就其中的一个真命题给出推理过程.解:(1)一共能组成3个命题,它们是:题设①②,结论③;题设①③,结论②;题设②③,结论①.(2)情况一:题设①②,结论③.证明∵DE∥BC,∴∠1=∠B,∠2=∠C.又∵∠1=∠2,∴∠B=∠C.情况二:题设①③,结论②.证明:∵DE∥BC,∴∠1=∠B,∠2=∠C.又∵∠B=∠C,∴∠1=∠2.归纳总结:几何证明的一般步骤:第一步:根据题意画出图形;第二步:根据命题的题设和结论,结合图形,写出已知、求证;第三步:通过分析,找出证明的方法,写出证明过程.在证明几何命题时,须注意以下几点:1.明确题目的题设和结论.2.证明过程中引用的根据(理由)与“定理的证明相同”.3.证明过程中每一步结果所用的根据必须是得到这一结果的充分理由.4.要防止利用未学过的定理来证明学过的命题,避免循环论证.活动三:开放训练、体现应用【典型例题】例1将下列各命题改写成“如果……那么……”的形式,并指出各命题的题设和结论.(1)同旁内角互补,两直线平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)邻补角是互补的角;(4)平行于同一直线的两直线平行.解:(1)如果同旁内角互补,那么两直线平行.题设:同旁内角互补,结论:两直线平行.(2)如果两条平行线被第三条直线所截,那么同旁内角互补.题设:两条平行线被第三条直线所截,结论:同旁内角互补.(3)如果两个角是邻补角,那么这两个角互补.题设:两个角是邻补角,结论:这两个角互补.1.利用新知解决问题,根据相关性质进行演绎推理.2.通过变式训练巩固证明过程,训练学生推理证明的能力.(4)如果两条直线平行于同一条直线,那么这两条直线平行.题设:两条直线平行于同一条直线,结论:这两条直线平行.例2请根据题目中的逻辑关系填空:已知:如图,∠1+∠AFE=180°,∠A=∠2.求证:∠A=∠C+∠AFC.证明:∵∠1+∠AFE=180°,∴CD∥EF(同旁内角互补,两直线平行).∵∠A=∠2,∴AB∥CD(同位角相等,两直线平行).∴AB∥CD∥EF.∴∠A=∠AFE,∠C=∠CFE(两直线平行,内错角相等).∵∠AFE=∠EFC+∠AFC,∴∠A=∠C+∠AFC(等量代换).【变式训练】如图,已知BC与DE相交于点O,给出下面三个论断:①∠B=∠E;②AB∥DE;③BC∥EF.请以其中的两个论断为条件,填入“题设”栏中;剩下的论断为结论,填入“结论”栏中,使之成为一个真命题,并加以证明.题设:如图,已知BC与DE相交于点O,②,③(填序号).结论:①(填序号).证明:∵AB∥DE,∴∠B=∠COD.又∵BC∥EF,∴∠E=∠COD.∴∠B=∠E.(本题答案不唯一)师生活动:学生独立思考,举手回答,师生交流心得和方法.活动四:【课堂检测】通过设置课堂检测,课堂检测 1.下列语句中,不是命题的是(D)A.如果a>b,那么a2>b2B.内错角相等C.两点之间线段最短D.过点P作PO⊥AB于点O2.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③等角的邻补角相等;④同一平面内,垂直于同一直线的两条直线互相平行.其中真命题的个数为(B)A.1 B.2 C.3 D.43.下列命题中,是假命题的是(B)A.对顶角相等 B.同旁内角互补C.两点确定一条直线 D.若|-x|=-x,则x≤04.将下列命题改写成“如果……那么……”的形式,并判断命题的真假,是假命题的举出反例.(1)等角的补角相等;(2)对顶角互补.解:(1)如果两个角分别是两个相等角的补角,那么这两个角相等.真命题.(2)如果两个角是对顶角,那么这两个角互补.假命题,举反例略.5.请把下面证明过程补充完整.如图,已知AD⊥BC于点D,点E在BA的延长线上,EG⊥BC于点C,交AC于点F,∠E=∠1.求证:AD平分∠BAC.证明:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90°(垂直的定义).∴AD∥EG(同位角相等,两直线平行).∴∠1=∠2(两直线平行,内错角相等),∠E=∠3(两直线平行,同位角相等).∵∠E=∠1(已知),及时获知学生对所学知识的掌握情况,明确哪些学生需要在课后加强辅导,达到全面提高的目的.∴∠2=∠3(等量代换).∴AD平分∠BAC(角平分线的定义).6.如图,现有以下3个论断:①AB∥CD;②∠B=∠C;③∠E=∠F.请以其中2个论断为条件,另一个论断为结论构造命题.(1)你构造的是哪几个命题?(2)请选择其中一个真命题加以证明.解:(1)由①②得③;由①③得②;由②③得①.(2)由①②得③,证明过程如下:∵AB∥CD,∴∠EAB=∠C.又∵∠B=∠C,∴∠EAB=∠B.∴CE∥BF.∴∠E=∠F.(本题答案不唯一)师生活动:学生进行课堂检测,完成后,教师进行批阅、点评、讲解.课堂小结1.课堂小结:(1)通过本节课的探究学习,你有什么新的收获和体验?(2)本节课还有哪些疑惑?2.布置作业:教材第23~25页习题5.3第6,12,13题.通过课堂小结的形式,让学生能够对本课时所学知识进行整理,同时明确学习重点.教学反思反思教学过程和教师表现,进一步提升操作流程和自身素质.。
目标:1、掌握命题的概念,并能分清命题的组成部分.
2、经历判断命题真假的过程,对命题的真假有一个初步的了解。
重点:命题的概念和区分命题的题设与结论
难点:区分命题的题设和结论
一、学前准备
1、平行线的3个判定方法的共同点是。
2、平行线的判定和性质的区别是。
二、探索与思考
(一)命题:
1、阅读思考:①如果两条直线都与第三条直线平行,那么这条直线也互相平行;②等式两边都加同一个数,结果仍是等式;③对顶角相等;④如果两条直线不平行,那么同位角不相等。
这些句子都是对某一件事情作出“”或“”的判断。
2、定义:的语句,叫做命题。
3、练习:下列语句,哪些是命题?哪些不是?
(1)过直线AB外一点P,作AB的平行线.
(2)过直线AB外一点P,可以作一条直线与AB平行吗?
(3)经过直线AB外一点P,,可以作一条直线与AB平行.
(二)命题的构成:
1、命题由和两部分组成;是已知事项,是由已知事项推出的事项。
2、命题常写成“如果……那么……”的形式;这时,“如果”后接的部分是“那么”后接的的部分是。
(三)命题的分类真命题:。
(定理:的真命题。
)
假命题:。
三、应用:
1、指出下列命题的题设和结论:
(1)如果两个数互为相反数,这两个数的商为-1;
(2)两直线平行,同旁内角互补;
(3)同旁内角互补,两直线平行;
(4)等式两边乘同一个数,结果仍是等式;
(5)绝对值相等的两个数相等.
(6)如果AB⊥CD,垂足是O,那么∠AOC=90°
2、把下列命题改写成“如果……那么……”的形式:
(1)互补的两个角不可能都是锐角:。
(2)垂直于同一条直线的两条直线平行:。
(3)对顶角相等:。
3、判断下列命题是否正确:(1)同位角相等;(2)如果两个角是邻补角,这两个角互补;
(3)如果两个角互补:这两个角是邻补角.
四、学习体会:
1、你有哪些收获?你还有哪些疑惑?
2、预习时的疑难我是这样理解的。