当前位置:文档之家› 用向量法解代数问题

用向量法解代数问题

用向量法解代数问题
用向量法解代数问题

用向量方法解立体几何题(老师用)

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线 l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角α=arccos |||| a b a b

法二、设12,,n n 是二面角l αβ --的两个半平面的法向量, 其方向一个指向内侧,另一个指向外侧,则二面角l α β --的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设A O α ⊥于O,利用A O α ⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||A O . (2)求异面直线的距离 法一、找平面β使b β?且a β ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥ ,n b ⊥ ),则 异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ== (此方法移植 于点面距离的求法).

线性代数第三章向量复习题()

向量复习题(3) 一、填空题: 1.当t _______时,向量123(1,2,2),(4,,3),(3,1,1)T T T t ααα=-==-线性无关. 2.. 向量(1,2,1),T α= 则 T αα= T αα?= , 3. 如果n ααα,,,21???线性无关,且1+n α不能由n ααα,,,21???线性表示,则 121,,,+???n ααα 的线性 4. 设T )5,2(1=α , T a )1(2,=α,当=a 时,21,αα线性相关. 5. 一个非零向量是线性 的,一个零向量是线性 的. 6. 设向量组A: 321,,ααα线性无关,31αα+,12αα-,32αα+线性 7. 设A 为n 阶方阵,且1)(-=n A r , 21,αα是AX=0的两个不同解,则21αα,一定 线性 8. 向量组1,,l ββL 能由向量组1,,m ααL 线性表示的充分必要条件是 12(,,)m R ααα 1212(,,,)m l R αααβββ ,,,。(填大于,小于或等于) 9.设向量组()11,1,1α= ,()21,2,3α= ,()31,3,t α=线性相关,则t 的值为 。 二、选择题: 1. . n 阶方阵A 的行列式0=A ,则A 的列向量( ) A.线性相关 B.线性无关 C.0)(=A R D.0)(≠A R 2. 设A 为n 阶方阵,n r A R <=)(,则A 的行向量中( ) A 、必有r 个行向量线性无关 B 、任意r 个行向量构成极大线性无关组

C 、任意r 个行向量线性相关 D 、任一行都可由其余r 个行向量线性表示 3. 设有n 维向量组(Ⅰ):12,,,r ααα 和(Ⅱ):12,,,()m m r ααα> ,则( ). A 、向量组(Ⅰ)线性无关时,向量组(Ⅱ)线性无关 B 、向量组(Ⅰ)线性相关时,向量组(Ⅱ)线性相关 C 、向量组(Ⅱ)线性相关时,向量组(Ⅰ)线性相关 D 、向量组(Ⅱ)线性无关时,向量组(Ⅰ)线性相关 4. 下列命题中正确的是( ) (A)任意n 个1+n 维向量线性相关 (B)任意n 个1+n 维向量线性无关 (C)任意1+n 个n 维向量线性相关 (D)任意1+n 个n 维向量线性无关 5. 向量组r ααα,,,21 线性相关且秩为s ,则( ) (A )s r = (B) s r ≤ (C) r s ≤ (D) r s < 6. n 维向量组 s ααα,,, 21(3≤ s ≤ n )线性无关的充要条件是( ). (A )s ααα,,, 21中任意两个向量都线性无关 (B) s ααα,,, 21中任一个向量都不能用其余向量线性表示 (C) s ααα,,, 21中存在一个向量不能用其余向量线性表示 (D) s ααα,,, 21中不含零向量 7. 向量组n ααα,,,21???线性无关的充要条件是( ) A 、任意i α不为零向量 B 、n ααα,,,21???中任两个向量的对应分量不成比例 C 、n ααα,,,21???中有部分向量线性无关 D 、n ααα,,,21???中任一向量均不能由其余n-1个向量线性表示 8. 设A 为n 阶方阵,n r A R <=)(,则A 的行向量中( ) A 、必有r 个行向量线性无关 B 、任意r 个行向量构成极大线性无关组 C 、任意r 个行向量线性相关

线性代数 第三章向量

n维向量部分 这部分逻辑性非常强,考生必须要相当熟悉教材中的重要定理。从历年考试情况来看,线性相(无)关、线性表出、极大无关组、向量组的秩及等价、向量空间(数一)等内容是考试经常会涉及到的内容。常出现在选择题中。 回顾: n维向量的运算 1.定义:设 ,,k为数域P中的数,定义 ,称为向量与的和; ,称为向量与数k的数量乘积. 2.向量运算的基本性质 1) 2) 3) 4) 5) 6) 7) 8),9),, 10)若,则即,若,则或 1 向量组的秩、极大无关组的相关题型 知识点 极大线性无关组定义:设为中的一个向量组,它的一个部分组若满足 i) 线性无关 ii) 对任意的,可经线性表出 则称为向量组的一个极大线性无关组(简称极大无关组). 向量组的秩 定义:向量组的极大无关组所含向量个数称为这个向量组的秩.性质: 1)一个向量组线性无关的充要条件是它的秩与它所含向量个数相同. 一个向量组线性相关的充要条件是它的秩<它所含向量个数.2)等价向量组必有相同的秩.(注意:反之不然.) 3)若向量组可经向量组线性表出,则 秩秩. 例1 设向量组 (1)求此向量组的秩; (2)求此向量组的一个极大无关组,并将其余向量用该极大无关组表示。

例2 选择题 若向量组的秩为 r,则() (A)必定r秩(向量组II) (C)秩(向量组I)<秩(向量组II) (D)不能确定秩(向量组I)与秩(向量组II)的大小关系 2 向量组的线性相关性的判定或根据向量相关性求参数 知识点:1对向量组,设 若如果存在不全为零的数,使上式成立,则向量组线性相关。 若当且仅当上式才成立,则线性无关。 2 设向量组I:可由向量组II:线性表现,若 r>s , 则向量组I线性相关。(注意它的逆否定理) 3 利用矩阵的秩或行列式 设有 s个n维列向量组,设A=(), 则当秩A=s时,线性无关;当秩A

向量代数与空间解析几何-期末复习题-高等数学下册-(上海电机学院)

向量代数与空间解析几何-期末复习题-高等数学下册-(上海电机学院)

第七章 空间解析几何 一、选择题 1. 在空间直角坐标系中,点(1,-2,3)在[ D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限 2.方程2 222 =+y x 在空间解析几何中表示的图形为 [ C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面 3.直线3 1 2141:1+=+=-z y x l 与?? ?=-++=-+-0 20 1:2z y x y x l ,的夹角是 [ C ] A. 4 π B. 3 π C. 2 π D. 0 4. 在空间直角坐标系中,点(1,2,3)关于xoy 平面的对称点是[ D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3)

5.将xoz 坐标面上的抛物线x z 42 =绕z 轴旋转一 周,所得旋转曲面方程是[B ] A. ) (42y x z += B. 2 2 2 4y x z +±= C. x z y 422 =+ D. x z y 422 ±=+ 6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是 [B ] A. 13 - B. 13 C. 23 - D. 23 7. 在空间直角坐标系中,点(1,2,3)关于yoz 平面的对称点是[ A ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 8.方程 222 22 x y z a b +=表示的是 [ B ] A.椭圆抛物面 B.椭圆锥面 C. 椭球面 D. 球面 9. 已知 a ?={0, 3, 4}, b ?={2, 1, -2},则 = b proj a ?ρ[ C ]

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量得求法及其应用 一、平面得法向量 1、定义:如果,那么向量叫做平面得法向量。平面得法向量共有两大类(从方向上分),无数条。 2、平面法向量得求法 方法一(内积法):在给定得空间直角坐标系中,设平面得法向量[或,或],在平面内任找两个不共线得向量。由, 得且,由此得到关于得方程组,解此方程组即可得到。 方法二:任何一个得一次次方程得图形就是平面;反之,任何一个平面得方程就是得一次方程。,称为平面得一般 方程。其法向量;若平面与3个坐标轴得交点为,如图所示,则平面方程为:,称此方程为平面得截距式方程,把它化 为一般式即可求出它得法向量。 方法三(外积法): 设 , 为空间中两个不平行得非零向量,其外积为一长度等于,(θ为,两者交角,且),而与, 皆垂直得向量。通常我们采取「右手定则」,也就就是右手四指由得方向转为得方向时,大拇指所指得方向规 定为得方向,。 (注:1、二阶行列式: ;2、适合右手定则、) 例1、Array试求 Key: ( 例2、 求平面A 二、 1、 (1) A 图2-1 图2—1 (2) (图 (图2 两个平 得平面

平面而言向内;在图2—3中,得方向对平面而言向内,得方向对平面而言向内。我们只要用两个向量得向量积(简称“外积”,满足“右手定则")使得两个半平面得法向量一个向内一个向外,则这两个半平面得法向量得夹角即为二面角得平面角。 2、 求空间距离 (1)、异面直线之间距离: 方法指导:如图2-4,①作直线a 、b 得方向向量、, 求a 、b 得法向量,即此异面直线a 、b 得公垂线得方向向量; ②在直线a 、b 上各取一点A 、B,作向量; ③求向量在上得射影d,则异面直线a 、b 间得距离为 ,其中 (2)、点到平面得距离: 方法指导:如图2-5,若点B 为平面α外一点,点A 为平面α内任一点,平面得法向量为,则点P 到 平面α得距离公式为 (3)、直线与平面间得距离: 方法指导:如图2-6,直线与平面之间得距离: ,其中。就是平面得法向量 (4)、平面与平面间得距离: 方法指导:如图2-7,两平行平面之间得距离: ,其中。就是平面、得法向量。 3、 证明 (1)、证明线面垂直:在图2-8中,向就是平面得法向量, a 得方向向量,证明平面得法向量与直线所在向量共线()。 (2)、证明线面平行:在图2—9中,向就是平面得法向量,线a得方向向量 ,证明平面得法向量与直线所在向量垂直()。 (3)、证明面面垂直:在图2—10中,就是平面得法向量,面得法向量,证明两平面得法向量垂直() (4)、证明面面平行:在图2—11中, 向就是平面得法向量,量,证明两平面得法向量共线()。 三、高考真题新解

线性代数教案-向量与向量空间

线性代数教学教案 第3章 向量与向量空间 授课序号01 教 学 基 本 指 标 教学课题 第3章 第1节 维向量及其线性运算 课的类型 新知识课 教学方法 讲授、课堂提问、讨论、启发、自学 教学手段 黑板多媒体结合 教学重点 维向量的概念、向量的线性运算的性质 教学难点 向量的线性运算的性质 参考教材 同济版《线性代数》 作业布置 课后习题 大纲要求 理解维向量的概念 教 学 基 本 内 容 一. 维向量的概念 1.维向量:由个数组成的有序数组称为维向量. 2.称为维行向量,称为维列向量. 二.维向量的线性运算 1.定义: (1)分量全为0的向量称为零向量; (2)对于,称为的负向量; (3)对于,,当且仅当时,称与相等; (4)对于,,称为与的和; (5)对于,,称为与的差; (6)对于,为实数,称为的数乘,记为. 2.向量的线性运算的性质:对任意的维向量和数,有: n n n n n n n a a a ,,,21 n ),,,(21n a a a n 12?????????????? n a a a n n ()12T n αa ,a ,,a = ()12---T n a ,a ,,a αT n a a a ),,,(21 =αT n b b b ),,,(21 =β),,2,1(n i b a i i ==αβT n a a a ),,,(21 =αT n b b b ),,,(21 =βT n n b a b a b a ),,,(2211+++ αβT n a a a ),,,(21 =αT n b b b ),,,(21 =β()1122---T n n a b ,a b ,,a b αβT n a a a ),,,(21 =αk T n ka ka ka ),,,(21 ααk n γβα,,l k ,

向量代数与空间解析几何

第六章.向量代数与空间解析几何 本章内容在本课程当中是单独的一个部分,应该说是属于几何的内容,之所以需要在微积分的课程里进行单独的讨论,是因为我们在后面学习多元函数的微积分时,必须和这些几何知识发生关系,所谓多元的函数,从几何意义方面来理解,就是定义域在平面乃至更高维度的空间区域上,这样如果要想得到对于多元函数的直观几何理解,就必须对于平面乃至更高维度的空间中的几何现象具有一定的知识。 向量。 向量可以说是几何的最为基本的概念。因为几何对象的两个基本要素:方向和长度,用一个向量就可以完全表达,从向量的概念出发,可以构造出整个的几何世界。 由于本课程的限制,我们不从一般的观念出发来展开向量的理论,而是基于直观的,运用向量来表示的几何当中的有向直线段,来说明我们需要涉及的有限的向量知识。 我们完全可以把一个向量理解为一根有向直线段,而不会出现任何理论上的错误。基于向量的这种直观图象,可以定义向量的基本属性。 首先,我们定义两个向量相等的意思,就是两个向量的大小与方向都相同,对于这里的具体的一种向量—有向直线段,就是必须长度相等,而方向相同,所谓方向相同,按照几何的意义,就是两根直线段相互平行,而且指向相同。 注意,这里初学者常常产生误解的地方,就是认为要求两个有向直线段方向一样,就一定是要求它们在同一个直线上,或者是相互重合,这是因为还不习惯在一般的空间当中考虑问题,特别是要养成在三维空间当中考虑几何对象的习惯,记住方向相同,是与这两个向量的空间位置无关的,只要它们所在的直线相互平行,而指向一致即可。 在两个向量之间定义加法与减法,就是我们在力学当中以及很熟悉的力的合成的平行四边形法则,当然这是一种直接的基于几何图象的定义方式,下面我们通过在空间引入坐标,来得到更一般的定义。 空间直角坐标系以及向量代数。 在空间当中引入坐标的目的,和物理学当中引入单位制一样,是提供一个度量几何对象的方法,首先一个坐标系必须能够提供方向的定义,使得任意的方向都能够由于坐标系而得到确定与唯一的描述;然后必须能够提供长度的单位,基于这个单位能够度量空间长度。 能够满足上面这两个基本要求的坐标系可以有很多的形式,我们经常使用的坐标系就是直角坐标系。 我们已经强调了一个向量的大小与方向是与它所处的空间位置没有关系的,换一个说法,就是一个向量在空间进行平移时,不影响它的大小与方向。那么在空间中,对任意一个向量的度量,都可以通过把这个向量平移到以坐标系的原点为起点的位置,再用它的终点的坐标来表征这个向量的大小与方向。显然,任意的一个向量,只要是通过平移而处于这种方式,就只会唯一的,而空间中的任意一点在一个这样的直角坐标系里的标度也是唯一的。因此这样决定的一个向量的坐标也就是唯一的。 本课程我们主要只考虑三维的情况,因此一个向量可以用一个唯一的坐标来表示,在直角坐标系里,也就是由三个实数组成的三元组:(a ,b ,c )。 基于上面对于唯一性的分析,可以得到坐标表示的向量的相等的含义,就是坐标三元组的分别相等。 进一步,为了更为方便地度量一般的向量,我们引入单位向量的概念,就是在坐标轴方向上具有单位 长度的向量,在直角坐标系当中,习惯的写法,就是 ,,,分别表示在X ,Y ,Z 轴上的单位向量。 按照坐标三元组的写法,就是 =(1,0,0); i r j r k r i r

经典习题平面法向量求法及应用

经典习题平面法向量求法及应用

平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。 平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量 (,,1) n x y =r [或 (,1,) n x z =v ,或 (1,,) n y z =r ],在平面α内任找两个不共线的向量 ,a b r r 。由 n α ⊥r ,得 n a ?=r r 且 n b ?=r r ,由此得到 关于,x y 的方程组,解此方程组即可得到n r 。 方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。0=+++D Cz By Ax ) 0,,(不同时为C B A ,称为平面的一般方程。其法向量),,(C B A n =→ ; 若平面与3个坐标轴的交点为),0,0(),0,,0(),0,0,(3 2 1 c P b P a P ,如图所 示,则平面方程为:1=++c z b y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→ →?b a 为一长 度等于θsin ||||→ → b a ,(θ为,两者交角,且πθ<<0),而与 , 皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 的方向转为 的方向时,大拇指所指的方向规 定为→ → ?b a 的方向,→ → → → ?-=?a b b a 。:),,,(),,,(222111则设z y x b z y x a ==→ → ??=?→ →2 1y y b a ,2 1z z 2 1x x - ,21 z z 2 1 x x ??? ?21y y (注:1、二阶行列式:c a M = cb ad d b -=;2、适合右手定则。) C 1A 1 D 1 z B E

线性代数 第三章 向量与线性方程组 例题

1.设α1=(1 2 ?1 0),α2=( 1 3 1 2 ),α3=( 2 4 ?2 ),α4=( 1 1 3 5 ),α5=( 2 2 3 ),求向量组α1,α2,α3,α4,α5的 一个极大(最大)无关组,并将其余向量用该极大无关组线性表出。 2.设A为mxn阶矩阵,B为nxp阶矩阵,C为pxs阶矩阵,R(C)=p,且ABC=0,证明B=0. 3.设A为mxn阶矩阵,X与b为m维列向量,Y为n维列向量,证明AY=b有解的充要条 件是满足A T X=0的所有X均满足b T=0.

4. 设α1=(1003),α2=(11?12),α3=(1 2?2a ),β=(01b ?1 )问a,b 为何值时, (1) β不能由α1,α2,α3线性表出 (2) β可以由α1,α2,α3线性表出,并且写出表达式 5. 设A=(λ+312 λλ?113λ+3λλ+3 ),讨论AX=0的解的情况。 6. 设A=(1 11a b c a 2 b 2 c 2 ),讨论AX=0的解的情况。

7. 设A=(1 10 1 1 1 2 20?132a ?3?21a ),β=(01b ?1 ),讨论方程组AX=β的解的情况。 8. 设A=(λ111λ111λ),b=(1 λλ2 ),讨论方程组AX=b 的解的情况。 9. 已知三阶矩阵A 的第一行为a,b,c ,且a,b,c 不全为0,矩阵B=(1 232463 6k )(k 为常数)满足AB =0,求AX =0的通解。

10. 设4元齐次线性方程组(I ){2x 1+3x 2?x 3=0x 1+2x 2+x 3?x 4=0 ,且已知另一个四元齐次线性方程组(II )的一个基础解系为α1=(2 ?1a +21 ),α2=(?124a +8),(1)求(I )的一个基础解系。 (2)a 为何值时(I )与(II )有非零公共解,并求所有非零公共解。 11. 在上例中将α1,α2改为α1=(a ?5 1?1?1),α2=(?6a +3?12 )求(I )与(II )的所有非零公共解。 12.已知非齐次线性方程组(I ){?2x 1+x 2+ax 3?5x 4=1x 1+2x 2?x 3+6x 4=43x 1+2x 2+x 3+2x 4=c 与(II) {x 1+x 4=1 x 2?2x 4=2x 3+x 4=1为通解方程组 求a,b,c 的值。

利用法向量解立体几何题

利用法向量解立体几何题 一、运用法向量求空间角 向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量 ''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ= '''' AA BB AA BB ??, 不需 要用法向量。 1、运用法向量求直线和平面所成角 设平面α的法向量为n =(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为 sin θ= cos( 2 π -θ) = |cos| = AB AB n n ?? 2、运用法向量求二面角 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角。 二、运用法向量求空间距离 1、求两条异面直线间的距离 设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点A 、B ,则异面直线a 、b 的距离 d =AB ·cos ∠BAA ' = || || AB n n ? 略证:如图,EF 为a 、b 的公垂线段,a '为过F 与a 平行的直线, 在a 、b 上任取一点A 、B ,过A 作AA '// EF ,交a '于A ' , A

则?ˉ //AA n ,所以∠BAA ' =<,BA n >(或其补角) ∴异面直线a 、b 的距离d =AB ·cos ∠BAA ' = || || AB n n ? * 其中,n 的坐标可利用a 、b 上的任一向量,a b (或图中的,AE BF ),及n 的定义得 0n a n a n b n b ??⊥?=?????⊥?=??? ? ① 解方程组可得n 。 2、求点到面的距离 求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B ,则A 点到平面α的距离为 d = || || AB n n ?,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设 (1,,0)n y =,下同)。 3、求直线到与直线平行的平面的距离 求直线a 到平面α的距离,设平面α的法向量法为(,,1)n x y =,在直线a 上任取一点A , 在平面α内任取一点B ,则直线a 到平面α的距离 d = || || AB n n ? 4、求两平行平面的距离 设两个平行设平面α、β的公共法向量法为(,,1)n x y =,在平面α、β内各任取一点A 、 B ,则平面α到平面β的距离 d = || || AB n n ? 三、证明线面、面面的平行、垂直关系 设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则 1a//a n α?⊥ 1a a//n α⊥? 12////n n αβ? 12n n αβ⊥?⊥

向量代数与空间解析几何教案.doc

第八章向量代数与空间解析几何 第一节向量及其线性运算 教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。使学生对(自由)向量有初步了解,为后继内容的学习打下基础。教学重点: 1. 空间直角坐标系的概念 2.空间两点间的距离公式 3.向量的概念 4.向量的运算 教学难点: 1. 空间思想的建立 2.向量平行与垂直的关系 教学内容: 一、向量的概念 1.向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向 量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。 2.量的表示方法有: a 、i、F、 OM 等等。 3.向量相等a b :如果两个向量大小相等,方向相同,则说(即经过平移后能完全 重合的向量)。 4.量的模:向量的大小,记为 a 、OM。 模为 1 的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。 5.量平行a // b:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。 6.负向量:大小相等但方向相反的向量,记为 a 二、向量的线性运算 b c 1.加减法a b c:加法运算规律:平行四边形法则(有 时也称三角形法则),其满足的运算规律有交换率和结合率见图7 a -4

2.a b c 即 a ( b) c 3.向量与数的乘法 a :设是一个数,向量 a 与的乘积a规定为 (1) 0 时, a 与a 同向, | a | | a | (2) 0 时, a 0 (3) 0 时, a 与a反向,| a | | || a | 其满足的运算规律有:结合率、分配率。设 a 0表示与非零向量 a 同方向的单位向量,那么 a 0a a 定理 1:设向量,那么,向量 b 平行于 a 的充分必要条件是:存在唯一的实数 λ , a≠ 0 使b=a 例 1:在平行四边形ABCD中,设AB a ,AD b ,试用 a 和b表示向量 MA 、MB 、MC 和 MD ,这里M是平行四边形对角线的交点。(见图7-5)图 7- 4 解: a b AC 2 AM ,于是 MA 1 (a b) 2 由于 MC MA ,于是 MC 1 b) (a 2 1 (b a) 又由于 a b BD 2 MD ,于是 MD 1 (b 2 由于 MB MD ,于是 MB a) 2 三、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维) 如图 7- 1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以角度 2 转向正向 y 轴时,大拇指的指向就是z 轴的正向。 2.间直角坐标系共有八个卦限,各轴名称分别为:x轴、y轴、z轴,坐标面分别 为 xoy 面、yoz面、zox面。坐标面以及卦限的划分如图7-2 所示。 图 图 7-1 右手规则演示 7- 2 空间直角坐标系图图7-3空间两点 M 1 M 2的距离图3.空间点M ( x, y, z)的坐标表示方法。 通过坐标把空间的点与一个有序数组一一对应起来。注意:特殊点的表示

法向量的求法及其空间几何题的解答

状元堂一对一个性化辅导教案 教师张敏科目数学时间2013 年6 月4日 学生董洲年级高二学校德阳西校区授课内容空间法向量求法及其应用立体几何知识点与例题讲解 难度星级★★★★ 教学内容 上堂课知识回顾(教师安排): 1.平面向量的基本性质及计算方法 2.空间向量的基本性质及计算方法 本堂课教学重点: 1.掌握空间法向量的求法及其应用 2.掌握用空间向量求线线角,线面角,面面角及点面距 3.熟练灵活运用空间向量解决问题 得分:

平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或(1,,)n y z =],在平面α内任找两个不共线的向量,a b 。由n α⊥,得0n a ?=且0n b ?=,由此得到关于,x y 的方程组,解此方程组即可得到n 。 二、 平面法向量的应用 1、 求空间角 (1)、求线面角:如图2-1,设→ n 是平面α的法向量,AB 是平面α的一条斜线,α∈A ,则AB 与平面α所成的角为: 图2-1-1:.| |||arccos 2,2 →→→ →→ →??->= <-= AB n AB n AB n π π θ 图2-1-2:2| |||arccos 2,π π θ-??=->=<→ →→ → → → AB n AB n AB n (2)、求面面角:设向量→ m ,→ n 分别是平面α、β的法向量,则二面角βα--l 的平面角为: θ β α → m 图2-2 → n θ → m α 图2-3 → n β | ,cos |sin ><=→ →AB n θA B α 图2-1-2 θ C → n 图2-1-1 α θ B → n A C

线性代数第三章向量与向量空间

线性代数练习题 第三章 向量与向量空间 系 专业 班 姓名 学号 第一节 n 维向量 第二节 向量间的线性关系 一.选择题 1.n 维向量s ααα,,, 21)(01≠α线性相关的充分必要条件是 [ D ] (A )对于任何一组不全为零的数组都有02211=+++s s k k k ααα (B )s ααα,,, 21中任何)(s j j ≤个向量线性相关 (C )设),,,(s A ααα 21=,非齐次线性方程组B AX =有无穷多解 (D )设),,,(s A ααα 21=,A 的行秩 < s . 2.若向量组γβα,,线性无关,向量组δβα,,线性相关,则 [ C ] (A )α必可由δγβ,,线性表示 (B )β必不可由δγα,,线性表示 (C )δ必可由γβα,,线性表示 (D )δ比不可由γβα,,线性表示 二.填空题: 1. 设T T T )0,4,3(,)1,1,0(,)0,1,1(321===ααα 则T )1,0,1(21-=-αα T )2,1,0(23321=-+ααα 2. 设)()()(αααααα+=++-321523,其中T ),,,(31521=α,T )10,5,1,10(2=α T ),,,(11143-=α,则(1,2,3,4)T α= 3. 已知T T T k ),,,(,),,,(,),,,(84120011211321---===ααα线性相关,则=k 2

三.计算题: 1. 设向量()T k 1,1,11+=α,T k ),,(1112+=α,T k ),,(1113+=α,T k k ),,(21=β,试问当k 为 何值时 (1)β可由321ααα,,线性表示,且表示式是唯一 (2)β可由321ααα,,线性表示,且表示式不唯一 (3)β不能由321ααα,,线性表示 (向量组的秩ppt) 21123 31 211131********* 100(3)1 1 1 3 1 1 0r r c c c r r k k k k k k k k k k k k k -++-++++=++= =++++ 2. 设向量T ),,,(32011=α,T ),5,3,1,1(2=α,T a ),,,(12113+-=α,T a ),,,(84214+=α T b ),,,(5311+=β,试问当b a ,为何值时,(1)β不能由4321αααα,,,线性表示 (2)β有4321αααα,,,的唯一线性表达式并写出表达式。 31413212421 111 11111 1201121011212324301 2133 518502 252111111 02100112101121001 000102000100 0010r r a b a b r r a a r r r r a b a b r r a a ???? ? ? --- ? ? ? ? +++- ? ? +-+???? -???? ? ? --- ? ?- ? ++- ? ++???? ? ? (1) a= -1,b ≠0.

三角法与向量法解平面几何题(正)

第27讲 三角法与向量法解平面几何题 相关知识 在ABC ?中,R 为外接圆半径,r 为内切圆半径,2 a b c p ++=,则 1,正弦定理: 2sin sin sin a b c R A B C ===, 2,余弦定理:2 2 2 2cos a b c bc A =+-,2 2 2 2cos b a c ac B =+-,2 2 2 2cos c a b ab C =+-. 3,射影定理:cos cos a b C c B =+,cos cos b a C c A =+,cos cos c a B b A =+. 4,面积:211sin 2sin sin sin 224a abc S ah ab C rp R A B C R = ==== = (sin sin sin )rR A B C ++ 2 221(cot cot cot )4 a A b B c C = ++. A 类例题 例1.在ΔABC 中,已知b =asinC ,c =asin (900 -B ),试判断ΔABC 的形状。 分析 条件中有边、角关系, 应利用正、余弦定理, 把条件统一转化为边或者是角的关系, 从而判定三角形的形状。 解 由条件c = asin (900 - B ) = acosB = c b c a ac b c a a 222 22222-+=-+ 2 2222c b c a =-+? 是直角A b c a ?+=?2 22 1sin sin sin =?=A A C c A a 是直角?? ?C a c C c a sin sin =?=?. Q C a b sin =?=? c b ΔABC 是等腰直角三角形。 例2.(1)在△ABC 中,已知cosA =13 5,sinB =53 ,则cosC 的值为( ) A .6516 B .6556 C .65566516或 D . 65 16- 解 ∵C = π - (A + B ),∴cosC = - cos (A + B ),又∵A ∈(0, π),∴sinA = 13 12,而sinB =53 显然sinA > sinB ,∴A > B , ∵A 为锐角, ∴B 必为锐角, ∴ cosB = 5 4 ∴cosC = - cos (A + B ) = sinAsinB - cosAcosB =65 1654135531312=?-?.选A . 说明 △ABC 中,sinA > sinB ?A > B . 根据这一充要条件可判定B 必为锐角。 (2)在Rt △ABC 中,C =90°,A =θ,外接圆半径为R ,内切圆半径为r ,

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 平面的法向量 仁定义:如果a _ :,那么向量a 叫做平面二的法向量。平面.:> 的法向量共有两大类(从方向上分) ,无 数条。 2、平面法向量的求法 斗 ■ 4 方法一(内积法):在给定的空间直角坐标系中, 设平面「的法向量n =(x,y,1)[或n =(x,1,z),或n =(1yZ ], 在平面:内任找两个不共线的向量 a,b 。由n _ :?,得n a = 0且n b = 0,由此得到关于 x, y 的方程组,解此 i 方程组即可得到n 。 方法二:任何一个 x, y, z 的一次次方程的图形是平面;反之,任何一个平面的方程是 Ax By Cz ^0 (代B,C 不同时为0),称为平面的一般方程。其法向量 n -(A, B,C);若平面与3个坐 标轴的交点为R(a,0,0), P 2(0,b,0), P 3(0,0, c),如图所示,则平面方程为?上 ]--1,称此方程为平面的截距 a b c 式方程,把它化为一般式即可求出它的法向量。 方法三(外积法):设 ,.为空间中两个不平行的非零向量,其外积 a b 为一长度等于|a||b|sinr , ( 9为 ..,.两者交角,且Ou :::二),而与..,.皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 .. 例 1、 已知,al(2,1,0),b'(-1,2,1), T T —f —f 试求(1): a^b ; (2): b 汉a. T T T T Key: (1) a b =(1,-2,5);⑵ b a =(-1,2,5) 例2、如图1-1,在棱长为2的正方体 ABCD -A 1B 1C 1D 1中, 7 T T T 的方向转为 匸的方向时,大拇指所指的方向规定为a b 的方向 ^( x i ,y i ,z i ),^(x 2, r 「 T T 丫2二2),则:a b = Z 2 X 1乙 X 2 Z 2 X 1 X 2 y 1 y 2 (注:1、二阶行列式 =ad —cb ; d 2、适合右手定 则。 x, y, z 的一次方程。

用向量方法解立体几何的的题目

用向量方法求空间角和距离 前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin | ||||| l n l n (3)求二面角 a l ⊥,在β内 b l ⊥,其方向如图,则二 方法一:在α内

面角l αβ--的平面角α=arccos |||| a b a b 方法二:设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角 α=12 12arccos |||| n n n n 2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到 α的距离|| |||cos ||| AB n d AB n θ== 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 方法一:找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. a 、 b 分别为异面直线a 、b 的方向 法二:在a 上取一点A, 在b 上取一点B, 设 向量,求n (n a ⊥,n b ⊥),则 异面直线a 、b 的距离

整理法向量的快速求法

法向量的快速求法 在数学考试过程中,大部分同学往往因为时间不够而没法做完一份完整的试卷,有些同学也因为时间不够,计算速度加快而出现计算错误等原因导致失分,所以能够简便而快速的算出结果是很多同学梦寐以求的。用向量方法做立几题,必须会的一种功夫是求平面的法向量。不少理科同学为经常算错平面的法向量而苦恼,下面介绍一种快速求平面的法向量方法。 新教材对平面几何的要求,重点在于求平面的法向量,常见的待定系数法解方程组,运算量大,学困生容易算错,最简单快捷的方法是行列式法。 结论:向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2)是平面α内的两个不共线向量,则向量n =(y 1z 2-y 2z 1,-(x 1z 2-x 2z 1),x 1y 2-x 2y 1)是平面α的一个法向量. 如果用二阶行列式表示,则 n =( 1122y z y z ,-1 122x z x z ,1 12 2 x y x y ) ,这更便 于记忆和计算. 结论证明(用矩阵与变换知识可以证明,此处略去),但你可以验证 n 一定满足 m a m b ??=?? ?=???111222 0x x y y z z x x y y z z ++=??++=?; 而且∵a 、b 不共线,∴n 一定不是0. 怎样用该结论求平面的法向量呢?举例说明. 例、向量a =(1,2,3),b =(4,5,6)是平面 α内的两个不共线向量,求平面α的法向量 解:设平面α的法向量为n =(x ,y ,z ), 则0 n a n b ??=???=???2304560x y z x y z ++=?? ++=? 令z =1,得n =(1,-2,1). 注意: ① 一定按上述格式书写,否则易被扣分. ② n 的计算可以在草稿纸上完成,过程参照 右边“草稿纸上演算过程”. a =(1,2, b =(4,5,交叉相乘的差就是求y 时,a 、b 的纵坐标就不参与运算,a =(1,2,b =(4,5,6) 交叉相乘的差的时,a 、b 的竖坐标就不参与运算,a =(1,2,b =(4,5,6) 交叉相乘的差就是 ∴n =(-3,6

相关主题
文本预览
相关文档 最新文档