当前位置:文档之家› 石灰石湿法烟气脱硫技术

石灰石湿法烟气脱硫技术

石灰石湿法烟气脱硫技术

一.工艺流程

1脱硫系统由下列子系统组成:

1.1石灰石制粉系统

1.2吸收剂制备与供应系统

1.3烟气系统

1.4 SO2吸收系统

1.5石膏处理系统

1.6废水处理系统

1.7公用系统

1.8电气系统

2 .烟气脱硫工艺流程简介

(石灰石——石膏湿法脱硫工艺流程图)

作为脱硫吸收剂的石灰石选用石灰石矿生产的3-10mm、水份<1%的石灰石颗粒,运输至石灰石料仓。石灰石经磨粉机磨制成325目90%通过、颗粒度≤43μm的石灰石粉。合格的石灰石粉经制浆系统与水配置成30%浓度的悬浮浆液,根据烟气脱硫的需要,在自动控制系统的操纵下通过石灰石浆液泵和管道送入吸收塔系统。石灰石由于其良好的活性和低廉的价格因素是目前世界上广泛采用的脱硫剂制备原料。

烟气脱硫系统采用将升压风机布置在吸收塔上游烟气侧运行的设计方案,以保证整个FGD 系统均为正压运行操作,同时还可以避免升压风机可能受到的低温烟气腐蚀。升压风机为烟气提供压头,使烟气能克服整个FGD系统从进口分界到烟囱之间的烟气阻力。

为了将FGD系统与锅炉分离开来在整个脱硫烟气系统中设置有带气动执行机构保证零泄漏的烟气档板门.在要求紧急关闭FGD系统的状态下,旁路档板门在5s自动快速开启,原烟气档板门在55s、净烟气档板门50s内自动关闭。为防止烟气在档板门中泄漏,原烟气和旁路档板门设有密封空气系统。

脱硫系统运行时,锅炉至烟囱的旁路档板门关闭,锅炉引风机来的全部烟气经过各自的原烟气档板门汇合后进入升压风机.升压后的烟气至气气热交换器(GGH)原烟气侧,GGH 选用回

转再生式烟气换热器,涂搪瓷换热元件选用先进波形和高传热系数产品, 以减小GGH总重和节约业主方未来更换换热元件的费用。GGH利用锅炉出来的原烟气来加热经脱硫之后的净烟气,使净烟气在烟囱进口的最低温度达到80℃以上, 大于酸露点温度后排放至烟囱。GGH转子采用中心驱动方式。每台GGH设两台电动驱动装置,一台主驱动,一台备用, 电机均采用空气冷却形式。如果主驱动退出工作,辅助驱动自动切换,防止转子停转。GGH的设计能适应在厂用电失电的情况下,转子停转而不发生损坏、变形。GGH采取主轴垂直布置, 即气流方向为原烟气向上(去吸收塔),净烟气向下(去烟囱排放)。因为原烟气中含有一定浓度的飞灰,飞灰可能会沉积在装置的内侧,随着时间的推移,热传递的效率可能会降低。为防止GGH传热面间的沉积结垢而影响传热效率, 增大阻力和漏风率, 减小寿命,需要通过吹灰器使用压缩空气清洗或用高压水进行定时清洗,吹灰器配有一根可伸缩的喷枪。视烟气中飞灰含量情况, 决定每班或每隔数小时冲洗一次GGH,或当压降超过给定最大值时,说明有一定程度的石膏颗粒沉积, 需启动高压水泵冲洗。但用高压水泵冲洗只能在运行时进行在线冲洗。当FGD装置停运时,可用低压水冲洗换热器(离线冲洗)。

GGH的防腐主要有以下措施: 对接触烟气的静态部件采取玻璃鳞片树脂涂层保护, 保护寿命约为1个大修周期; 对转子格仓, 箱条等回转部件采用厚板考登钢15-20mm厚板, 寿命为30年; 密封片采用高级不锈钢AVESTA 254SMO/904L; 换热元件采用脱碳钢镀搪瓷, 寿命约为2个大修周期。

在热量交换后烟气温度降温冷却至101℃和89.3℃后进入逆流喷淋吸收塔,冷却后的原烟气进入吸收塔与同时通过吸收塔上部的喷嘴进入吸收塔,并与向下喷出的雾状石灰石浆液接触进行脱硫反应,烟气中的SO2、SO3等被吸收塔内循环喷淋的石灰石浆液洗涤,并与浆液中的CaCO3发生反应生成的亚硫酸钙悬浮颗粒在吸收塔底部的循环浆池内,再次被氧化风机鼓入的空气强制氧化而继续发生化学反应,最终生成石膏颗粒。与此同时,部分其他有害物质如飞灰、SO3、HCI、HF等也得到清除,这时的原烟气温度已被降低至饱和温度47.22℃和4 5.53℃。在吸收塔的出口设有除雾器,脱除SO2后的烟气经除雾器除去烟气中携带的细小的液滴,进入气气热交换器净烟气侧加热,此时的烟气温度进入GGH升温到80℃以上,经脱硫系统净烟气档板门最后送入烟囱,排向大气。

在整个脱硫系统中多处烟气温度已降至100℃以下,接近酸露点,为烟道和支架防腐,在设计中采用了玻璃鳞片树脂涂层。考虑到低温烟气对烟囱内壁产生的影响,烟囱内壁均采用刷

耐酸涂料,隔热层采用憎水膨胀珍珠岩,内衬为耐酸砖,采用耐酸胶泥砌筑的防腐措施。在脱硫系统内部采取的防腐措施有:对接触烟气的静态部位采取玻璃鳞片树脂涂层保护,

经过充分氧化生成的脱硫副产品石膏浆体,经吸收塔排出泵从吸收塔石膏浆液池抽出通过管道输送至石膏缓冲罐,再由石膏旋流站进料泵送入旋流站进行一级脱水,经分离脱水后的底流石膏浆液含水率约50%左右,直接进入真空过滤皮带机进行过滤脱水处理,在第二级脱水系统中还对石膏滤饼进行冲洗以去除氯化物,最后制备成含水量小于10%、含Cl-<100ppm 的脱硫石膏粉,石膏成品堆积在脱硫石膏仓待运。脱硫石膏可用作建材和化工原料。最后,废水经废水旋流站再次进行旋流分离,得到含固量为3%的溢流和含固量为10%的底流,底流进入滤液水箱,返回FGD系统循环使用,溢流排放至废水处理站。

当脱硫系统停运时,锅炉烟气旁路档板门开启,脱硫装置原烟气挡板门和净烟气挡板门关闭,原烟气通过锅炉至烟囱的旁路烟道进入烟囱。当一台锅炉停止运行时,开启该锅炉旁路档板门,关闭原烟气档板门。

脱硫系统设置一只事故浆池,供系统发生故障和检修时存放石膏浆液用,为防止石膏浆液沉淀,凡存有浆液的罐、坑、均设置连续运行的搅拌器。为减少二次污染,在脱硫工程中又进行了改进,增加了个塔区排水池,用来收集塔区正常运行、清洗和检修中产生的排出物、收集FGD装置的冲洗水和废水,水一集满,安装在池顶的排水泵就将其输送到吸收塔或事故浆液池,为防止坑内浆液中固体颗粒沉积,池顶还安装了搅拌器。

脱硫系统设计有自己的工业(艺)水箱和水泵,所需水源以及消防水、生活用水均来自机组的闭式水和消防水系统.所用压缩空气系统根据实际情况可以从主机引用或另设一套压缩空气系统,主要作用是仪表用气,气动执行机构用气,检修用气和GGH压缩空气吹扫用气.

二.反应原理

当吸收液通过喷嘴雾化喷入烟气时,吸收液分散成细小的液滴并覆盖吸收塔的整个断面。这些液滴在与烟气逆流接触时SO2被吸收。这样,SO2在吸收区被吸收,吸收剂的氧化和中和反应在吸收塔底部的储液区完成并最终形成石膏。

为了维持吸收剂恒定的pH值并减少石灰石耗量,吸收塔内的吸收剂被搅拌机、氧化空气和吸收塔循环泵不停地搅动。

吸收塔中的SO2的脱除原理如下:

烟气中的SO2与浆液中碳酸钙发生反应,生成亚硫酸钙:

CaCO3+SO2+H2O--->CaSO3·½H2O+½H2O+CO2(1)

通过烟气中的氧和亚硫酸氢根的中间过渡反应,部分的亚硫酸钙转化成石膏,化学上称作二水硫酸钙:

CaSO3 · ½H2O + SO2 + H2O ---> Ca(HSO3)2 + ½H2O (2)

Ca(HSO3) 2 +½O2 +2H2O ---> CaSO4 · 2 H2O + SO2 + H2O(3)

吸收塔浆液池中剩余的亚硫酸钙通过由氧化风机鼓入的空气发生氧化反应,生成硫酸钙。在该反应过程中直接的氧化是次要的,而主要是通过亚硫酸氢根与氧气的反应完成:

Ca(HSO3) 2 +½O2 +2H2O ---> CaSO4 · 2 H2O + SO2 + H2O(3)

当然,也有其他的反应,如:三氧化硫,氯化氢和氢氟酸与碳酸钙的反应,反应生成石膏和氯化钙和/或氟化钙化合物:

CaCO3 + SO3 + 2 H2O---> CaSO4·2 H2O+CO2 (5) CaCO3 + 2HCl ---> CaCl2 + H2O + CO2 (6)

CaCO3 + 2HF ---> CaF2+H2O+CO2 (7)

吸收塔浆液池中的pH值通过加入石灰石浆液来控制,在吸收塔浆液池中的反应需足够长的时间以使石膏能产生良好的石膏结晶(CaSO4·2H2O)。

氧化空气空压机 (1用1备)安装独立风机房内,用以向吸收塔浆池提供足够的氧气和/或空气,以便于石膏的形成(即从亚硫酸钙进一步氧化成硫酸钙),因为烟气中所含的氧不能满足氧化需要。如果输入的氧化空气不足会导致脱硫效率的降低,并在吸收塔中产生结块。然而,最佳的空气输入值可节约能量。氧化空气通过喷管(喷管上规则间隔分布有出气孔)分布到吸收塔浆液池中。

新鲜的氧化空气通过消音器和空气过滤器被吸入,经过空压机压缩后再通过消音器经过管道输送到吸收塔。为了降低氧化空气的温度(离开空压机的温度高达110℃),需将水喷入到氧化空气管中,水蒸发后使氧化空气降温。

塔内喷淋层采用FRP管,浆液循环管道采用法兰联结的碳钢衬胶管,氧化空气管道采用带有保温层的无缝钢管。FGD工艺系统中吸收浆液最大氯离子浓度按20000ppm考虑, 并以此决定所有与浆液接触的设备和部件的防腐保护。

三、石灰石(石灰)—石膏湿法脱硫主要特点

(1)脱硫效率高。石灰石(石灰)—石膏湿法脱硫工艺脱硫率高达95%以上,脱硫后的烟气不但二氧化硫浓度很低,而且烟气含尘量也大大减少。大机组采用湿法脱硫工艺,二氧化硫脱除量大,有利于地区和电厂实行总量控制。

(2)技术成熟,运行可靠性好。国外火电厂石灰石(石灰)一石膏湿法脱硫装置投运率一般可达98%以上,由于其发展历史长,技术成熟,运行经验多,因此不会因脱硫设备而影响锅炉的正常运行。特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。

(3)对煤种变化的适应性强。该工艺适用于任何含硫量的煤种的烟气脱硫,无论是含硫量大于3%的高硫煤,还是含硫量低于1%的低硫煤,石灰石(石灰)一石膏湿法脱硫工艺都能适应。

(4)占地面积大,一次性建设投资相对较大。石灰石(石灰) 一石膏湿法脱硫工艺比其它工艺的占地面积要大,所以现有电厂在没有预留脱硫场地的情况下采用该工艺有一定的难度,其一次性建设投资比其它工艺也要高一些。

(5)吸收剂资源丰富,价格便宜。作为石灰石(石灰) 一石膏湿法脱硫工艺吸收剂的石灰石,在我国分布很广,资源丰富,许多地区石灰石品位也很好,碳酸钙含量在90%以上,优者可达95%以上。在脱硫工艺的各种吸收剂中,石灰石价格最便宜,破碎磨细较简单,钙利用率较高。

(6)脱硫副产物便于综合利用。石灰石(石灰) 一石膏湿法脱硫工艺的脱硫副产物为二水石膏。在日本、德国脱硫石膏年产量分别为250万吨和350万吨左右,基本上都能综合利用,主要用途是用于生产建材产品和水泥缓凝剂。脱硫副产物综合利用,不仅可以增加电厂效益、降低运行费用,而且可以减少脱硫副产物处置费用,延长灰场使用年限。

(7)技术进步快。近年来国外对石灰石(石灰) 一石膏湿法工艺进行了深入的研究与不断的改进,如吸收装置由原来的冷却、吸收、氧化三塔合为一塔,塔内流速大幅度提高,喷嘴性能进一步改善等。通过技术进步和创新,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。

石灰石-石膏湿法烟气脱硫原理及工艺流程

石灰石-石膏湿法烟气脱硫原理及工艺流程 摘要:文中主要对目前火力发电厂普遍使用的石灰石-石膏湿法烟气脱硫工艺的 化学反应原理及工艺流程进行了阐述。为运行及检修提供理论基础。 关键词:火力发电厂石膏湿法烟气脱硫 目前,我国的电力供应仍以燃煤的火力发电厂为主,并因此产生的大量SO2 的排放而产生的酸雨对我国的生态环境造成了极大的危害,因此,减少SO2的排 放是我国大气治理的一个重要方面。当前,我国火力发电厂减少SO2排放主要采 用的为烟气脱硫技术,其中石灰石—石膏湿法FGD技术由于最为成熟、可靠而被 广泛采用。 一、石灰石-石膏湿法烟气脱硫工艺介绍 石灰石-石膏湿法烟气脱硫工艺属于煤燃烧后脱硫,脱硫系统位于除尘器之后,脱硫过程在溶液中进行,脱硫剂及脱硫生成物均为湿态,脱硫过程的反应温度低 于露点,故脱硫后的烟气一般需要经再加热后排出,或提高烟囱的防腐等级。 1 工艺流程介绍 其工艺流程为:从锅炉出来的烟气首先经过电除尘器进行除尘,去除烟气中 的大部分粉尘颗粒,经除尘后的烟气进入到吸收塔中,同时,浆液循环泵由吸收 塔下部抽取浆液并提升到一定高度后,通过喷淋层内设置的喷嘴喷射到吸收塔中。在吸收塔内烟气向上流动,浆液向下流动,两种物料在吸收塔内进行逆流接触混合,此时,SO2与浆液中的碳酸钙相接触,在空气作用下进行化学反应,并最终 形成石膏(CaSO4•2H2O)。为保证有足量空气使亚硫酸根离子的充分氧化,还 需设置氧化风机进行强制氧化。 整个过程中,吸收塔内浆液被循环泵连续不断的向上输送到喷淋层,浆液通 过喷嘴喷出,在喷嘴的雾化作用下,气液两相物质充分混合。每个循环泵与各自 的喷淋层相连接,形成多层浆液喷嘴,根据锅炉烟气量及烟气含硫量开启相应的 喷嘴层数。 随着烟气中SO2的不断被吸收,在吸收塔中不断的产生石膏,因此必须将石 膏排出,以维持物料平衡,故在吸收塔底部设置石膏浆液泵,将二氧化硫与石灰 石浆液反应生成的石膏浆液输送至石膏脱水系统,形成可被利用的工业石膏。 同时净化后的烟气经过安装在吸收塔顶部的除雾器将所携带的浆液雾滴去除;为防止除雾器结构,设置除雾器冲洗系统,利用工艺水对除雾器进行冲洗。 经过除雾后的烟气通过烟道进入烟囱而排向大气。 2 烟气脱硫过程发生的主要化学反应 从烟气中脱除SO2的过程,是SO2在吸收塔内与吸收剂的气液传质过程,在 整个反应过程中,通过吸收、溶解、氧化还原等化学反应而结晶析出脱硫固体副 产物(石膏)。主要的反应步骤及特点如下: (1)锅炉烟气中的气相SO2被液相水吸收 SO2是一种极易溶与水的酸性气体,SO2经扩撒作用从气相入液相中,并于 水化合形成亚硫酸,亚硫酸电离成为氢离子和亚硫酸氢根离子;当ph较高时, 亚硫酸氢根离子通过二级电离产生亚硫酸根离子。因此,在反应过程中,一般通 过调节注入石灰石浆液的量来控制吸收塔内浆液pH值在5.0—6.0之间。 (2)石灰石的溶解 SO2是通过钙离子与硫酸根离子或亚硫酸根离子结合而得以从浆液中去除, 所以钙离子的形成是一个至关重要的步骤。

石灰石-石膏湿法低浓度二氧化硫烟气脱硫工艺

本文主要讲述了工业石灰石-石膏湿法低浓度二氧化硫烟气脱硫工艺,认真分析了该工艺的工艺路线(基本原理)、工艺系统、以及影响该工艺的具体因素和脱硫石膏的运用与发展。 ①工艺路线(基本原理):CaCO3+SO2+1/2H2O=CaSO3·1/2H2O+CO2 CaSO3·1/2H2O+SO2+1/2H2O=Ca(HSO3)2 2CaSO3·1/2H2O+O2+3H2O=2CaSO4·2H2O Ca(HSO3)2+1/2O2+H2O=CaSO4·2H2O+SO2 ②工艺流程方框图如下: ③工艺系统:主要分析了吸收剂制备系统、烟气及SO2吸收系统、石膏处理系统、FGD装置用水系统、脱硫废水处理系统、压缩空气系统等系统。 ④影响因素:主要分析了吸收塔洗涤浆液的PH、吸收塔内的液气比、烟速和烟气温度、钙硫比、石灰石浆液颗粒细度、石膏过饱和度、浆液停留时间等影响因素。 ⑤脱硫石膏的运用与发展:主要介绍了石膏在各方面在一些用途,以及石膏用于制硫酸的思路。 1.1前言

二氧化硫是主要大气污染物之一,严重影响环境,威胁人们的生活健康。削减二氧化硫的排放量,保护大气环境质量,是目前及未来相当长时间内我国环境保护的重要课题之一。目前,国内外处理低浓度二氧化硫烟气的方法有许多,如氨法、钙法、钠法、铝法、氧化法、吸附法、催化法及电子束法等。但由于受到技术可靠性、经济合理性、及行业生产特点等限制,当前比较成熟且广泛运用的方法主要有三种,即氨法、钙法和钠法。氨法是烟气脱硫方法中较传统的工艺,该法采用液氨或氨水作为吸收剂,吸收效率高、脱硫彻底。钙法是采用石灰水或石灰乳洗涤含二氧化硫的烟气,技术成熟,生产成本低,但吸收速率慢、吸收能力小、装置运行周期短。钠法是使用碳酸钠或氢氧化钠等碱性物质吸收含二氧化硫的烟气,具有吸收能力大、吸收速率快、脱硫效率高、设备简单、操作方便等优势,但最大的问题是原料钠碱较贵,生产成本高。上述工艺普遍存在以下几个共同的问题:①脱硫设备的工程投资较大。②脱硫过程中的副产物难利用。③高额的环保运行费用使生产企业不堪重负。 针对传统脱硫方法存在的缺陷,本文阐述了主要钙法在处理低浓度二氧化硫烟气领域的新工艺、新技术,这些新工艺的一个基本出发点是既解决了烟气排放问题,又综合回收了资源,达到以废治废的目的,获得了良好的社会效益和经济效益。 1.2二氧化硫(Sulfurdioxide)简述 1.2.1二氧化硫物化性质 二氧化硫在常温下是无色气体,具有强烈的刺激性气味,化学式:SO ,分 2 子量:64.06。 二氧化硫的主要物理性质如下: 冷凝温度,℃-10.02 结晶温度,℃-75.48 标准状况下的气体密度,g/L2.9265 标准状况下摩尔体积,L/mol21.891 气体的平均比热容(0-100℃),J/(g·K)0.6615 液面上的蒸气压(20℃),kPa330.26 蒸发潜热(20℃),J/g362.54 在20℃的温度下,1体积的水可溶解40体积的二氧化硫气体并放出34.4kJ/mol的热量。随着温度的升高,二氧化硫气体在水中的溶解度降低。在硫酸溶液中,随着硫酸浓度的提高,二氧化硫的溶解度降低。 压二氧化硫气体容易液化。为了使二氧化硫气体充分液化,可将干燥的SO 2

石灰石湿法烟气脱硫技术

石灰石湿法烟气脱硫技术 一.工艺流程 1脱硫系统由下列子系统组成: 1.1石灰石制粉系统 1.2吸收剂制备与供应系统 1.3烟气系统 吸收系统 1.4 SO 2 1.5石膏处理系统 1.6废水处理系统 1.7公用系统 1.8电气系统 2 .烟气脱硫工艺流程简介 (石灰石——石膏湿法脱硫工艺流程图) 作为脱硫吸收剂的石灰石选用石灰石矿生产的3-10mm、水份<1%的石灰石颗粒,运输至石灰石料仓。石灰石经磨粉机磨制成325目90%通过、颗粒度≤43μm的石灰石粉。合格的石灰石粉经制浆系统与水配置成30%浓度的悬浮浆液,根据烟气脱硫的需要,在自动控制系统的操纵下通过石灰石浆液泵和管道送入吸收塔系统。石灰石由于其良好的活性和低廉的价格因素是目前世界上广泛采用的脱硫剂制备原料。 烟气脱硫系统采用将升压风机布置在吸收塔上游烟气侧运行的设计方案,以保证整个FGD 系统均为正压运行操作,同时还可以避免升压风机可能受到的低温烟气腐蚀。升压风机为烟气提供压头,使烟气能克服整个FGD系统从进口分界到烟囱之间的烟气阻力。 为了将FGD系统与锅炉分离开来在整个脱硫烟气系统中设置有带气动执行机构保证零泄漏的烟气档板门.在要求紧急关闭FGD系统的状态下,旁路档板门在5s自动快速开启,原烟气档板门在55s、净烟气档板门50s内自动关闭。为防止烟气在档板门中泄漏,原烟气和旁路档板门设有密封空气系统。 脱硫系统运行时,锅炉至烟囱的旁路档板门关闭,锅炉引风机来的全部烟气经过各自的原烟气档板门汇合后进入升压风机.升压后的烟气至气气热交换器(GGH)原烟气侧,GGH 选用回

转再生式烟气换热器,涂搪瓷换热元件选用先进波形和高传热系数产品, 以减小GGH总重和节约业主方未来更换换热元件的费用。GGH利用锅炉出来的原烟气来加热经脱硫之后的净烟气,使净烟气在烟囱进口的最低温度达到80℃以上, 大于酸露点温度后排放至烟囱。GGH转子采用中心驱动方式。每台GGH设两台电动驱动装置,一台主驱动,一台备用, 电机均采用空气冷却形式。如果主驱动退出工作,辅助驱动自动切换,防止转子停转。GGH的设计能适应在厂用电失电的情况下,转子停转而不发生损坏、变形。GGH采取主轴垂直布置, 即气流方向为原烟气向上(去吸收塔),净烟气向下(去烟囱排放)。因为原烟气中含有一定浓度的飞灰,飞灰可能会沉积在装置的内侧,随着时间的推移,热传递的效率可能会降低。为防止GGH传热面间的沉积结垢而影响传热效率, 增大阻力和漏风率, 减小寿命,需要通过吹灰器使用压缩空气清洗或用高压水进行定时清洗,吹灰器配有一根可伸缩的喷枪。视烟气中飞灰含量情况, 决定每班或每隔数小时冲洗一次GGH,或当压降超过给定最大值时,说明有一定程度的石膏颗粒沉积, 需启动高压水泵冲洗。但用高压水泵冲洗只能在运行时进行在线冲洗。当FGD装置停运时,可用低压水冲洗换热器(离线冲洗)。 GGH的防腐主要有以下措施: 对接触烟气的静态部件采取玻璃鳞片树脂涂层保护, 保护寿命约为1个大修周期; 对转子格仓, 箱条等回转部件采用厚板考登钢15-20mm厚板, 寿命为30年; 密封片采用高级不锈钢AVESTA 254SMO/904L; 换热元件采用脱碳钢镀搪瓷, 寿命约为2个大修周期。 在热量交换后烟气温度降温冷却至 101℃和89.3℃后进入逆流喷淋吸收塔,冷却后的原烟气进入吸收塔与同时通过吸收塔上部的喷嘴进入吸收塔,并与向下喷出的雾状石灰石浆液接 触进行脱硫反应,烟气中的SO 2、SO 3 等被吸收塔内循环喷淋的石灰石浆液洗涤,并与浆液中 的CaCO 3 发生反应生成的亚硫酸钙悬浮颗粒在吸收塔底部的循环浆池内,再次被氧化风机鼓 入的空气强制氧化而继续发生化学反应,最终生成石膏颗粒。与此同时,部分其他有害物质如飞灰、SO3、HCI、HF等也得到清除,这时的原烟气温度已被降低至饱和温度47.22℃和4 5.53℃。在吸收塔的出口设有除雾器,脱除SO 2 后的烟气经除雾器除去烟气中携带的细小的液滴,进入气气热交换器净烟气侧加热,此时的烟气温度进入GGH升温到80℃以上,经脱硫系统净烟气档板门最后送入烟囱,排向大气。 在整个脱硫系统中多处烟气温度已降至100℃以下,接近酸露点,为烟道和支架防腐,在设计中采用了玻璃鳞片树脂涂层。考虑到低温烟气对烟囱内壁产生的影响,烟囱内壁均采用刷

石灰石石膏湿法脱硫的工艺

石灰石石膏湿法脱硫的工艺 【石灰石石膏湿法脱硫的工艺】 导语:石灰石石膏湿法脱硫是一种常见的烟气脱硫技术,通过将石灰 石与石膏反应,可以高效地去除燃煤发电厂和工业锅炉烟气中的二氧 化硫。本文将深入探讨石灰石石膏湿法脱硫的工艺原理、优势以及相 关问题。 一、工艺原理 1. 石灰石石膏湿法脱硫原理: 石灰石与石膏发生反应生成硬石膏,将烟气中的二氧化硫转化为硫酸钙,并形成可回收利用的石膏产物。主要反应方程式如下所示:CaCO3 + SO2 + 2H2O → CaSO4·2H2O + CO2 2. 脱硫反应的特点: 该反应是一个快速的液相反应,在一定反应温度、气体流速和石膏浆 液浓度下进行。反应速率受碱性、反应温度、质量浓度等因素的影响。 二、工艺步骤 1. 石灰石石膏湿法脱硫的基本步骤: (1)石灰石破碎、磨细:将原料石灰石经过破碎和磨细处理,提高其

活性和反应速率。 (2)制备石膏浆液:将石灰石与水混合,形成石灰石浆液。为了提高脱硫效果,还可加入一定量的添加剂。 (3)脱硫反应:将石灰石浆液喷入脱硫塔,通过与烟气的接触和反应,使二氧化硫转化为硫酸钙。 (4)石膏产物处理:将脱硫过程中生成的硬石膏经过脱水、干燥等处理后,得到成品石膏。 2. 工艺改进: 为了提高脱硫效率和经济性,石灰石石膏湿法脱硫工艺进行了多方面 的改进。例如引入喷雾器、增加反应塔数目、采用高效填料等,以增 加烟气与石灰石浆液的接触面积,加强反应效果。 三、工艺优势 1. 脱硫效率高: 石灰石石膏湿法脱硫工艺能够高效地将烟气中的二氧化硫转化为重质 石膏产物,脱硫效率可达到90%以上。 2. 石膏产物可回收利用: 脱硫过程中生成的硬石膏可以用于建材、石膏板等行业,实现资源的 循环利用。 3. 工艺成熟可靠:

石灰石-石膏湿法烟气脱硫工艺原理及特点

石灰石-石膏湿法烟气脱硫工艺原理及特点 一、工艺原理 该工艺采用石灰石或石灰做脱硫吸收剂,石灰石破碎与水混合,磨细成粉壮,制成吸收浆液(当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆)。在吸收塔内,烟气中的SO2与浆液中的CaCO3(碳酸钙)以及鼓入的氧化空气进行化学反应生成二水石膏,二氧化硫被脱除。吸收塔排出的石膏浆液经脱水装置脱水后回收。脱硫后的烟气经除雾器去水、换热器加热升温后进入烟囱排向大气。 烟气从吸收塔下侧进入,与吸收浆液逆流接触,在塔内CaCO3与SO2、H2O进行反应,生成CaSO3·1/2H2O和CO2↑;对落入吸收塔浆浆池的CaSO3·1/2H2O和O2、H2O 再进行氧气反应,得到脱流副产品二水石膏。 化学反应方程式: 2CaCO3+H2O+2SO2====2CaSO3·1/2H2O+2CO2 2CaSO3·1/2H2O+O2+3H2O====2CaSO4·2H2O 二、FGD烟气系统的原理 从锅炉引风机后烟道引出的烟气,通过增压风机升压,烟气换热器(GGH)降温后,进入吸收塔,在吸收塔内与雾状石灰石浆液逆流接触,将烟气脱硫净化,经除雾期除去水雾后,又经GGH升温至大于75摄氏度,再进入净烟道经烟囱排放。 脱硫系统在引风机出口与烟囱之间的烟道上设置旁路挡板门,当FGD装置运行时,烟道旁路挡板门关闭,FGD装置进出口挡板门打开,烟气通过增压风机的吸力作用引入FGD系统。在FGD装置故障和停运时,旁路挡板门打开,FGD装置进出口挡板门关闭,烟气由旁路挡板经烟道直接进入烟囱,排向大气,从而保证锅炉机组的安全稳定运行。FGD装置的原烟气挡板、净烟气挡板及旁路挡板一般采用双百叶挡板并设置密封空气系统。旁路挡板具有快开功能,快开时间要小于10s,挡板的调整时间在正常情况下为75s,在事故情况下约为3~10s。 一、旁路挡板门的控制原理 概述 一、烟气脱硫挡板风门的结构简述 1.烟气脱硫挡板风门——风门框架和截面的主体部分和叶片均按设计用不同材质、规格的钢板制造。 2.烟气脱硫挡板风门——与系统的联接法兰用螺栓固定在相应的系统烟道中。3.烟气脱硫挡板风门——叶片由合金钢或普通钢制成,具有符合烟气脱硫工况参数条件下的适当强度,并牢固的附着在加伸轴上。每个风门叶片和轴柄装置由两个外部安装、自动找平、不需维护的带法兰盘轴承加以支撑,每个轴柄通过风门框架的位置上都是装有密封套的可调整的专用钢,以防止热气的逸出或外部空气的渗入。 4.烟气脱硫挡板风门——密封结构为:双重柔性+密封气体 安装在风门框架周边内侧的是双重密封层。 当叶片在密闭环境中,叶片与密封/邻近的叶片之间相密封,通过的密封气体与烟道内烟气相隔离。密封风机提供了密封气体给叶片之间的界面,剩余的压力是500pa(最小值),高于联动烟气风道内的气压,并保证气流通过时有100%的密封闭性。 一、烟气脱硫挡板风门的操作: 1.操作装置:气动执行机构或电动执行机构。 2.操作原理:风门的操作是开启和关闭。 二、烟气脱硫挡板门的检查:

石灰石-石膏湿法脱硫工艺的基本原理

石灰石-石膏湿法脱硫工艺的基本原理 一、石灰石-石膏湿法脱硫工艺的基本原理 石灰石——石膏湿法烟气脱硫工艺的原理是采用石灰石粉制成浆液作为脱硫吸收剂,与经降温后进入吸收塔的烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙,以及加入的氧化空气进行化学反应,最后生成二水石膏。脱硫后的净烟气依次经过除雾器除去水滴、再经过烟气换热器加热升温后,经烟囱排入大气。由于在吸收塔内吸收剂经浆液再循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低(一般不超过1.1),脱硫效率不低于95%,适用于任何煤种的烟气脱硫。 石灰石——石膏湿法烟气脱硫工艺的化学原理: 烟气中的SO2溶解于水中生成亚硫酸并离解成氢离子和HSO 离子; 烟气中的氧(由氧化风机送入的空气)溶解在水中,将 HSO 氧化成SO ; ? 吸收剂中的碳酸钙在一定条件下于水中生成Ca2+; 在吸收塔内,溶解的二氧化硫、碳酸钙及氧发生化学反应生成石膏 (CaSO4?2H2O)。由于吸收剂循环量大和氧化空气的送入,吸收塔下部浆池中的HSO或亚硫酸盐几乎全部被氧化为硫酸根或硫酸盐,最后在CaSO4达到一定过饱和度后结晶形成石膏—CaSO4?2H2O,石膏可根据需要进行综合利用或抛弃处理。

二、工艺流程及系统 湿法脱硫工艺系统整套装置一般布置在锅炉引风机之后,主要的设备是吸收塔、烟气换热器、升压风机和浆液循环泵 我公司采用高效脱除SO2的川崎湿法石灰石,石膏工艺。该套烟气脱硫系统(FGD)处理烟气量为定洲发电厂,1和,2机组(2×600MW)100,的烟气量,定洲电厂的FGD系统由以下子系统组成: (1)吸收塔系统 (2)烟气系统(包括烟气再热系统和增压风机) (3)石膏脱水系统(包括真空皮带脱水系统和石膏储仓系统) (4)石灰石制备系统(包括石灰石接收和储存系统、石灰石磨制系统、石灰石供浆系统) (5)公用系统 (6)排放系统 (7)废水处理系统 1、吸收塔系统 吸收塔采用川崎公司先进的逆流喷雾塔,烟气由侧面进气口进入吸收塔,并在上升区与雾状浆液逆流接触,处理后的烟气在吸收塔顶部翻转向下,从与吸收塔烟气入口同一水平位置的烟气出口排至烟气再热系统。 吸收塔塔体材料为内衬玻璃鳞片的碳钢板。吸收塔烟气入口为内衬耐热玻璃鳞片的碳钢板。吸收塔内上流区烟气流速为4.2m/s,下流区烟气流速为10m/s。在上流区配有3组喷淋层,安装的三重螺旋喷嘴使气液效率接触,并达到高的SO2吸收性能。每个吸收塔配置3台循环泵。另有1台叶轮作为仓库备用。脱硫后的烟气流向装在吸收塔出口处的除雾器。在这个过程中,烟气与吸收塔喷嘴喷出的再循环浆液进行有效的接触。

石灰石-石膏法湿法烟气脱硫工艺介绍、技术特点、常见问题及解决办法

石灰石-石膏法湿法烟气脱硫工艺介绍 1、研究背景 我国是以煤炭为主要能源的国家,煤炭占一次能源消费总量的7 0%左右。煤炭造成的大气污染有二氧化碳、二氧化硫、氮氧物和粉尘等。控制二氧化硫排放已成为社会和经济可持续发展的迫切要求。目前,全世界烟气脱硫工艺共有200多种,经过几十年不断的探索和实践,在火电厂上应用的脱硫工艺仅在10种左右,主要包括有:石灰石-石膏湿法烟气脱硫工艺;旋转喷雾半干法烟气脱硫工艺;炉内喷钙加尾部烟道增湿活化脱硫工艺;循环流化床锅炉脱硫工艺;海水脱硫烟气工艺;电子束烟气脱硫工艺以及荷电干式喷射法烟气脱硫等工艺。 2、工艺流程 石灰石-石膏湿法烟气脱硫工艺是目前应用最广泛的一种脱硫技术,其基本工艺流程如下: 锅炉烟气经电除尘器除尘后,通过增压风机、GGH(可选)降温后进入吸收塔。在吸收塔内烟气向上流动且被向下流动的循环浆液以逆流方式洗涤。循环浆液则通过喷浆层内设置的喷嘴喷射到吸收塔中,以便脱除SO2、SO3、HCL和HF,与此同时在“强制氧化工艺”的处理下反应的副产物被导入的空气氧化为石膏(CaSO4?2H2O),并消耗作为吸收剂的石灰石。循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可使气体和液体得以充分接触。每个泵通常与其各自的喷淋层相连接,即通常采用单元制。

在吸收塔中,石灰石与二氧化硫反应生成石膏,这部分石膏浆液通过石膏浆液泵排出,进入石膏脱水系统。脱水系统主要包括石膏水力旋流器(作为一级脱水设备)、浆液分配器和真空皮带脱水机。 经过净化处理的烟气流经两级除雾器除雾,在此处将清洁烟气中所携带的浆液雾滴去除。同时按特定程序不时地用工艺水对除雾器进行冲洗。进行除雾器冲洗有两个目的,一是防止除雾器堵塞,二是冲洗水同时作为补充水,稳定吸收塔液位。 在吸收塔出口,烟气一般被冷却到46—55℃左右,且为水蒸气所饱和。通过GGH将烟气加热到80℃以上,以提高烟气的抬升高度和扩散能力。 最后,洁净的烟气通过烟道进入烟囱排向大气。 3、化学原理 石灰石-石膏湿法烟气脱硫工艺的化学原理如下:①烟气中的二氧化硫溶解水,生成亚硫酸并离解成氢离子和HSO-3离子;②烟气中的氧和氧化风机送入的空气中的氧将溶液中HSO-3氧化成SO2-4;③吸收剂中的碳酸钙在一定条件下于溶液中离解出Ca2+;④在吸收塔内,溶液中的SO2-4、Ca2+及水反应生成石膏(CaSO4·2H2O)。化学反应式分别如下: ① SO2+H2O→H2SO3→H++HSO-3 ② H++HSO-3+1/2O2→2H++SO2-4 ③ CaCO3+2H++H2O→Ca2++2H2O+CO2↑ ④ Ca2++SO2-4+2H2O→CaSO4·2H2O

石灰石-石膏湿法烟气脱硫工艺的化学原理

石灰石-石膏湿法烟气脱硫工艺的化学原理 一、概述:脱硫过程就是吸收,吸附,催化氧化和催化还原,石灰石浆液洗涤含SO 2 烟气,产生化学反应分离出脱硫副产物,化学吸收速率较快与扩散速率有关,又与化学反应速度有关,在吸收过程中被吸收组分的气液平衡关系,既服从于相平衡(液气比L/G,烟气和石灰石浆液的比),又服从于化学平衡(钙硫比Ca/S,二氧化硫与炭酸钙的化学反应)。 1、气相:烟气压力,烟气浊度,烟气中的二氧化硫含量,烟尘含量,烟气中的氧含量,烟气温度,烟气总量 2、液相:石灰石粉粒度,炭酸钙含量,黏土含量,与水的排比密度, 3、气液界面处:参加反应的主要是SO 2和HSO 3 -,它们与溶解了的CaCO 3 的反应 是瞬间进行的。 二、脱硫系统整个化学反应的过程简述: 1、 SO 2 在气流中的扩散, 2、扩散通过气膜 3、 SO 2 被水吸收,由气态转入溶液态,生成水化合物 4、 SO 2 水化合物和离子在液膜中扩散 5、石灰石的颗粒表面溶解,由固相转入液相 6、中和(SO 2 水化合物与溶解的石灰石粉发生反应) 7、氧化反应 8、结晶分离,沉淀析出石膏, 三、烟气的成份:火力发电厂煤燃烧产生的污染物主要是飞灰、氮氧化物和二氧 化硫,使用静电除尘器可控制99%的飞灰污染。 四、二氧化硫的物理、化学性质: ①. 二氧化硫SO 2 的物理、化学性质:无色有刺激性气味的有毒气体。密度比空气大,易液化(沸点-10℃),易溶于水,在常温、常压下,1体积水大约能 溶解40体积的二氧化硫,成弱酸性。SO 2 为酸性氧化物,具有酸性氧化物的通性、

还原性、氧化性、漂白性。还原性更为突出,在潮湿的环境中对金属材料有腐蚀性,液体SO 2 无色透明,是良好的制冷剂和溶剂,还可作防腐剂和消毒剂及还原剂。 ②. 三氧化硫SO 3的物理、化学性质:由二氧化硫SO 2 催化氧化而得,无色易挥 发晶体,熔点16.8℃,沸点44.8℃。SO 3为酸性氧化物,SO 3 极易溶于水,溶于 水生成硫酸H 2SO 4 ,同时放出大量的热, ③. 硫酸H 2SO 4 的物理、化学性质:二元强酸,纯硫酸为无色油状液体,凝固点 为10.4℃,沸点338℃,密度为1.84g/cm3,浓硫酸溶于水会放出大量的热,具有强氧化性(是强氧化剂)和吸水性,具有很强的腐蚀性和破坏性, 五、石灰石湿-石膏法脱硫化学反应的主要动力过程: 1、气相SO 2被液相吸收的反应:SO 2 经扩散作用从气相溶入液相中与水生成亚硫 酸H 2SO 3 亚硫酸迅速离解成亚硫酸氢根离子HSO 3 -和氢离子H+,当PH值较高时, HSO 3二级电离才会生成较高浓度的SO 3 2-,要使SO 2 吸收不断进行下去,必须中和 电离产生的H+,即降低吸收剂的酸度,碱性吸收剂的作用就是中和氢离子H+当吸收液中的吸收剂反应完后,如果不添加新的吸收剂或添加量不足,吸收液的酸 度迅速提高,PH值迅速下降,当SO 2溶解达到饱和后,SO 2 的吸收就告停止,脱 硫效率迅速下降 2、吸收剂溶解和中和反应:固体CaCO 3的溶解和进入液相中的CaCO 3 的分解, 固体石灰石的溶解速度,反应活性以及液相中的H+浓度(PH值)影响中和反应速度和Ca2+的氧化反应,以及其它一些化合物也会影响中和反应速度。Ca2+的形 成是一个关键步骤,因为SO 2正是通过Ca2+与SO 3 2-或与SO 4 2-化合而得以从溶液中 除去, 3、氧化反应:亚硫酸的氧化,SO 32-和HSO 3 -都是较强的还原剂,在痕量过渡金属 离子(如锰离子Mn2+)的催化作用下,液相中的溶解氧将它们氧化成SO 4 2-。反应的氧气来源于烟气中的过剩空气和喷入浆液池的氧化空气,烟气中洗脱的飞灰和石灰石的杂质提供了起催化作用的金属离子。 4、结晶析出:当中和反应产生的Ca2+、SO 32-以及氧化反应产生的SO 4 2-,达到一 定浓度时这三种离子组成的难溶性化合物就将从溶液中沉淀析出。沉淀产物: ①. 或者是半水亚硫酸钙CaSO 3·1/2H 2 O、亚硫酸钙和硫酸钙相结合的半水固溶 体、二水硫酸钙CaSO 4·2H 2 O。这是由于氧化不足而造成的,系统易产生硬垢。

石灰石-石膏湿法烟气脱硫

石灰石(石灰)/石膏湿法烟气脱硫(FGD) FGD——Flue gas desulfurization,烟气脱硫,烟道气脱硫。如:FGD gypsum 脱硫用石膏;FGD unit 烟气脱硫装置。 石灰石(石灰)/石膏湿法烟气脱硫 wet flue gas desulfurization 简称FGD。 脱硫化学原理 吸收液通过喷嘴雾化喷入吸收塔,分散成细小的液滴并覆盖吸收塔的整个断面。这些液滴与塔内烟气逆流接触,发生传质与吸收反应,烟气中的SO2、SO3及HCL、HF被吸收。SO2吸收产物的氧化和中和反应在吸收塔底部的氧化区完成并最终形成石膏。 为了维持吸收液恒定的pH值并减少石灰石耗量,石灰石被连续加入吸收塔,同时吸收塔内的吸收剂浆液被搅拌机和吸收塔循环泵不停地搅动,以加快石灰石在浆液中的均布和溶解。 (1)吸收反应:烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分S02。 (2)氧化反应:一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3一在反应池中被氧化空气完全氧化。 (3)中和反应:吸收剂浆液被引入吸收塔内中和氢离子,使吸收液保持一定的pH值。中和后的浆液在吸收塔内再循环。 基本工艺系统设置 为满足整套系统的正常运行,配置了吸收剂制备系统、烟气系统、SO2吸收系统、浆液排空系统、石膏脱水系统、工艺水系统、压缩空气系统、副产品处理系统等多个子系统。

FGD系统防护措施 在石灰石湿式FGD装置中,设备、管道和管件普遍存在不同程度的磨损、腐蚀和结垢现象,对FGD装置的安全经济运行构成了重大威胁,因此,必须进行有效的防治。此外,在北方,冬季还要防止FGD装置冰冻。 1、防止结垢堵塞的对策 FCD装置中发生的结垢堵塞现象是十分普遍的。产生的结垢大致有3种形式。 一种是灰垢,高温烟气中的灰份在遇到喷淋液的阻力后,与喷淋的石膏浆液一起堆积在入口,越积越多,其主要成份是灰份和CaSO4,在吸收塔入口干湿交界处十分明显。 一种是石膏垢,当吸收塔的石膏浆液中的石膏过饱和度大于或等于140%时,溶液中的CaSO4就会在吸收塔内各组件表面析出结晶形成石膏垢,吸收塔壁面及循环泵人口、石膏泵入口滤网的两侧就是此类垢。 一种是软垢,当浆液中亚硫酸钙浓度偏高时就会与硫酸钙同时结晶析出,形成Ca(SO3)0.8(SO4)0.2·1/2H2O结晶产物,称为软垢。软垢在吸收塔内各组件表面逐渐长大形成片状的垢层,其生长速度低于石膏垢,当充分氧化时这种垢较少发生。 在吸收塔底,尽管有搅拌器搅拌,但仍存在“死区”,造成石膏沉积。除雾器、再热器管子因冲洗不充分,烟气携带的石膏浆液便粘接住形成积垢。接触石膏液的各种管道和管件因也有结垢发生。 (1)控制氧化技术是防止系统结垢的有效措施。较常用的是强制氧化技术,是通过向浆液中鼓入足够的空气,使氧化反应趋于完全,氧化率高于95%,保证

石灰石石膏湿法脱硫工艺

石灰石-石膏法湿法烟气脱硫工艺 ⑴主要技术性能参数 a.处理烟气量:1600 m3/h ~200×104 m3/h b.烟气入口浓度: <100 g/m3 c.烟气温度: 140 ℃~2000 ℃等特点。 d.烟气含硫量: 0.1~20 %以上 e.脱硫效率: >85% f.除尘效率: >99.6% g.林格曼黑度: <一级 h.液气比: 1.2Kg/Nm3(CaO) 8Kg/Nm3(CaCO3) i.钙硫比: <1.2摩尔/摩尔 j.补水量: <循环水量的3% k.脱水率: >99%(引风机不带水) l.脱硫塔体阻损: <1200Pa ⑵工作原理 石灰(石灰石)-石膏法湿式脱硫除尘工艺见工艺流程图。从锅炉排出的含尘烟气经烟道进入烟气换热器,与从吸收塔排出的低温烟气换热降温后进入吸收塔,经过均流孔板上行,与多层雾化喷淋下来的洗涤液进行充分混合,传质换热,烟气降温的同时,二氧化硫被吸收液洗涤吸收。含有细液滴水气的烟气经过水幕式喷淋洗涤液时,烟气中的细小液

滴被较大液滴吸收分离,再经过上部多层脱水除雾装置进一步除雾后经管道排出吸收塔外,进入烟气换热器,与进口高温烟气换热升温后经引风机进入烟囱高空排放。洗涤液吸收烟气中的二氧化硫后落入吸收塔下部的氧化池,二氧化硫与石灰反应生成亚硫酸钙,被均布在池底的氧化装置送入的空气进一步氧化成稳定的硫酸钙。氧化池中部分混合溶液被抽吸送入一级水力旋流器,经旋流浓缩后送入真空带式压滤机,进一步滤出水分,制成工业石膏(CaSO4·2H2O)。氧化池中低PH值的混合液部分被送入洗涤吸收塔底池,与新投入的脱硫液充分混合,经水泵输送到喷淋层,吸收烟气中的二氧化硫,进行下一个循环。 一级水力旋流器的上清液和真空带式压滤机的下清液均进入循环池,部分被送入二级水力旋流器,部分被送入脱硫液制备搅拌罐。二级水力旋流器少部分上清液外排。 脱硫剂(石灰或石灰石粉剂)由汽车送入脱硫剂贮仓中,使用时由计量装置通过螺旋混料机送入脱硫剂熟化装置中,按比例制成一定浓度的石灰乳液,自流进入脱硫剂贮液箱中。 ⑶工艺特点及适用范围 a.石灰(石灰石)-石膏法脱硫工艺为湿式脱硫工艺。工艺流程简单、技术先进又可靠,是目前国内外烟气脱硫应

工艺方法——湿法烟气脱硫技术

工艺方法——湿法烟气脱硫技术工艺简介 湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。但生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 1、石灰石(石灰)-石膏法 利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 目前传统的石灰石/石灰—石膏法烟气脱硫工艺在现在的中国市场应用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石灰法容易结垢的缺点。 2、间接石灰石-石膏法

常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。 钠碱、碱性氧化铝(Al2O3·nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 3、柠檬吸收法 柠檬酸(H3C6H5O7·H2O)溶液具有较好的缓冲性能,当SO2气体通过柠檬酸盐液体时,烟气中的SO2与水中H发生反应生成H2SO3络合物,SO2吸收率在99%以上。 这种方法仅适于低浓度SO2烟气,而不适于高浓度SO2气体吸收,应用范围比较窄。 另外,还有海水脱硫法、磷铵复肥法、液相催化法等湿法烟气脱硫技术。 4、氧化镁-七水硫酸镁法 氧化镁法脱硫的基本原理与石灰石(石灰)法类同,即以氧化镁浆液吸收烟气中的SO2,主要生成三水和多水亚硫酸镁,然后经氧化生成稳定和溶解态的硫酸镁,再对硫酸镁进行提浓结晶,最后生成MgSO4·7H2O成品。 5、双碱法 双碱法是用可溶性的碱性清液作为吸收剂在吸收塔中吸收SO2,然后将大部分吸收液排出吸收塔外再用石灰乳对吸收液进行再生。

石灰石(石灰)湿法脱硫技术

石灰石(石灰)湿法脱硫技术 湿法脱硫中所应用的脱硫系统位于烟道的末端,脱硫过程中的反应温度低于露点,因此,脱硫后的烟气需要进行加热处理才能排出。由于脱硫过程中的反应类型为气液反应,其脱硫效率和所用脱硫添加剂的使用效率均较高,因此,在许多大型燃煤电站中都已建成使用。 一、石灰石(石灰)湿法脱硫技术概述 根据最新的技术统计资料显示,到目前为止投入使用的脱硫技术种类已经超过200种,在形式多样的脱硫技术中,湿法脱硫技术是应用范围最广、脱硫效率最高的一种应用技术,占脱硫设备总装机量的80%以上,始终占据着脱硫技术领域的主导地位。石灰石(石灰)湿法脱硫技术作为最成熟的一种脱硫技术,其脱硫效率可到90%以上,成为效果最显著的脱硫方法。 石灰石(石灰)湿法脱硫技术经过几十年的发展,已被应用于600MW烟气单塔的烟气处理系统中,脱硫剂的利用效率基本稳定在95%以上,反应过程所消耗的电能不足电厂出力的1.5%,与十多年前的脱硫系统相比,在脱硫成本轻微上升的条件下脱硫效果却得到了质的飞跃。 二、石灰石(石灰)湿法脱硫技术的应用原理 (一)工艺流程 石灰石(石灰)湿法脱硫技术的基本过程是:烟气经锅炉排出后进入除尘器,之后进入脱硫塔,脱硫塔内的石灰石浆液与烟气中的SO2进行气液反应,生成CaCO3和CaCO4。在反应之后的浆液中充入氧气,可将CaCO3氧化成CaCO4和石膏,石膏经脱水处理后可作为脱硫反应的副产品被回收利用。工业实践中采用最多的脱硫塔方式是单塔,在单塔中可完成脱硫反应的全过程,脱硫成本和运行费用也更低。

(二)反应过程 烟气中的SO2在脱硫塔内的反应过程可用下面两个方程表示,其中,第二个反应过程中生产的CaSO3会被烟气中的氧气氧化生成CaSO4,形成副产品被回收利用。 SO2+CaCO3→CaSO3+CO2 石灰石浆液(1) SO2+Ca(OH)2→CaSO3+H2O 石灰浆液(2) (三)脱硫效率 脱硫效率受到诸多因素的影响,其中,脱硫塔中的pH值对脱硫效率会产生较大的影响。一般情况下,pH值越低,脱硫塔中的气液反应效率就越低,SO2从脱硫反应液中脱离的分压也会随之升高。实验研究表明,以石灰作为脱硫剂的脱硫系统,反应效率最高的pH值应为6.8-8.0,在此pH值条件下,石灰石浆液的pH值不应超过7.0。 (四)堵塞和结垢现象 脱硫系统的设计参数、工艺流程和化学反应类型不同,堵塞和结垢的程度就会不同。长期的结垢会造成设备堵塞,压损增大,因此在工业生产中经常会出现因结垢造成的设备停运状况。生产实践中的结垢类型主要包括三种:碳酸盐结垢、硫酸盐结垢和亚硫酸盐结垢,在实际运行中,针对碳酸盐结垢和亚硫酸盐结垢,通常需要将pH值保持在9.0以上,以取得较好的控制效果。如果脱硫反应液中的pH值较低,且反应槽中的亚硫酸盐达到较高的饱和度,石灰石脱硫系统中就不易形成亚硫酸盐结晶,从而减少亚硫酸盐结垢的形成。对于硫酸盐结垢而言,其结垢现象难以得到有效的控制,一般采用的方法是使大量的石灰石进行反复循环从而使硫酸盐结垢发生在结晶表面而不是设备表面。为达到较好的控制效果,采用浓度为5%的石灰石即可。除了控制pH值和石灰石浓度外,也可以通过在反应槽中加入固体颗粒的方式减少结垢,固体颗粒可为沉降提供更多的表面附着,从而达到防止结垢沉积的目的。 (五)腐蚀现象 设备腐蚀现象一般发生在pH值较低的反应条件下,反应液中的

电厂脱硫培训—石灰石及石膏湿法FGD原理和主要参数

电厂脱硫培训一石灰石/石膏湿法FGD原理和主要参 对于一般的湿法脱硫技术喷淋塔而言,吸收液通过喷嘴雾化喷入脱硫塔,分散成细小的液滴并覆盖脱硫塔的整个断面。这些液滴与塔内烟气逆流接触,发生传质与吸收反应,烟气中的SO2、SOs及HC1、HF被吸收。S02吸收产物的氧化和中和反应在脱硫塔底部的氧化区完成并最终形成石膏。 为了维持吸收液恒定的PH值并减少石灰石耗量,石灰石被连续加入脱硫塔,同时脱硫塔内的吸收剂浆液被搅拌机、氧化空气和脱硫塔循环泵不停地搅动,以加快石灰石在浆液中的均布和溶解 第一节主要运行变量概念 1、脱硫塔烟气流速 脱硫塔烟气流速是脱硫塔内饱和烟气的平均流速,在标准状态下,它等于饱和烟气的体积流量除以垂直于烟气流向的脱硫塔断面面积。上述计算中,脱硫塔横断面积不扣除塔内支撑件、喷淋目管和其他内部构件所占有的面积,因此又称为空塔烟气平均流速。 2、液气比 液气比表示洗涤单位体积饱和烟气(m3)的浆液体积数(1),即1/G。 3、脱硫塔PH值 脱硫塔PH值表示脱硫塔中H'的浓度,是FGD工艺控制的一个重要参数,PH的高低直接影响系统的多项功能。 4、脱硫塔浆液循环停留时间 脱硫塔浆液循环停留时间(t)表示脱硫塔浆液全部循环一次的平均的时间,此时间等于脱硫塔中浆液体积(V)除以循环浆液流量(1),即t(min)=60V∕1o 5、浆液在脱硫塔中的停留时间

浆液在脱硫塔中的停留时间(t)又称为固体物停留时间。它等于脱硫塔浆液体积(V)除以脱硫塔排出泵流量(B),BPt(h)=V∕Bo固体停留时间也等于脱硫塔中存有固体物的质量(kg)除以固体副产物的产出率(kg∕h)0 6、吸收剂利用率 吸收剂利用率(∏)等于单位时间内从烟气中吸收的SO2摩尔数除以同时间内加入系统的吸收剂中钙的总摩尔数,即n(100%)=已脱除的SO?的摩尔数/加入系统中的Ca的摩尔数X1OO机 吸收剂利用率也可以理解为在一定时间内参与脱硫反应的CaC0,的数量占加入系统中的Caeo3总量的百分比。 7、氧化率 氧化率(H)等于脱硫塔中氧化成硫酸盐的SO2摩尔数除以已吸收的SO2总摩尔数,即n=已氧化的SO2摩尔数/已吸收的SO2摩尔数。 氧化率也可看作离开工艺过程的硫酸盐总摩尔数除以烟气中已吸收的S(λ总摩尔数,用固体副产物中硫酸盐和亚硫酸盐摩尔数来表示,即n二副产物中SO1摩尔数/副产物中S(VSO1摩尔数。 8、氧化空气利用率 氧化空气利用率(n)是指氧化已吸收的SO2理论上所需要的氧化空气量与强制氧化实际鼓入的氧化空气之比,也可指理论上需要的气量与实际鼓入量之比。氧硫比是氧化空气利用率的另一种表示方法,指氧化ImOIS实际鼓入的。2的摩尔数。理论上0.5mo1θ2可氧化In1oIS(⅛,如果强制氧化InIoIS实际鼓入的空气中。2的摩尔数为1.5,那么氧硫比二1.5,氧化空气或。2的利用率n=0.5/1.5,因此n(100%)=0.5/氧硫比XIOO虬 第二节FGD系统中的化学反应原理 一、气体吸收过程的机理 吸收过程中进行的方向与极限取决于溶质(气体)在气液两相中的平衡关系,当气相中溶质的实际分压高于与液相成平衡的溶质分压时,溶质便由气相向液相转移,即发生吸收过程。实际分压与平衡分压相差越大,吸收的速率也越大,或称吸收的推动力也越大。反之,如果气相中溶质的分压低于与液相成平衡的溶质分压时,溶质便由液相向气相转移,即吸收的逆过程,这种过程称为解吸(或脱吸)。不论是吸收还是解吸,均与气液平

石灰石石膏湿法烟气脱硫工艺简介和基本过程

石灰石石膏湿法烟气脱硫工艺简介和基本过程 石灰石(石灰)---石膏湿法脱硫工艺是湿法脱硫的一种,是目前世界上应用范围最广、工艺技术最成熟的标准脱硫工艺技术。是当前国际上通行的大机组火电厂烟气脱硫的基本工艺。它采用价廉易得的石灰石作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌成吸收浆液,在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被脱除,最终反应产物为石膏。脱硫后的烟气经除雾器除去带出的细小液滴,经换热器加热升温后排入烟囱。 脱硫石膏浆经脱水装置脱水后回收。由于吸收浆液循环利用,脱硫吸收剂的利用率很高。最初这一技术是为发电容量在100MW 以上、要求脱硫效率较高的矿物燃料发电设备配套的,但近几年来,这一脱硫工艺也在工业锅炉和垃圾电站上得到了应用根据美国EPRI统计,目前已经开发的脱硫工艺大约有近百种,但真正实现工业应用的仅10多种。已经投运或正在计划建设的脱硫系统中,湿法烟气脱硫技术占80%左右。在湿法烟气脱硫技术中,石灰石/石灰—石膏湿法烟气脱流技术是最主要的技术,其优点是: 1、技术成熟,脱硫效率高,可达95%以上; 2、原料来源广泛、易取得、价格优惠; 3、大型化技术成熟,容量可大可小,应用范围广; 4、系统运行稳定,变负荷运行特性优良; 5、副产品可充分利用,是良好的建筑材料;

6、只有少量的废物排放,并且可实现无废物排放; 7、技术进步快。石灰石/石灰—石膏湿法烟气脱硫工艺,一般布置在锅炉除尘器后尾部烟道,主要有:工艺水系统、石灰石制浆系统、脱硫塔系统、石膏脱水系统、废水处理系统、事故浆液系统、DCS控制系统、电气系统等分系统。 基本工艺过程 在石灰石一石膏湿法烟气脱硫工艺中,俘获二氧化硫(SO2)的基本工艺过程:烟气进入吸收塔后,与吸收剂浆液接触、进行物理、化学反应,最后产生固化二氧化硫的石膏副产品。基本工艺过程为: (1)气态SO2与吸收浆液混合、溶解 (2)SO2进行反应生成亚硫根 (3)亚硫根氧化生成硫酸根 (4)硫酸根与吸收剂反应生成硫酸盐 (5)硫酸盐从吸收剂中分离 用石灰石作吸收剂时,SO2在吸收塔中转化,其反应简式式如下: CaCO3+SO2→CaSO3+CO2 CaCO3+2SO2+H2O ←→Ca(HSO3)2+CO2 在此,含CaCO3的浆液被称为洗涤悬浮液,它从吸收塔的上部喷入到烟气中。在吸收塔中SO2被吸收,生成Ca(HSO3)2,并落入吸收塔浆池中。当pH值基本上在5和6之间时, SO2去除率

石灰石石膏湿法烟气脱硫技术资料

1、石灰石/石膏湿法烟气脱硫技术特点: 1).高速气流设计增强了物质传递能力,降低了系统的成本,标准设计烟气流速达到4。0 m/s。 2).技术成熟可靠,多于 55,000 MWe 的湿法脱硫安装业绩。 3).最优的塔体尺寸,系统采用最优尺寸,平衡了 SO2 去除与压降的关系,使得资金投入和运行成本最低。 4).吸收塔液体再分配装置,有效避免烟气爬壁现象的产生,提高经济性,降低能耗。 从而达到: •脱硫效率高达95%以上,有利于地区和电厂实行总量控制; •技术成熟,设备运行可靠性高(系统可利用率达98%以上); •单塔处理烟气量大,SO2脱除量大; •适用于任何含硫量的煤种的烟气脱硫; •对锅炉负荷变化的适应性强(30%—100%BMCR); •设备布置紧凑减少了场地需求; •处理后的烟气含尘量大大减少; •吸收剂(石灰石)资源丰富,价廉易得; •脱硫副产物(石膏)便于综合利用,经济效益显著; 2、系统基本工艺流程 石灰石(石灰)/石膏湿法脱硫工艺系统主要有:烟气系统、吸收氧化系统、浆液制备系统、石膏脱水系统、排放系统组成。其基本工艺流程如下: 锅炉烟气经电除尘器除尘后,通过增压风机、GGH(可选)降温后进入吸收塔。在吸收塔内烟气向上流动且被向下流动的循环浆液以逆流方式洗涤。循环浆液则通过喷浆层内设置的喷嘴喷射到吸收塔中,以便脱除SO2、SO3、HCL和HF,与此同时在“强制氧化工艺”的处理下反应的副产物被导入的空气氧化为石膏(CaSO4•2H2O),并消耗作为吸收剂的石灰石。循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可使气体和液体得以充分接触。每个泵通常与其各自的喷淋层相连接,即通常采用单元制。 在吸收塔中,石灰石与二氧化硫反应生成石膏,这部分石膏浆液通过石膏浆液泵排出,进入石膏脱水系统。脱水系统主要包括石膏水力旋流器(作为一级脱水设备)、浆液分配器和真空皮带脱水机。 经过净化处理的烟气流经两级除雾器除雾,在此处将清洁烟气中所携带的浆液雾滴去除。同时按特定程序不时地用工艺水对除雾器进行冲洗。进行除雾器冲洗有两个目的,一是防止除雾器堵塞,二是冲洗水同时作为补充水,稳定吸收塔液位。 在吸收塔出口,烟气一般被冷却到46—55℃左右,且为水蒸气所饱和。通过GGH将烟气加热到80℃以上,以提高烟气的抬升高度和扩散能力。 最后,洁净的烟气通过烟道进入烟囱排向大气. 石灰石(石灰)/石膏湿法脱硫工艺流程图

相关主题
文本预览
相关文档 最新文档