当前位置:文档之家› 第7章 向量代数与空间解析几何 习题 7- (4)

第7章 向量代数与空间解析几何 习题 7- (4)

第7章  向量代数与空间解析几何 习题  7- (4)
第7章  向量代数与空间解析几何 习题  7- (4)

第四节 空间直线及其方程

习题 7-4

1. 求过点(1,1,2)?且与平面20x y z +?=垂直的直线方程.

解 取已知平面的法向量(1,2,1)=?n 为所求直线的方向向量, 则直线的对称式方程为

112

.121

x y z ?+?==? 2. 求过点(1,3,2)??且平行两平面35202340x y z x y z ?++=+?+=及的直 线的方程.

解 因为两平面的法向量12(3,1,5)(1,2,3)=?=?n n 与不平行, 所以两平面相交

于一直线, 此直线的方向向量为

1231

5(7,14,7)7(1,2,1),1

2

3

=×=?=?=??i j

k

s n n 故可取所求直线的方向向量为(1,2,1)?, 由题设, 所求的直线方程为

132

.121

x y z ++?==? 3. 用点向式方程及参数方程表示直线

10

2340

x y z x y z +++=??

?++=?. 解 先在直线上找一点.

令1x =, 解方程组2,

36,y z y z +=????=? 得0,2y z ==?, 故(1,0,2)?是直线上一点.

再求直线的方向向量s .

交于已知直线的两平面的法向量为: 12(1,1,1),(2,1,3)==?n n ,

12,,⊥⊥s n s n ∵

121

11(4,1,3),213

∴=×==???i

j k

s n n

故所给直线的点向式方程为

12

,413x y z ?+==??

参数方程为 14,,23.x t y t z t =+??

=???=???

4. 求过点(2,0,3)?且与直线2470,

35210x y z x y z ?+?=??

+?+=?

垂直的平面方程. 解 要求所求平面垂直于直线, 所以直线的方向向量为所求平面的法向量, 取

1212

4(16,14,11),3

5

2

==×=?=??i j

k

n s n n 由点法式可得

16(2)14(0)11(3)0,x y z ??+?++=

即161411650x y z ???=为所求的平面方程.

5. 求过点(3,1,2)?且通过直线

43521

x y z

?+==的平面的方程. 解 法1

所求平面过点0(3,1,2)M ?及1(4,3,0)M ?, 设其法向量为n , 则01,M M ⊥⊥

n n s ,

其中(5,2,1)=s .

取01(1,4,2)(5,2,1)(8,9,22)M M =×=?×=?n s

, 则平面方程为

8(3)9(1)22(2)0,x y z ??+?++=

即8922590x y z ???=.

法2 直线L 的交面式方程为25230,

230,x y y z ??=???+=?

过L 的平面束方程为

(23)(2523)0.y z x y λ?++??=

点(3,1,2)?在平面上, 因此(143)(6523)0λ+++??=, 解得4

11

λ=, 因此平面的方程为

4

(23)(2523)0,11

y z x y ?++

??= 即8922590x y z ???=. 容易验证25230x y ??=不是所求的平面方程.

6. 确定下列直线与直线的位置关系:

(1)

2111x y z +==

??与2240,

230;x y z x y z ?+?=???+?=?

(2) 1421315x y z ++==

与19,3

13,1

15;

3x t y t z t ?=???=????=??? (3) 340,290x z y z +?=??+?=?与610

290.x y y z ?+=??+?=?

解 (1) 直线12

:

111

x y z L +==

??的方向向量为 1(1,1,1),=??s

直线22240,

:230x y z L x y z ?+?=???+?=?

的方向向量为

2212(0,2,2).112

=?=??i j k

s

1212(1,1,1)(0,2,2)0,,?=????=∴⊥s s s s ∵

因此, 两直线垂直.

(2) 直线11421

:

315

x y z L ++==

的方向向量为 1(3,1,5),=s

直线219,3:13,1

153x t L y t z t

?

=???

=????=???

的方向向量为

2(9,3,15)3(3,1,5).=???=?s

故21123,//.s s s s =?

又因211111

(,1,),(,1,)3333

L L ?∈??点但, 因此, 两直线平行.

(3) 直线1340,

:290x z L y z +?=??+?=?

的方向向量为

1301(1,6,3),012

==??i j k

s

直线2610,

:290x y L y z ?+=??+?=?

的方向向量为

2610(2,12,6)2(1,6,3).0

1

2

=?=??=??i j k

s

21122,//.=故s s s s

又因12(0,1,4),(0,1,4),L L ∈∈点且 因此, 两直线重合.

7. 下列直线与平面是否垂直?是否平行?若不平行, 求出它们的夹角.

(1) 34273x y z

++==??与42230x y z ???=;

(2) 327

x y z

==?与641410x y z ?++=; (3)

234

314

x y z +??==

?与50x y z ++?=; (4) 10,

210x y z x y z +??=??

?++=?

与320x y z ?+=. 解 (1) 直线的方向向量为

(2,7,3),=??s

平面的法向量为

(4,2,2).=??n

81460,

,?=?+?=∴⊥s n s n ∵

从而直线平行于平面或直线在平面上.

又因为(3,4,0)??点在直线上, 但不在平面上, 故此直线与平面平行.

(2) 直线的方向向量为

(3,2,7),=?s

平面的法向量为

(6,4,14)2(3,2,7).=?=?n

故2=n s , 从而//n s , 故直线与平面垂直.

(3) 直线的方向向量为

(3,1,4),=?s 平面的法向量为

(1,1,1).=n

3140,?=+?=s n ∵ ,∴⊥s n

将直线上的点(2,3,4)?的坐标代入平面方程成立, 故此直线在平面上.

(4) 直线的方向向量为

1

1

1(1,3,2),11

2

=?=???i j k

s

平面的法向量为

(3,2,1).=?n

36270,0,?=+?=≠×≠s n s n ∵ 所以直线与平面相交

. sin ??=

=

∵s n s n

, π6

?∴=

. 8. B D 和为何值时, 直线20,

36270x By z D x y z +?+=??

+??=? 过点(0,13,2)且垂直于x 轴? 解 直线的方向向量为

12(66,4,3).136

B B B =?=?+??i j k

s 因为直线垂直于x 轴, 故有,⊥s i 即

(66,4,3)(1,0,0)660,B B B ?=?+??=?+=s i 所以 1.B =

因点(0,13,2)在直线上, 所以有

01340,B D +?+=

即 134,B D += 所以9.D =?

9. 求直线10,

10x y z x y z +??=??

?++=? 在平面0x y z ++=上的投影直线的方程. 解 过直线L 的平面束方程为

1(1)0,x y z x y z λ+??+?++=

即 (1)(1)(1)(1)0,x y z λλλλ++?+?++?+=

其法向量(1,1,1)λλλ=+??+n . 在平面束中找与已知平面0x y z ++=垂直的平面, 由0(1,1,1)⊥=n n , 得

0(1)1(1)1(1)10,λλλ?=+?+??+?+?=n n

得1λ=?, 代入平面束方程, 可得与已知平面0x y z ++=垂直的平面方程为

10.y z ??=

因此投影直线的方程为

10,

0.y z x y z ??=??

++=?

10. 求点(1,2,0)?在平面210x y z +?+=上的投影. 解 过点(1,2,0)?且垂直于已知平面的直线方程为

12121

x y z

+?==

?, 该直线与平面的交点即为所求. 解联立方程组210,

12,121x y z x y z +?+=??

?+?==???得所求的投影点为

522

(,,333

?. 11. 求点(0,1,1)A ?到直线10,

270y x z +=??+?=?的距离.

解 已知直线的方向向量为

010(2,0,1).102

==?i j k

s 因为点(7,1,0)?在直线上, 于是直线的方程为

71,201

x y z

?+==? 其参数方程为 72,1,.x t y z t =+??

=???=??

(1)

过点(0,1,1)A ?作已知直线的垂直平面, 其方程为

2(0)0(1)(1)0,x y z ?++??=

即 210,x z ?+= (2) 将(1)代入(2), 得: 2(72)10t t +++=, 即3t =?, 于是得点A 向已知直线所作垂线的垂足坐标为(1,1,3)?. 由此得点A 到已知直线的距离为

d ==

12. 设0M 是直线L 外一点, M 是直线L 上任意一点, 且直线的方向向量为s ,

试证:点0M 到直线L 的距离为

0M M d ×=

s

s

.

证 如图7.6, 设向量0M M

与直线L 所夹的

角为θ, 则

000sin sin M M M M d M M θ

θ×==

=

s s

s

s

.

13. 过点(2,1,3)且与直线

11321

x y z

+?==

?垂直相交的直线的方程. 解 先求两直线的交点.

过点(2,1,3)且与已知直线垂直的平面的法向量为(3,2,1)?, 故其方程为

3(2)2(1)(3)0;x y z ?+???= (1)

直线

11321

x y z

+?==

?的参数方程为 13,

12,;x t y t z t =?+??

=+??=??

(2)

将(2)代入(1), 得

3(132)2(121)(3)0,t t t ?+?++????=

即146,t = 亦即3

.7

t =

故两直线的交点坐标为2133

(,,)777?, 由此得所求直线的方向向量为

126246

(,,)(2,1,4)7777

?

?=??, 于是所求的直线方程为

θ

d

0M M

图7.6

213

.214x y z ???==? 14. 在平

面0x y z ++=上

求与两直线

110,:10x y L x y z +?=??

?++=?和2210,

:10x y z L x y z ?+?=??+?+=?

都相交的直线的方程. 解 将两直线分别化为参数方程为

12,

0,:1,:,

2,1,x t x L y t L y t z t z t ==???

?

=?=????=?=+?

?

将1L 代入平面0,x y z ++= 得

1120,2

t t t t +??==

, 可得1L 与平面0x y z ++=的交点111

(,,1)22

M ?.

同理, 将2L 代入平面0x y z ++=, 得1

2

t =?

, 可得2L 与平面0x y z ++=的交点211

(0,,)22M ?.

于是有12131

(,1,)(1,2,3)222

M M =??=?? , 因此所求的直线方程为

11

122.12

3x y z ?

?+==?

高等代数第6章习题参考答案

第六章 线性空间 1.设,N M ?证明:,M N M M N N ==I U 。 证 任取,M ∈α由,N M ?得,N ∈α所以,N M I ∈α即证M N M ∈I 。又因 ,M N M ?I 故M N M =I 。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪 一种情形,都有,N ∈α此即。但,N M N Y ?所以M N N =U 。 2.证明)()()(L M N M L N M I Y I Y I =,)()()(L M N M L N M Y I Y I Y =。 证 ),(L N M x Y I ∈?则.L N x M x Y ∈∈且在后一情形,于是.L M x N M x I I ∈∈或所以)()(L M N M x I Y I ∈,由此得)()()(L M N M L N M I Y I Y I =。反之,若 )()(L M N M x I Y I ∈,则.L M x N M x I I ∈∈或 在前一情形,,,N x M x ∈∈因此 .L N x Y ∈故得),(L N M x Y I ∈在后一情形,因而,,L x M x ∈∈x N L ∈U ,得 ),(L N M x Y I ∈故),()()(L N M L M N M Y I I Y I ? 于是)()()(L M N M L N M I Y I Y I =。 若x M N L M N L ∈∈∈U I I (),则x ,x 。 在前一情形X x M N ∈U , X M L ∈U 且,x M N ∈U 因而()I U (M L ) 。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?U U U I U U I U U U U I U I U 在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L )即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量 乘法; 3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算: 2121211211 12 b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,) ()k 。(a ,)=(ka ,kb +

高中数学-空间直角坐标系与空间向量典型例题

高中数学-空间直角坐标系与空间向量 一、建立空间直角坐标系的几种方法 构建原则: 遵循对称性,尽可能多的让点落在坐标轴上。 作法: 充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下: (一)用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠ A 为直角,A B ∥CD ,AB =4,AD =2,D C =1,求异面直线BC 1与DC 所成角的余弦 值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,,(010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ, 则11317 cos 17BC CD BC CD θ== u u u u r u u u r g u u u u r u u u r . (二)利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于 C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1= 3 π .求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB = 2,∠BCC 1= 3 π,

高等代数第6章习题解

第六章习题解答 习题6.1 1、设2V R =,判断下面V 到V 的映射哪些是V 的线性变换,哪些不是? (1),()x x y V f y y αα+????=∈= ? ?????;(2),()x x y V f y y αα-????=∈= ? ????? ; (3)2,()x y V f y x y αα+????=∈= ? ?+???? ; (4)0,()x V f y αααα??=∈=+ ???,0V α∈是一个固定的非零向量。 (5)0,()x V f y ααα??=∈= ???,0V α∈是一个固定的非零向量。 解:(1)是。因为1122(,),(,),x y x y k F αβ''?==?∈,有 (2)是。因为1122(,),(,),x y x y k F αβ''?==?∈,有 (3)不是。因为 而 121211*********()()y y y y f f x y x y x x y y αβ++++??????+=+= ? ? ?+++++?????? 所以()()()f f f αβαβ+≠+ (4)不是。因为0()f k k ααα=+,而000()()kf k k k k ααααααα=+=+≠+ 所以()()f k kf αα≠ (5)不是。因为0()f αβα+=,而00002()()f f αβαααα+=+=≠ 2、设n n V P ?=是数域F 上全体n 阶方阵构成的集合,有§4.5,V 是F 上2 n 维线性空间, 设A V ∈是固定元,对任意M V ∈,定义 ()f M MA AM =+ 证明,f 是V 的一个线性变换。 证明:,,M N V k F ?∈∈,则 所以 f 是V 的一个线性变换。 3、设3 V R =,(,,)x y z V α=∈,定义

线性代数期末复习题

线性代数 一. 单项选择题 1。设A 、B 均为n 阶方阵,则下列结论正确的是 . (a)若A 和B 都是对称矩阵,则AB 也是对称矩阵 (b )若A ≠0且B ≠0,则AB ≠0 (c)若AB 是奇异矩阵,则A 和B 都是奇异矩阵 (d )若AB 是可逆矩阵,则A 和B 都是可逆矩阵 2. 设A 、B 是两个n 阶可逆方阵,则()1-?? ????'AB 等于( ) (a )()1-'A ()1-'B (b ) ()1-'B ()1-'A (c )() '-1B )(1'-A (d )() ' -1B ()1-'A 3.n m ?型线性方程组AX=b,当r(A )=m 时,则方程组 。 (a ) 可能无解 (b)有唯一解 (c)有无穷多解 (d )有解 4.矩阵A 与对角阵相似的充要条件是 。 (a )A 可逆 (b)A 有n 个特征值 (c) A 的特征多项式无重根 (d) A 有n 个线性无关特征向量 5。A 为n 阶方阵,若02 =A ,则以下说法正确的是 。 (a ) A 可逆 (b ) A 合同于单位矩阵 (c ) A =0 (d ) 0=AX 有无穷多解 6.设A ,B ,C 都是n 阶矩阵,且满足关系式ABC E =,其中E 是n 阶单位矩阵, 则必有( ) (A )ACB E = (B)CBA E = (C )BAC E = (D ) BCA E = 7.若233 32 31 232221 131211 ==a a a a a a a a a D ,则=------=33 32 3131 2322 212113 1211111434343a a a a a a a a a a a a D ( ) (A )6- (B )6 (C )24 (D )24- 二、填空题 1.A 为n 阶矩阵,|A |=3,则|AA '|= ,| 1 2A A -* -|= . 2.设???? ??????=300120211A ,则A 的伴随矩阵=*A ; 3.设A =? ? ?? ??--1112,则1 -A = 。

线性代数教案-向量与向量空间

线性代数教学教案 第3章 向量与向量空间 授课序号01 教 学 基 本 指 标 教学课题 第3章 第1节 维向量及其线性运算 课的类型 新知识课 教学方法 讲授、课堂提问、讨论、启发、自学 教学手段 黑板多媒体结合 教学重点 维向量的概念、向量的线性运算的性质 教学难点 向量的线性运算的性质 参考教材 同济版《线性代数》 作业布置 课后习题 大纲要求 理解维向量的概念 教 学 基 本 内 容 一. 维向量的概念 1.维向量:由个数组成的有序数组称为维向量. 2.称为维行向量,称为维列向量. 二.维向量的线性运算 1.定义: (1)分量全为0的向量称为零向量; (2)对于,称为的负向量; (3)对于,,当且仅当时,称与相等; (4)对于,,称为与的和; (5)对于,,称为与的差; (6)对于,为实数,称为的数乘,记为. 2.向量的线性运算的性质:对任意的维向量和数,有: n n n n n n n a a a ,,,21 n ),,,(21n a a a n 12?????????????? n a a a n n ()12T n αa ,a ,,a = ()12---T n a ,a ,,a αT n a a a ),,,(21 =αT n b b b ),,,(21 =β),,2,1(n i b a i i ==αβT n a a a ),,,(21 =αT n b b b ),,,(21 =βT n n b a b a b a ),,,(2211+++ αβT n a a a ),,,(21 =αT n b b b ),,,(21 =β()1122---T n n a b ,a b ,,a b αβT n a a a ),,,(21 =αk T n ka ka ka ),,,(21 ααk n γβα,,l k ,

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

线性代数复习题及答案

《 线性代数复习提纲及复习题 》 理解或掌握如下内容: 第一章 n 阶行列式 .行列式的定义,排列的逆系数,行列式性质,代数余子式, 行列式的计算,三角化法及降阶法,克莱姆法则。 第二章 矩阵及其运算 矩阵的线性运算,初等变换与初等矩阵的定义,方阵的逆矩阵定义及性质 方阵的逆矩阵存在的充要条件,用初等变换求逆矩阵,矩阵方程的解法,矩阵的秩的定义及求法;齐次线性方程组只有零解、有非零解的充要条件,;非齐次线性方程组有解的充要条件,解的判定。 第三章 线性方程组 n维向量的线性运算,向量组线性相关性的定义及证明,向量空间,向量组的极大线性无关组、秩; 齐次线性方程组的基础解系,解的结构,方程组求解;非齐次线性方程组解的结构,用初等变换解方程组,增广矩阵含有字母元素的方程组的求解。 复习题: 一、填空 (1)五阶行列式的项5441352213a a a a a 前的符号为 负 ; (2)设)3,3,2(2),3,3,1(-=+-=-βαβα,则α= (1,0,0) ; (3)设向量组γβα,,线性无关,则向量组γβαβα2,,+-线性 无关 ; (4)设* A 为四阶方阵A 的伴随矩阵,且*A =8,则12)(2-A = 4 ; (5)线性方程组054321=++++x x x x x 的解空间的维数是 4 ; (6)设???? ? ??=k k A 4702031,且0=T A 则k = 0或6 ; (7)n 元齐次线性方程组0=Ax 的系数矩阵A 的秩r(A)秩是r,则其解空间的维数是 n-r ; (8)的解的情况是:方程组b Ax b A R A R 2),,()3(== 有解 ; (9)方阵A 的行向量组线性无关是A 可逆的 充要 条件;

高等代数试题及答案

中国海洋大学2007-2008学年第2学期期末考试试卷

授课教师命题教师或 命题负责人签字年月日院系负责人签 字年月日 共 2 页第 2 页

中国海洋大学 XXXX-XXXX 学年 第X 学期 期末考试试卷 五(10分)证明:设A 为n 级矩阵,()g x 是矩阵A 的最小多项式,则多项式()f x 以A 为根的充要条件是()g x |()f x . 六(10分)设V 是数域P 上的n 维线性空间,A B ,是V 上的线性变换,且=AB BA .证明:B 的值域与核都是A 的不变子空间. 七(10分)设2n 阶矩阵a b a b A b a b a ??????? ? =? ?? ??????? O N N O ,a b ≠,求A 的最小多项式. 八(10分)设f 是数域P 上线性空间V 上的线性变换,多项式()(),p x q x 互素,且满足 ()()0p f q f =(零变换) 求证:()()()(),ker ,ker V W S W p f S q f =⊕==

中国海洋大学 2007-2008学年 第2学期 期末考试 数学科学 学院 《高等代数》试题(A 卷)答案 一.判断题 1.× 2.× 3.× 4.√ 5.√ 二.解:A =???? ????????1111111111111111, 3|(4)E A λλλ-=-|,所以特征值为0,4(3重). 将特征值代入,求解线性方程组()0E A x λ-=,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量: 11111 ,,,)'2222α=( ,2α=, 3α= ,4'α=. 所以正交阵1 212 102610 2 T ?????? ?=??- ?? ???????? 而40'00T AT ??????=??????. 三.证:(1) ,.A B M ?∈ 验证,A B kA M +∈即可. (2) 令1101 010011 0n E D E -???? ? ??? ??== ????? ?????? O O O ,D 为循环阵, 00n k k k E D E -?? = ??? ,(k E 为k 阶单位阵) 则2 1 ,,,,n n D D D D E -=L 在P 上线性无关.

高中数学典型例题解析汇报平面向量与空间向量

实用文档 文案大全高中数学典型例题第八章平面向量与空间向量 §8.1平面向量及其运算 一、、疑难知识导析 1.向量的概念的理解,尤其是特殊向量“零向量” 向量是既有大小,又有方向的量.向量的模是正数或0,是可以进行大小比较的,由于方向不能比较大小,所以向量是不能比大小的.两个向量的模相等,方向相同,我们称这两个向量相等,两个零向量是相等的,零向量与任何向量平行,与任何向量都是共线向量; 2.在运用三角形法则和平行四边形法则求向量的加减法时要注意起点和终点; 3.对于坐标形式给出的两个向量,在运用平行与垂直的充要条件时,一定要区分好两个公式,切不可混淆。因此,建议在记忆时对比记忆; 4.定比分点公式中则要记清哪个点是分点;还有就是此公式中横坐标和纵坐标是分开计算的; 5.平移公式中首先要知道这个公式是点的平移公式,故在使用的过程中须将起始点的坐标给出,同时注意顺序。 二知识导学 1.模(长度):向量AB的大小,记作|AB|。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a?长度相等,方向相反的向量叫做a?的相反向量。记作-a?。 5.向量的加法:求两个向量和的运算。 已知a?,b?。在平面内任取一点,作AB=a?,BC=b,则向量AC 叫做a与b?的和。记作a?+b?。 6. 向量的减法:求两个向量差的运算。 已知a?,b?。在平面内任取一点O,作OA=a?,OB=b?,则向量BA 叫做a?与b?的差。记作a?-b?。 7.实数与向量的积: (1)定义:实数λ与向量a?的积是一个向量,记作λa?,并规定: ①λa?的长度|λa?|=|λ|·|a?|; ②当λ>0时,λa?的方向与a?的方向相同; 当λ<0时,λa?的方向与a?的方向相反; 当λ=0时,λa?=0? (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa?)=(λμ) a?

8线性代数练习题(带解题过程)

8线性代数练习题(带解题过程)

0 线性代数试题 一 填空题 ◆1. 设 A 为3阶方阵且 2 =A ,则 = -*-A A 231 ; 【分析】只要与* A 有关的题,首先要想到公式, E A A A AA ==**,从中推 你要的结论。这里1 1* 2--==A A A A 代入 A A A A A 1)1(231311-= -=-=---*- 注意: 为什么是3 )1(- ◆2. 设1 33322211 ,,α+α=βα+α=βα+α=β, 如 3 21,,ααα线性相关,则3 21,,βββ线性 ______(相关) 如 3 21,,ααα线性无关,则 3 21,,βββ线性 ______(无关) 【分析】对于此类题,最根本的方法是把一个向量组由另一个向量表示的问题转化为矩阵乘

1 法的关系,然后用矩阵的秩加以判明。 ?? ?? ? ?????=110011101],,[],,[321321αααβββ,记此为AK B = 这里)()()(A r AK r B r ==, 切不可两边取行列式!!因为矩阵不一定 是方阵!! ◆3. 设非齐次线性方程b x A m =?4 ,2)(=A r ,3 2 1 ,,ηη η是 它的三个解,且 T T T )5,4,3,2(,)4,3,2,1(,)7,6,4,3(133221=+=+=+ηηηηηη 求该方程组的通解。(答案: T T T k k x )2,2,1,1()1,1,1,1()6,5,3,2(2 1 21++= ,形式不 唯一) 【分析】对于此类题,首先要知道齐次方程组基础解系中向量的个数(也是解空间的维数) 是多少,通解是如何构造的。其次要知 道解得性质(齐次线性方程组的任意两解的线性

高等代数习题及答案(1)

高等代数试卷 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、)(x p 若是数域F 上的不可约多项式,那么)(x p 在F 中必定没有根。 ( ) 2、若线性方程组的系数行列式为零,由克莱姆法则知,这个线性方程组一定是无解的。 ( ) 3、实二次型),,,(21n x x x f 正定的充要条件是它的符号差为n 。 ( ) 4、 321321;3,2,1,,,x x x i R x x x x W i 是线性空间3R 的一个子空间。( ) 5、数域F 上的每一个线性空间都有基和维数。 ( ) 6、两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。 ( ) 7、零变换和单位变换都是数乘变换。 ( ) 8、线性变换 的属于特征根0 的特征向量只有有限个。 ( ) 9、欧氏空间V 上的线性变换 是对称变换的充要条件为 关于标准正交基的矩阵为实对称矩阵。 ( ) 10、若 n ,,,21 是欧氏空间V 的标准正交基,且 n i i i x 1 ,那么 n i i x 1 2 。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写 在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、关于多项式的最大公因式的下列命题中,错误的是( ) ① n n n x g x f x g x f ,, ; ② n j i j i f f f f f j i n ,,2,1,,,1,1,,,21 ; ③ x g x g x f x g x f ,, ; ④若 1,1, x g x f x g x f x g x f 。 2、设D 是一个n 阶行列式,那么( ) ①行列式与它的转置行列式相等; ②D 中两行互换,则行列式不变符号; ③若0 D ,则D 中必有一行全是零; ④若0 D ,则D 中必有两行成比例。 3、设矩阵A 的秩为r r (>)1,那么( ) ①A 中每个s s (<)r 阶子式都为零; ②A 中每个r 阶子式都不为零;

空间向量和立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B . 3 C .3 D .2 3 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为11AO AB =另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为1111 33 OA AA AB AC =- -,11AB AB AA =+ 2111126 ,,333 OA AB a OA AB ?= == 则1AB 与底面ABC 所成角的正弦值为 111 12 3 OA AB AO AB ?= . 二、填空题: 1 .(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D --M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11 (),22 AN AC AB EM AC AE =+=-, 11()()22AN EM AB AC AC AE ?=+?-=1 2 故EM AN ,所成角的余弦值 1 6 AN EM AN EM ?= 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

线性代数向量空间的练习题

线性代数向量空间的练习题 一、单项选择题 1.设A,B分别为m×n和m×k矩阵,向量组是由A 的列向量构成的向量组,向量组是由的列向量构成的向量组,则必有 A.若线性无关,则线性无关 B.若线性无关,则线性相关 C.若线性无关,则线性无关 D.若线性无关,则线性相关 2.设?1,?2,?3,?4是一个4维向量组,若已知?4可以表为?1,?2,?3的线性组合,且表示法 惟一,则向量组?1,?2,?3,?4的秩为 A.1 B.2 C.D.4 3.设向量组?1,?2,?3,?4线性相关,则向量组中 A.必有一个向量可以表为其余向量的线性组合 B.必有两个向量可以表为其余向量的线性组合 C.必有三个向量可以表为其余向量的线性组合 D.每一个向量都可以表为其余向量的线性组合 4.设有向量组A:?1,?2,?3,?4,其中?1,?2,?3线性无关,则 A.?1,?3线性无关 B.?1,?2,?3,?4线性无关

C.?1,?2,?3,?4线性相关 D.?2,?3,?4线性相关 5.向量组?1,?2,?,?s的秩不为零的充分必要条件是 A.?1,?2,?,?s中没有线性相关的部分组 C.?1,?2,?,?s全是非零向量 B.?1,?2,?,?s中至少有一个非零向量 D.?1,?2,?,?s全是零向量 6.设α1,α2,α3,α4是4维列向量,矩阵A=.如果|A|=2,则|-2A|= A.-3 B.-4 C.D.32 7.设α1,α2,α3,α是三维实向量,则 A. α1,α2,α3,α4一定线性无关 B. α1一定可由α2,α3,α4线性表出 C. α1,α2,α3,α4一定线性相关 D. α1,α2,α3一定线性无关 8.向量组α1=,α2=,α3=的秩为 A.1 B.2 C.D.4 9.下列命题中错误的是.. A.只含有一个零向量的向量组线性相关 B.由3个2维向量组成的向量组线性相关 C.由一个非零向量组成的向量组线性相关 D.两个成比例的向量组成的向量组线性相关

线性代数向量空间自测题

《第四章 向量空间》 自测题 (75 分钟) 一、选择、填空(20分,每小题4分) 1. 下列向量集合按向量的加法和数乘运算构成R 上一个向量空间的是( )。 (A )R n 中,分量满足x 1+x 2+…+x n =0的所有向量; (B )R n 中,分量是整数的所有向量; (C )R n 中,分量满足x 1+x 2+…+x n =1的所有向量; (D )R n 中,分量满足x 1=1,x 2,…,x n 可取任意实数的所有向量。 2.设R 4 的一组基为,,,,4321αααα令 414433322211,,,ααβααβααβααβ+=+=+=+=, 则子空间}4,3,2,1,|{44332211=∈+++=i F k k k k k W i ββββ的维数为 ,它的一组基为 。 3. 向量空间R n 的子空间 },0|)0,,,,{(1121121R x x x x x x x W n n ∈=+=--ΛΛ的维数为 , 它的一组基为 。 4. 设W 是所有二阶实对称矩阵构成的线性空间,即?? ????????∈???? ??=R a a a a a W ij 2212 1211,则它的维数为 ,一组基为 。 5.若A=??????? ?????????-100021021b a 为正交矩阵,且|A|=-1,则a = ,b = 。 二、计算题(60分) 1.(15分)设R 3 的两组基为: T T T )1,1,0(,)0,1,1(,)1,0,1(321===ααα和T T T )1,2,1(,)2,1,1(,)1,1,1(321===βββ, 向量α=(2,3,3)T (1)求由基321,,ααα到基321,,βββ的过渡矩阵。 (2)求α关于这两组基的坐标。 (3)将321,,βββ化为一组标准正交基。 2. (15分)在R 4 中,求下述齐次线性方程组的解空间的维数和基,

高等代数北大版习题参考答案

第九章 欧氏空间 1.设()ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

自考线性代数第三章向量空间习题

第三章 向量空间 一、单项选择题 1.设A ,B 分别为m ×n 和m ×k 矩阵,向量组(I )是由A 的列向量构成的向量组,向量组(Ⅱ)是由(A ,B )的列向量构成的向量组,则必有( ) A .若(I )线性无关,则(Ⅱ)线性无关 B .若(I )线性无关,则(Ⅱ)线性相关 C .若(Ⅱ)线性无关,则(I )线性无关 D .若(Ⅱ)线性无关,则(I )线性相关 2.设4321,,,αααα是一个4维向量组,若已知4α可以表为321,,ααα的线性组合,且表示法 惟一,则向量组4321,,,αααα的秩为( ) A .1 B .2 C .3 D .4 3.设向量组4321,,,αααα线性相关,则向量组中( ) A .必有一个向量可以表为其余向量的线性组合 B .必有两个向量可以表为其余向量的线性组合 C .必有三个向量可以表为其余向量的线性组合 D .每一个向量都可以表为其余向量的线性组合 4.设有向量组A :α1,α2,α3,α4,其中α1,α2,α3线性无关,则( ) A.α1,α3线性无关 B.α1,α2,α3,α4线性无关 C.α1,α2,α3,α4线性相关 D.α2,α3,α4线性相关 5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量 D .s ααα,,,21 全是零向量 6.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=( ) A.-32 B.-4 C.4 D.32 7.设α1,α2,α3,α4 是三维实向量,则( ) A. α1,α2,α3,α4一定线性无关 B. α1一定可由α2,α3,α4线性表出 C. α1,α2,α3,α4一定线性相关 D. α1,α2,α3一定线性无关 8.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( ) A.1 B.2 C.3 D.4 9.下列命题中错误.. 的是( ) A.只含有一个零向量的向量组线性相关 B.由3个2维向量组成的向量组线性相关 C.由一个非零向量组成的向量组线性相关 D.两个成比例的向量组成的向量组线性相关 10.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则( ) A.α1必能由α2,α3,β线性表出 B.α2必能由α1,α3,β线性表出 C.α3必能由α1,α2,β线性表出 D.β必能由α1,α2,α3线性表出

线性代数向量空间自测题(附答案)

《第四章 向量空间》 自测题 (75分钟) 一、选择、填空(20分,每小题4分) 1. 下列向量集合按向量的加法和数乘运算构成R 上一个向量空间的是( )。 (A )R n 中,分量满足x 1+x 2+…+x n =0的所有向量; (B )R n 中,分量是整数的所有向量; (C )R n 中,分量满足x 1+x 2+…+x n =1的所有向量; (D )R n 中,分量满足x 1=1,x 2,…,x n 可取任意实数的所有向量。 2.设R 4 的一组基为,,,,4321αααα令 414433322211,,,ααβααβααβααβ+=+=+=+=, 则子空间}4,3,2,1,|{44332211=∈+++=i F k k k k k W i ββββ的维数为 ,它的一组基为 。 3. 向量空间R n 的子空间 },0|)0,,,,{(1121121R x x x x x x x W n n ∈=+=-- 的维数为 , 它的一组基为 。 4. 设W 是所有二阶实对称矩阵构成的线性空间,即?? ? ???????∈???? ??=R a a a a a W ij 2212 1211,则它的维数为 ,一组基为 。 5.若A=????? ? ? ?????? ?? ? - 10 0021021b a 为正交矩阵,且|A|=-1,则a = ,= 。 二、计算题(60分) 1.(15分)设R 3的两组基为: T T T )1,1,0(,)0,1,1(,)1,0,1(321===ααα和T T T )1,2,1(,)2,1,1(,)1,1,1(321===βββ, 向量α=(2,3,3)T (1)求由基321,,ααα到基321,,βββ的过渡矩阵。 (2)求α关于这两组基的坐标。 (3)将321,,βββ化为一组标准正交基。 2. (15分)在R 4 中,求下述齐次线性方程组的解空间的维数和基,

高等代数北大版习题参考答案

第七章线性变换 1.?判别下面所定义的变换那些是线性的,那些不是: 1)?在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)?在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)?在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)?在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)?在P[x ]中,A )1()(+=x f x f ; 6)?在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)?把复数域上看作复数域上的线性空间,A ξξ=。 8)?在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α,A )0,0,4()(=αk , A ≠ )(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+=A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- =A α+A β, A =)(αk A ),,(321kx kx kx =k A )(α, 故A 是P 3 上的线性变换。 5)是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f +=A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f +A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i,k(A a)=i,A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

线性代数向量空间自测题

《第四章 向量空间》 自测题 (75分钟) 一、选择、填空(20分,每小题4分) 1、 下列向量集合按向量的加法与数乘运算构成R 上一个向量空间的就是( )。 (A)R n 中,分量满足x 1+x 2+…+x n =0的所有向量; (B)R n 中,分量就是整数的所有向量; (C)R n 中,分量满足x 1+x 2+…+x n =1的所有向量; (D)R n 中,分量满足x 1=1,x 2,…,x n 可取任意实数的所有向量。 2.设R 4 的一组基为,,,,4321αααα令 414433322211,,,ααβααβααβααβ+=+=+=+=, 则子空间}4,3,2,1,|{44332211=∈+++=i F k k k k k W i ββββ的维数为 ,它的一组基为 。 3、 向量空间R n 的子空间 },0|)0,,,,{(1121121R x x x x x x x W n n ∈=+=--ΛΛ的维数为 , 它的一组基为 。 4、 设W 就是所有二阶实对称矩阵构成的线性空间,即?? ? ???????∈???? ??=R a a a a a W ij 2212 1211,则它的维数为 ,一组基为 。 5.若A=????? ?? ? ????????-100021 021b a 为正交矩阵,且|A|=-1,则a = ,b = 。 二、计算题(60分) 1、(15分)设R 3的两组基为: T T T )1,1,0(,)0,1,1(,)1,0,1(321===ααα与T T T )1,2,1(,)2,1,1(,)1,1,1(321===βββ, 向量α=(2,3,3)T (1)求由基321,,ααα到基321,,βββ的过渡矩阵。 (2)求α关于这两组基的坐标。 (3)将321,,βββ化为一组标准正交基。 2、 (15分)在R 4 中,求下述齐次线性方程组的解空间的维数与基,

线性代数 向量空间

第五节 向量空间 分布图示 ★ 向量空间 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 子空间 ★ 例6 ★ 例7 ★ 向量空间的基与维数 ★ 例8 ★ 例9 ★ 向量在基下的坐标 ★ 例10 ★ 关于集合的坐标系的注记 ★ 例11 ★ 内容小结 ★ 课堂练习 ★ 习题3-5 内容要点 一、向量空间与子空间 定义1 设V 为n 维向量的集合,若集合V 非空,且集合V 对于n 维向量的加法及数乘两种运算封闭, 即 (1) 若,,V V ∈∈βα则V ∈+βα; (2) 若,,R V ∈∈λα则V ∈λα. 则称集合V 为R 上的向量空间. 记所有n 维向量的集合为n R , 由n 维向量的线性运算规律,容易验证集合n R 对于加法及数乘两种运算封闭. 因而集合n R 构成一向量空间, 称n R 为n 维向量空间. 注:3=n 时, 三维向量空间3R 表示实体空间; 2=n 时, 维向量空间2R 二表示平面; 1=n 时, 一维向量空间1R 表示数轴. 3>n 时, n R 没有直观的几何形象. 定义2 设有向量空间1V 和2V , 若向量空间21V V ?, 则称1V 是2V 的子空间. 二、向量空间的基与维数 定义3 设V 是向量空间, 若有r 个向量V r ∈ααα,,,21 , 且满足 (1) r αα,,1 线性无关; (2) V 中任一向量都可由r αα,,1 线性表示. 则称向量组r αα,,1 为向量空间V 的一个基, 数r 称为向量空间V 的维数,记为r V =dim 并称V 为r 维向量空间. 注: (1) 只含零向量的向量空间称为0维向量空间, 它没有基; (2) 若把向量空间V 看作向量组,则V 的基就是向量组的极大无关组, V 的维数就是向量组的秩; (3) 若向量组r αα,,1 是向量空间V 的一个基,则V 可表示为 }.,,,,|{2111R x x V r r r ∈++==λλλαλαλ 此时, V 又称为由基r αα,,1 所生成的向量空间. 故数组r λλ,,1 称为向量x 在基r αα,,1 中的坐标. 注: 如果在向量空间V 中取定一个基r a a a ,,,21 , 那么V 中任一向量x 可惟一地表示为 ,2211r r a a a x λλλ+++= 数组r λλλ,,,21 称为向量x 在基r a a a ,,,21 中的坐标.

高等代数考研习题精选

《高等代数》试题库 一、 选择题 1.在[]F x 里能整除任意多项式的多项式是()。 A .零多项式 B .零次多项式 C .本原多项式 D .不可约多项式 2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k ()。 A .1 B .2 C .3 D .4 3.以下命题不正确的是()。 A .若()|(),()|()f x g x f x g x 则; B .集合{|,}F a bi a b Q =+∈是数域; C .若((),'())1,()f x f x f x =则没有重因式; D .设()'()1p x f x k -是的重因式,则()()p x f x k 是的重因式 4.整系数多项式()f x 在Z 不可约是()f x 在Q 上不可约的()条件。 A .充分 B .充分必要 C .必要 D .既不充分也不必要 5.下列对于多项式的结论不正确的是()。 A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f = B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ± C .如果)()(x g x f ,那么][)(x F x h ∈?,有)()()(x h x g x f D .如果)()(,)()(x h x g x g x f ,那么)()(x h x f 6.对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号,则行列式变为D -; 命题乙:对换行列式中两行的位置,则行列式反号”有()。 A .甲成立,乙不成立; B .甲不成立,乙成立; C .甲,乙均成立; D .甲,乙均不成 立 7.下面论述中,错误的是()。 A .奇数次实系数多项式必有实根; B .代数基本定理适用于复数域;

相关主题
文本预览
相关文档 最新文档