当前位置:文档之家› 空间解析几何与向量代数复习题答案

空间解析几何与向量代数复习题答案

空间解析几何与向量代数复习题答案
空间解析几何与向量代数复习题答案

第八章 空间解析几何与向量代数答案

一、选择题

1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是(A ) A 5 B 3 C 6 D 9

2. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B )

A (-1,1,5).

B (-1,-1,5).

C (1,-1,5).

D (-1,-1,6).

3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A )

A -i -2j +5k

B -i -j +3k

C -i -j +5k

D -2i -j +5k

4. 求两平面032=--+z y x 和052=+++z y x 的夹角是( C ) A 2π B 4π C 3

π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A 2π B 4π C 3

π D π 6. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( A ) A 138 B 118 C 158 D 1

7. 设,23,a i k b i j k =-=++r r r r r r r 求a b ?r r 是:( D )

A -i -2j +5k

B -i -j +3k

C -i -j +5k

D 3i -3j +3k

8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A )

A 2

B 364

C 3

2 D

3 9. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D )

A 2x+3y=5=0

B x-y+1=0

C x+y+1=0

D 01=-+y x .

10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C );

A -+a b =a b ;

B =a b ;

C 0?a b =;

D ?a b =0.

11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b

12、已知()()2,1,21,3,2---a =,b =,则Pr j b a =( D ); A 5

3; B 5; C 3;

13、直线1

1z 01y 11x -=-=--与平面04z y x 2=+-+的夹角为 (B ) A 6π; B 3π; C 4π; D 2

π. 14、点(1,1,1)在平面02=+-+1z y x 的投影为 (A )

(A )??

? ??23,0,21; (B )13,0,22??-- ???; (C )()1,1,0-;(D )11,1,22??-- ???. 15、向量a 与b 的数量积?a b =( C ). A a rj P b a ; B ?a rj P a b ; C a rj P a b ; D b rj P a b .

16、非零向量,a b 满足0?=a b ,则有( C ).

A a ∥b ;

B =λa b (λ为实数);

C ⊥a b ;

D 0+=a b .

17、设a 与b 为非零向量,则0?=a b 是(A ).

A a ∥b 的充要条件;

B a ⊥b 的充要条件;

C =a b 的充要条件;

D a ∥b 的必要但不充分的条件.

18、设234,5=+-=-+a i j k b i j k ,则向量2=-c a b 在y 轴上的分向量是(B ).

A 7

B 7j

C –1;

D -9k

19、方程组2222491x y z x ?++=??=??

表示 ( B ).

A 椭球面;

B 1=x 平面上的椭圆;

C 椭圆柱面;

D 空间曲线在1=x 平面上的投影.

20、方程 220x y +=在空间直角坐标系下表示 (C ).

A 坐标原点(0,0,0);

B xoy 坐标面的原点)0,0(;

C z 轴;

D xoy 坐标面.

21、设空间直线的对称式方程为 012x

y z =

=则该直线必( A ). A 过原点且垂直于x 轴; B 过原点且垂直于y 轴;

C 过原点且垂直于z 轴;

D 过原点且平行于x 轴.

22、设空间三直线的方程分别为

123321034:;:13;:2025327x t x y z x y z L L y t L x y z z t =?+-+=?++?===-+??+-=--??=+?

,则必有( D ). A 1L ∥2L ; B 1L ∥3L ; C 32L L ⊥; D 21L L ⊥.

23、直线

34273x y z ++==--与平面4223x y z --=的关系为 ( A ). A 平行但直线不在平面上; B 直线在平面上;

C 垂直相交;

D 相交但不垂直.

24

、已知1,==a b 且(,)4

∧π=a b , 则 +a b = ( D ). A 1;

B 1+

C 2;

.

25、下列等式中正确的是( C ).

A +=i j k ;

B ?=i j k ;

C ?=?i i j j ;

D ?=?i i i i .

26、曲面22x y z -=在xoz 平面上的截线方程为 (D).

A 2

x z =; B 20y z x ?=-??=??; C 2200x y z ?-=??=??; D 20x z y ?=??=??. 二、计算题

1.已知()2,2,21M ,()0,3,12M ,求21M M 的模、方向余弦与方向角。 解:由题设知

((

1212,32,01,1,,M M =--=-u u u u u u r 则 21cos -=α,2

1cos =β,22cos -=γ, 于是,32πα=,3πβ=,4

3πγ=。 2.设853++=,742--=和45-+=,求向量-+=34在x 轴上的投影及在y 轴上的分向量。 解:()()()

k j i k j i k j i a 4574238534-+---+++=k j i 15713++= 故在x 轴上的投影为13,在y 轴上的分向量为j 7。

3.在xoz 坐标面上求一与已知向量()2,3,4a =-r 垂直的向量。

解:设所求向量为()00,0,b x z =r ,由题意,

取10=z ,得20=x ,故()2,0,1b =r 与垂直。当然任一不为零的数λ与的乘积λ也垂直a 。

4.求以()3,2,1A ,()5,4,3B ,()7,2,1--C 为顶点的三角形的面积S 。

解:由向量积的定义,可知三角形的面积为S ?=21,因为()2,2,2AB =u u u r ,()2,4,4AC =--u u u r ,所以

()22

216,12,4244

i j k AB AC ?==----r r r u u u r u u u r , 于是, ()().69242162

144222221222=-+-+=--=S 5.求与向量()2,0,1a =r ,()1,1,2b =-r 都垂直的单位向量。 解:由向量积的定义可各,若c b a =?,则c 同时垂直于a 和b ,且

232

11102

--=-=?=, 因此,与?=平行的单位向量有两个: ()()()k j i b a c c 2314

123123||||222--=-+-+--=?==ο和 6.求球面9222=++z y x 与平面1=+z x 的交线在xoy 面上的投影的方程。

解:由1=+z x ,得x z -=1,代入9222=++z y x ,消去z 得()912

22=-++x y x ,即

82222=+-y x x ,这就是通过球面9222=++z y x 与平面1=+z x 的交线,并且母线平行

于z 轴的柱面方程,将它与0=z 联系,得:?

??==+-082222z y x x ,即为所求的投影方程。 7、求过()1,1,1-A ,()2,,2,2--B 和()2,1,1-C 三点的平面方程。 解一:点法式:{}3,3,3--=,{}3,2,0-=,取 {

}2,3,133

20333---=---=?=j

j i AC AB n , 于是所求方程:023=--z y x 。

解法二:用一般式,设所求平面方程为

将已知三点的坐标分别代入方程得

解得

??

???=-=-=023D A C A B ,得平面方程:023=--z y x 。

8.求平面0522=++-z y x 与xoy 面的夹角余弦。

解:()2,2,1n =-r 为此平面的法向量,设此平面与xoy 的夹角为γ,则

9.分别按下列条件求平面方程

(1)平行于xoz 面且经过点()3,5,2-;

(2)通过z 轴和点()2,1,3-;

(3)平行于x 轴且经过两点()2,0,4-和()7,1,5。

解:(1)因为所求平面平行于xoz 面,故()0,1,0j =r 为其法向量,由点法式可得:

()()()0305120=-?++?+-?z y x ,

即所求平面的方程:05=+y 。

(2)因所求平面通过z 轴,其方程可设为(*)0=+By Ax ,已知点()2,1,3--在此平面上,因而有03=+-B A ,即A B 3=,代入(*)式得:

03=+Ay Ax ,即所求平面的方程为:03=+y x 。

(3)从共面式入手,设()z y x P ,,为所求平面上的任一点,点()2,0,4-和()7,1,5分别用A ,

B 表示,则,,共面,从而[]00

01911

24,,=+-=z y

x ,于是可得所求平面方程为:029=--z y 。

10.用对称式方程及参数式方程表示直线l :???=++=+-4

21z y x z y x 。

解:因为直线l 的方向向量可设为()1211

12,1,3211

i j k s n n =?=-=-r r r r u r u u r ,在直线上巧取一点()2,0,3-A (令0=y ,解直线l 的方程组即可得3=x ,2-=z ),则直线的对称式方程为3

2123+==--z y x ,参数方程为:t x 23-=,t y =,t z 32+-=。

11.求过点()4,2,0且与两平面12=+z x 和23=-z y 平行的直线方程。

解:因为两平面的法向量()11,0,2n =u r 与()20,1,3n =-u u r 不平行,所以两平面相交于一直线,

此直线的方向向量()121022,3,1013

i j k s n n =?==--r r r r u r u u r ,故所求直线方程为1

4322-=-=-z y x 。 12.确定直线 3

7423z y x =-+=-+和平面3224=--z y x 间的位置关系。 解:直线的方向向量()2,7,3,s =--r

平面的法向量()4,2,2,n =--r 从而⊥,由此可知直线平等于平面或直线在平面上。

再将直线上的点)0,4,3(--A 的坐标代入平面方程左边,得()()34024234≠-=?--?--?,即A 不在平面上,故直线平行于平面。

13.求过点()1,2,1而与直线???=-+-=+-+01012:1z y x z y x l ,???=+-=+-0

02:z y x z y x l 平行的平面方程。 解:因()11211,2,3111

i j k s =-=---r r r u r 为直线1l 的方向向量, ()221

10,1,1111

i j k s =-=---r r r u u r 直线2l 的方向向量。

取 ()121231,1,1011

i j k n s s =?=--=----r r r r u r u u r ,则通过点()1,2,1并以为法向量的平面方程0=+-z y x 即为所求的平面方程。

14、已知22,5,(,)3

∧π===a b a b ,问λ为何值时,向量17=λ+u a b 与3=-v a b 互相垂直. 解 由0?=u v 得(17)(3)0λ+?-=a b a b ,即 223(51)170λ+-λ?-=a a b b , 将22,5,(,)3∧π===a b a b 代入得:212(51)10cos 42503

πλλ+-?-=, 解得 40λ=.

15、求两平行面362140x y z +-+=与36270x y z +--=之间的距离.

解 在平面362140x y z +-+=上取点(0,0,7)M , 则点M 到平面36270x y z +--=的距离

即为所求:2137

d ===. 16、求过点(3,2,5)-且与两平面430x z --=和2510x y z ---=的交线平行的直线方程. 解 设s (),,m n p =为所求直线的一个方向向量,由题意知s 与两个平面的法向量()11,0,4=-n 和()22,1,5=-n 同时垂直,故有120,0,?=?=s n s n

即40250m p m n p -=??--=?

解得: 4,3m p n p ==,即得 s ()4,3,1= 故所求直线方程为 325431

x y z +--==.

17、一平面过点(1,0,1)A -且平行向量()2,1,1=a 和()1,1,0=-b ,试求这平面方程.

解 (从点法式入手) 由条件可取{}2111,1,3110

=?==--i j k

n a b ,

于是 1(1)1(0)3(1)0x y z ?-+?--?+=, 即 043=--+z y x 为所求平面方程.

空间解析几何考题

《 空 间 解 析 几 何 》 试卷A 班级: 姓名: 学号: 分数: 我已阅读了有关的考试规定和纪律要求,愿意在考试中遵守《考场规则》,如有违反将愿接受相应的处理。 试卷共 5 页,请先查看试卷有无缺页,然后答题。 一.选择题(每小题3分,共10分) 1. 平面的法式方程是 ( ). A. 0=+++D Cz By Ax B. 1=++r z q y p x C. ()0,1cos cos cos 0cos cos cos 2 2 2 >=++=-++p p z y x γβαγβα其中 D. ()0,1cos cos cos 0 cos cos cos 2 22>=++=+++p p z y x γβαγβα其中 2. 两向量 21,n n 互相垂直的充要条件是 ( ). A. 021=?n n B. 021=?n n C. 21n n λ=. D. 以上都不对 3. 平面 0:11111=+++D z C y B x A π 与平面 0:22222=+++D z C y B x A π 互相垂直 的充要条件是 ( ). A. 2 12 12 1C C B B A A == B. 0212121=++C C B B A A C. 021212121=+++D D C C B B A A D. 以上都不对. 4. 1 11 11 11: n z z m y y l x x l -= -= -与2 22 22 22: n z z m y y l x x l -= -= -是异面直线,则必有 ( ). A.0212121=++n n m m l l B. 0212121≠++n n m m l l C. 021212122 2 1 11 =---z z y y x x n m l n m l D. 02 1212122 2 1 11 ≠---z z y y x x n m l n m l . 5. 若向量γβα ,,线性无关,则在该向量组中必有 ( ) A. 每个向量都可以用其它向量表示。 B. 有某个向量可以用其它向量表示。

空间解析几何(练习题参考答案)

1. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程. 39.02=+-z y 3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离 相等. 7.)5 1,1,57 (. 5.已知:→ → -AB prj D C B A CD ,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( ) A .4 B .1 C . 2 1 D .2 7.设平面方程为0=-y x ,则其位置( ) A .平行于x 轴 B .平行于y 轴 C .平行于z 轴 D .过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D .重合 9.直线 3 7423z y x =-+=-+与平面03224=---z y x 的位置关系( ) A .平行 B .垂直 C .斜交 D .直线在平面内 10.设点)0,1,0(-A 到直线?? ?=-+=+-0 720 1z x y 的距离为( ) A .5 B . 6 1 C . 51 D .8 1 5.D 7.D 8.B 9.A 10.A . 3.当m=_____________时,532+-与m 23-+互相垂直. 4 . 设 ++=2, 22+-=, 243+-=,则 )(b a p r j c += . 4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:442 2 2 =++z y x ,它是由曲线________绕_____________旋转而成的. 3.34-=m ; 4.29 19 9.332212--=+=-x y x ; 10.曲线 1422 =+z y 绕z 轴

空间解析几何与向量代数论文

空间解析几何与向量代数 呼伦贝尔学院 计算机科学与技术学院 服务外包一班 2013级 2014.5.4 小组成员: 宋宝文 柏杨白鸽 李强白坤龙

空间解析几何与向量代数 摘要:深入了解空间解析几何与向量代数的概念,一一讲述他们的区别和用途。向量的集中加减乘法和运算规律,还有空间直线与平面的关系。 关键词:向量;向量代数;空间几何 第一部分:向量代数 第一节:向量 一.向量的概念: 向量:既有大小,又有方向的量成为向量(又称矢量)。 表示法:有向线段a 或a 。 向量的模:向量的打小,记作|a |。 向径(矢径):起点为原点的向量。 自由向量:与起点无关的向量。 单位向量:模为1的向量。 零向量:模为0的向量,记作.0或0 若向量a 与b 大小相等,方向相同,则称a 与b 相等,记作a =b ; 若向量a 与b 方向相同或相反,则称a 与b 平行,记作a //b 规定:零向量与任何向量平行;与a 的模相同,但方向相反的向量称为a 的负向量, 记作-a ;因平行向量可平移到同一直线上,故两向量平行又称两向量共线。若K 3 个向量经平移可移到同一平面上,则称此K 个向量共面。 二.向量的线性运算 1.向量的加法 平行四边形法则: b a +b a 三角形法则: a + b b

a 运算规律:交换律a + b =b +a a 与b 结合律:(a +b )+c =a +(b +c ) 三角形法则可推广到多个向量相加。 2.向量的减法 b -a =b +(a ) a b -a b b -a a 特别当b =a 时,有a -a =a (a )=0 ; 三角不等式:|b +a |; |a -b |; 3.向量与数的乘法是一个数,与a 的乘积是一个新向量,记作a 。 规定: a 与a 同向时,|a |=|a |; 总之:|a | | |a | 三.向量的模、方向角 1.向量的模与两点间的距离公式 设r (x,y,z ),作om r ,则有r op oq or R Z Q O Y P X 由勾股定理得: |r | |OM| B A 对两点A ()与B ()因AB OB OA () 得两点间的距离公式: |AB| |AB | 第二节:数量积 向量积

空间解析几何试题

空间解析几何试卷 一、填空题(本大题共计30分,每空3分。请把正确答案填在横线上) 1. 设向量{}{}1,1,2,0,1,1=--=→→b a ,则→→b a 在上的射影是_____________,→ a 是_______________. 2. 设向量{}3,5,4-=→a ,向量225共线,反向且模为与→→a b ,那么向量→ b 的坐标是 ________________. 3. 已知向量{}{}3,2,,1,1,1x b a ==→→, 如果→ →b a ,垂直, 那么x =_________. 4. 已知向量{}{},0,3,2,1,0,1=-=→→b a {}2,1,0=→c ,则由这3个向量张成的平行六面体的体积是_________. 5. 直线z y x -=-+=-3212与直线2 112-+=-=z y x 间的距离是_____________. 6. 若直线1 23z y a x ==- 与平面x-2y+bz=0平行,则a,b 的值分别是______________. 7. 经过直线???=-+-=-+0 201z y x y x 且与直线z y x 2==平行的平面的方程是_________________. 8. 空间曲线? ??+==-+1022x z z y x 在y x 0坐标面上的射影曲线和射影柱面的

方程分别是_____________________________. 9. 顶点在原点、准线为抛物线???==1 22z x y 的锥面方程是 ________________(请用x y x ,,的一个方程表示). 10.曲线?????==-0 19422y z x 绕x 轴旋转后产生的曲面方程是__________________,此曲面表示______________曲面. 二、单项选择题(本大题共10小题,每小题3分,共30分) 1. 若=?-+=+-=→ →→→→→→→→→b a k j i b k j i a 则,23,532( ) A. 7 B. -7 C. -1 D. 0 2. 已知→→b a ,不共线, 与→→b a ,同时垂直的单位向量是( ) A. →→?b a B. →→?a b C. ||→→→ →??±b a b a D. ||→→→→??b a b a 3. 在空间右手直角坐标系下,点P(-1,2,-3)在第( )卦限. A. II B. III C. V D. VI 4. 若两个非零向量→→b a ,满足|→→+b a |=|→→-b a |,则一定有( ) A. →→⊥b a B. →→b a // C. →→b a 与同向 D. → →b a 与反向 5. 点M(1,-3,-2)关于y 轴的对称点N 的坐标是( )

空间解析几何与向量代数习题

第七章 空间解析几何与向量代数习题 (一)选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( ) A )5 B ) 3 C ) 6 D )9 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( ) A ){-1,1,5}. B ) {-1,-1,5}. C ) {1,-1,5}. D ){-1,-1,6}. 3. 设a ={1,-1,3}, b ={2,-1,2},求用标准基i , j , k 表示向量c ; A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( ) A )2 π B )4 π C )3 π D )π 5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( ) A )5焦耳 B )10焦耳 C )3焦耳 D )9焦耳 6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( ) A )2 π B )4 π C )3 π D )π 7. 求点)10,1,2(-M 到直线L :12 21 3+=-=z y x 的距离是:( ) A )138 B 118 C )158 D )1 8. 设,23,a i k b i j k =-=++ 求a b ? 是:( ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )3i -3j +3k 9. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( ) A ) 3 62 B ) 3 64 C )3 2 D )3 10. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:( ) A )2x+3y=5=0 B )x-y+1=0

空间解析几何练习题

习题一 空间解析几何 一、填空题 1、过两点(3,-2)和点(-1,0)的直线的参数方程为 。 2、直线2100x y --=方向向量为 。 3、直角坐标系XY 下点在极坐标系中表示为 。 4、平行与()6,3,6a =-的单位向量为 。 5、过点(3,-2,1)和点(-1,0,2)的直线方程为 。 6、过点(2,3)与直线2100x y +-=垂直的直线方程为 。 7、向量(3,-2)和向量(1,-5)的夹角为 。 8、直角坐标系XY 下区域01y x ≤≤≤≤在极坐标系中表示为 。 9、设 (1,2,3),(5,2,1)=-=-a b , 则(3)?a b = 。 10、点(1,2,1)到平面2100x y z -+-=的距离为 。 二、解答题 1、求过点(3,1,1)且与平面375120x y z -+-=平行的平面方程。 2、求过点(4,2,3) 且平行与直线 31215 x y z --==的直线方程。 3、求过点(2,0,-3) 且与直线247035210x y z x y z -+-=??+-+=? 垂直的平面方程。 4、一动点与两定点(2,3,2)和(4,5,6)等距离, 求这动点的方程。

5、求222,01z x y z =+≤≤在XOZ 平面上的投影域。 6、求222 19416 x y z ++=在XOY 平面上的投影域。 7、求2z z =≤≤在XOZ 平面上的投影域。 8、求曲线222251x y z x z ?++=?+=? 在XOY 平面上的投影曲线。 9、求曲线 22249361x y z x z ?++=?-=? 在XOY 平面上的投影曲线。 10、求由曲面22z x y =+与曲面2222x y z ++=所围成的区域在柱面坐标系下的表示。

第七章_空间解析几何与向量代数复习题(答案)

第八章 空间解析几何与向量代数答案 一、选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是(A ) A 5 B 3 C 6 D 9 2. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B ) A (-1,1,5). B (-1,-1,5). C (1,-1,5). D (-1,-1,6). 3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A ) A -i -2j +5k B -i -j +3k C -i -j +5k D -2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是( C ) A 2π B 4π C 3 π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A 2π B 4π C 3 π D π 6. 求点)10,1,2(-M 到直线L :12 213+= -=z y x 的距离是:( A ) A 138 B 118 C 158 D 1 7. 设,23,a i k b i j k =-=++求a b ?是:( D ) A -i -2j +5k B -i -j +3k C -i -j +5k D 3i -3j +3k 8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A ) A 2 B 364 C 3 2 D 3 9. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D ) A 2x+3y=5=0 B x-y+1=0 C x+y+1=0 D 01=-+y x . 10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C ); A -+a b =a b ; B =a b ; C 0?a b =; D ?a b =0. 11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=-

空间解析几何与向量代数

空间解析几何与向量代 数 -CAL-FENGHAI.-(YICAI)-Company One1

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -== 若b a //,则 B (A )、x= y=6 (B)、x= y=6 (C)、x=1 y=-7 (D)、x=-1 y=-3 2.平面x -2z = 0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1 (B)、x+2z+3y+4=0 (C)、3(x-1)-y+(y+3)=0 (D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x + y - 11=0, π2: 3x +8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是 D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){04404=--=--y x z x (D )?? ???==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是 B 。 (A )、L 1⊥L 2 (B )、L 1点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l = -4 ,及m= 3 时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1· 求过点(3 0 1)且与平面3x 7y 5z 120平行的平面方程 解 所求平面的法线向量为n (3 7 5) 所求平面的方程为 3(x 3)7(y 0)5(z 1)0 即3x 7y 5z 40 2. 求过点(2 3 0)且以n (1 2 3)为法线向量的平面的方程 解 根据平面的点法式方程 得所求平面的方程为

向量代数与空间解析几何复习题

第七章 向量代数与空间解析几何 (一) 空间直角坐标系、向量及其线性运算 一、判断题 1. 点(-1,-2,-3)是在第八卦限。 ( ) 2. 任何向量都有确定的方向。 ( ) 3. 任二向量, =.则a =b 同向。 ( ) 4. 若二向量, + ,则,同向。 ( ) 5. 若+=+,则= ( ) 6. 向量b a , b a ,同向。 ( ) 7.若={ z y x a a a ,,},则平行于向量的单位向量为| |a a x a | |a z }。( ) 8.若一向量在另一向量上的投影为零,则此二向量共线。 ( ) 二、填空题 1. 点(2,1,-3)关于坐标原点对称的点是 2. 点(4,3,-5)在 坐标面上的投影点是M (0,3,-5) 3. 点(5,-3,2)关于 的对称点是M (5,-3,-2)。 4. 设向量a 与b 有共同的始点,则与,共面且平分a 与b 的夹角的向量为 5. 已知向量与方向相反,且||2||a b =,则由表示为= 。 6. ,与轴l 的夹角为 6 π,则a l prj = 7. 已知平行四边形ABCD 的两个顶点A (2,-3,-5)、B (-1,3,2)。 以及它的对角线 交点E (4,-1,7),则顶点C 的坐标为 ,则顶点D 的坐标为 。 8. 设向量与坐标轴正向的夹角为α、β、γ,且已知α =ο 60,β=ο 120。则γ= 9. 设a 的方向角为α、β、γ,满足cos α=1时,a 垂直于 坐标面。 三、选择题

1.点(4,-3,5)到oy 轴的距离为 (A )2225)3(4+-+ (B ) 225)3(+- (C )22)3(4-+ (D )2254+ 2 . 已 知 梯 形 OABC 、 2 12 1 -21--2121-, ⊥ b + + - + < - +>-yoz 2AOB ∠42222)(b a b a ?=?a ?b a ???2 a b ??a ??b ωc a ρρ?0??≠a c b ??=b a ??=b a ?? ?22 2b b a a +?+??a b b a ???ρ?=?c b a ???、、a c b c b a ???????=?=,c b a ???、、b a ??,111,,γβα2 22,,γβαb a ∧ (2 12121cos cos cos cos cos cos γγββαα++) (b a ?∧3 π,8,5==b a ??b a ??-24,19,13=+==b a b a ??ρ?a b -v v 32)(π=∧b ?2 ,1==b a ??a b ?v v 72,26,3=?==b a b a ????b a ???}1,2,2{},4,3,4{=-=b a ??a }4,6,4{},2,3,2{--=-=b a ?? )(b ?∧b a ??,λb a P ???5+=λb a Q ???-=3MNP ∠π 4 3π2π 4π2a =0=?b a ??0??=a 0??=b c a b a c b a ???????-=-)(0??≠a c a b a ????=c b ??=}. 4,4,1{},2,3,{-==b x a ?? b a ??//}1,3,1{1},1,1,2{-=-= b a ?? b a ??、}2,1,2{}3,2,1{}1,3,2{=-=-=c b a ? ??、、d ?b a ??,. 14d c ?? ,求向量上的投影是312123 a a a b b b == 2222222 123123112233()()()a a a b b b a b a b a b ++++=++?..a C B c A B ????= =c a c a S ABD ρ?????= ?l l πππ⊥πππθ2 π πππ5πd 2 2212C B A D D ++-5 1 232-==-z y x { 7 421 253=+--=-+z y x z y x 1 3241z y x =+=-300 { x y z x y z ++=--={ 1240 322=+--=+-+z y x z y x 2 33211+=+=-z y x 1 0101z y x =-=+{ 0440 4=--=--y x z x ?? ? ??==+=4321z t y t x { 7 27 2=-+=++-z y x z y x

第七章向量代数与空间解析几何复习题

第七章向量代数与空间解析几何 (一)空间直角坐标系、向量及其线性运算 一、判断题 1.点( -1, -2, -3)是在第八卦限。()2.任何向量都有确定的方向。() 3.任二向量a,b,若a b .则 a = b 同向。() 4.若二向量a,b满足关系a b = a + b ,则 a,b 同向。()5.若a b a c, 则b c() 6.向量a, b满足a = b ,则a, b同向。()a b 7.若a ={ a x,a y, a z } ,则平行于向量 a 的单位向量为{a x,a y , a z }。() | a || a || a | 8.若一向量在另一向量上的投影为零,则此二向量共线。() 二、填空题 1.点( 2, 1, -3)关于坐标原点对称的点是 2.点( 4, 3, -5)在坐标面上的投影点是 M (0, 3, -5) 3.点( 5, -3, 2)关于的对称点是 M( 5, -3, -2)。 4.设向量 a 与 b 有共同的始点,则与a, b 共面且平分 a 与 b 的夹角的向量为 5.已知向量 a 与 b 方向相反,且 | b | 2 | a | ,则 b 由 a 表示为 b =。 6.设 a =4, a 与轴l的夹角为,则 prj l a= 6 7.已知平行四边形ABCD 的两个顶点 A (2, -3,-5)、 B( -1, 3, 2)。以及它的对角线交点 E( 4,-1,7),则顶点 C 的坐标为,则顶点 D 的坐标为。8.设向量 a 与坐标轴正向的夹角为、、,且已知=60,=120。则= 9.设 a 的方向角为、、,满足 cos=1时, a 垂直于坐标面。 三、选择题 1.点( 4,-3, 5)到oy轴的距离为 (A)42( 3)252( B)( 3)252 (C)42( 3)2(D)4252 2.已知梯形 OABC 、CB // OA且CB =1 OA 设 OA = a , OC = b ,则 AB 2 =

空间解析几何习题答案解析(20210120005111)

WORD 格式整理 . 2 30 x 3 3) 10 、计算题与证明题 1.已知 |a| 1, |b| 4, |c| 5, 并且 a b c 0. 计算 a b b c c a . 解:因为 |a| 1, |b| 4, |c| 5, 并且 a b c 0 所以 a 与 b 同向,且 a b 与 c 反向 因此 a b 0 , b c 0 , c a 0 所以 a b b c c a 0 2.已知 |a b| 3, |a b| 4, 求 |a| |b|. 解: |a b| a b cos 3 (1) |a b| a bsin 4 ( 2) (1)2 2 2 得 a b 2 25 所以 a b 5 4.已知向量 x 与 a (,1,5, 2) 共线 , 且满足 a x 3, 求向量 x 的坐标. 解:设 x 的坐标为 x,y,z ,又 a 1,5, 2 则 a x x 5y 2z 3 又 x 与 a 共线,则 x a 0 ij xy 15 2y 5zi z 2x j 5x y k 0 所以 2y 5z 2 z 2x 2 5x y 2 0 即 29x 2 5y 2 26z 2 20yz 4xz 10xy 0 (2) 又 x 与 a 共线, x 与 a 夹角为 0或 22 yz cos0 1 xa x 2 y 2 z 2 12 52 2 2 1) xy 15 整理得

WORD 格式整理 . 2 30 x 3 3) 10 联立 1、2 、3 解出向量 x 的坐标为 1 ,1, 1 10,2, 5

6.已知点 A(3,8,7) , B( 1,2, 3) 求线段 AB 的中垂面的方程. 解:因为 A 3,8,7 ,B( 1,2, 3) AB 中垂面上的点到 A 、B 的距离相等,设动点坐标为 M x,y,z ,则由 MA MB 得 x 3 2 y 8 2 z 7 2 x 1 2 y 2 2 z 3 2 化简得 2x 3y 5z 27 0 这就是线段 AB 的中垂面的方程。 7. 向量 a , b , c 具有 相 同的 模 , 且两 两 所成 的角 相 等 , 若 a , b 的 坐 标分 别 为 (1,1,0)和(0,1,1), 求向量 c 的坐标. 解: abc r 且它们两两所成的角相等,设为 则有 a b 1 0 1 1 0 1 1 则 cos 设向量 c 的坐标为 x, y,z c x 2 y 2 z 2 r 12 12 02 2 所以 x 2 y 2 z 2 2 3 8.已知点 A(3,6,1) , B(2, 4,1) , C(0, 2,3), D( 2,0, 3), (1) 求以 AB , AC , AD 为邻边组成的平行六面体的体积. (2) 求三棱锥 A BCD 的体积. x1 联立( 1)、(2)、(3)求出 y 0 或 z1 则 a c 1 x 1 y 0 z x y a bcos r r 12 1 r b c 0 x 1 y 1 z y z b c cos r 1 r 2 r 1) 2) 所以向量 c 的坐标为 1,0,1 或 1 4 1 ,, 3,3, 3 3)

空间解析几何与向量代数

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -==??若b a ??//,则B (A )、x=0.5y=6(B)、x=-0.5y=6 (C)、x=1y=-7(D)、x=-1y=-3 2.平面x-2z=0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1(B)、x+2z+3y+4=0(C)、3(x-1)-y+(y+3)=0(D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x+y-11=0,π2:3x+8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){ 4404=--=--y x z x (D )?????==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是B 。 (A )、L 1⊥L 2(B )、L 1//L 2(C )、L 1与L 2相交但不垂直。(D )、L 1与L 2为异面直线。 二、填空题

1.点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l =-4,及m=3时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1·求过点(301)且与平面3x 7y 5z 120平行的平面方程 解所求平面的法线向量为n (375)所求平面的方程为 3(x 3)7(y 0)5(z 1)0即3x 7y 5z 40 2.求过点(230)且以n (123)为法线向量的平面的方程 解根据平面的点法式方程得所求平面的方程为 (x 2)2(y 3)3z 0 即x 2y 3z 80 3·求过三点M 1(214)、M 2(132)和M 3(023)的平面的方程 解我们可以用→→3121M M M M ?作为平面的法线向量n 因为→)6 ,4 ,3(21--=M M →)1 ,3 ,2(31--=M M 所以 根据平面的点法式方程得所求平面的方程为 14(x 2)9(y 1)(z 4)0 即14x 9yz 150 4·求过点(413)且平行于直线51123-==-z y x 的直线方程 解所求直线的方向向量为s (215)所求的直线方程为 5·求过两点M 1(321)和M 2(102)的直线方程 解所求直线的方向向量为s (102)(321)(421)所求的直线方程为

第六章 空间解析几何要求与练习(含答案)

第六章 要求与练习 一、学习要求 1、理解空间直角坐标系,理解向量的概念及其表示. 2、掌握向量的运算(线性运算、数量积、向量积),两个向量垂直、平行的条件.掌握单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法. 3、掌握平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题. 7、了解空间曲线在坐标平面上的投影,会求其方程. 二、练习 1、一向量起点为A (2,-2,5),终点为B (-1,6,7),求 (1)AB u u u r 分别在x 轴、y 轴上的投影,以及在z 轴上的分向量; (2)AB u u u r 的模;(3)AB u u u r 的方向余弦;(4)AB u u u r 方向上的单位向量. 解:(1)()3,8,2AB =-u u u r ,AB u u u r 分别在x 轴的投影为-3,在y 轴上的投影为8,在z 轴上的 分向量2k r ;(2)AB =u u u r ;(3)AB u u u r (4)AB u u u r 382) i j k -++r r r . 2、设向量a r 和b r 夹角为60o ,且||5a =r ,||8b =r ,求||a b +r r ,||a b -r r . 解:||a b +==r r ||a b -= =r r =7. 3、已知向量{2,2,1}a =r ,{8,4,1}b =-r ,求 (1)平行于向量a r 的单位向量; (2)向量b r 的方向余弦. 解(1)3a = =r 平行于向量a r 的单位向量221{,,}333 ±; (2)9b ==r ,向量b r 的方向余弦为:841,,999 -. 4、一向量的终点为B (2,-1,7),该向量在三个坐标轴上的投影依次为4、-4和7.求该向量的起点A 的坐标. 解:AB u u u r =(4,-4,7)=(2,-1,7)-(x ,y ,z),所以(x ,y ,z)=(-2,3,0);

(完整版)空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数 A 一、 1、平行于向量)6,7,6(-=a 的单位向量为______________. 2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角. 3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴 上的投影,及在y 轴上的分向量. 二、 1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(??-??及; 及(3)a 、b 的夹角的余弦. 2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量. 3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、 1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 2、方程02422 2 2 =++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22 =绕x 轴旋转一周,生成的曲面方程为__ _____________,曲面名称为___________________. 2)将xOy 坐标面上的x y x 22 2 =+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________. 3)将xOy 坐标面上的36942 2 =-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________. 4)在平面解析几何中2x y =表示____________图形。在空间解析几何中 2x y =表示______________图形. 5)画出下列方程所表示的曲面 (1))(42 2 2 y x z += (2))(42 2 y x z += 四、

空间解析几何及向量代数测试题及答案

军教院 第八章空间解析几何测试题 一、填空题(共7题,2分/空,共20分) 1.四点(0,0,0)O ,(1,0,0)A ,(0,1,1)B ,(0,0,1)C 组成的四面体的体积是______. 2.已知向量(1,1,1)a → =,)3,2,1(=→b ,(0,0,1)c →=,则→ →→??c b a )(=__(-2,-1,0)____. 3.点)1,0,1(到直线???=-=03z x y x 的距离是___66 ___________. 4.点)2,0,1(到平面321x y z ++=的距离是__ 3 147 ___________. 5.曲线C:220 1 x y z z x ?+-=?=+?对xoy 坐标面的射影柱面是___2210x x y -+-=____, 对yoz 坐标面的射影柱面是__22(1)0z y z -+-=_________,对xoz 坐标面的射影柱面是____10z x --=__________. 6.曲线C:220 x y z ?=?=?绕x 轴旋转后产生的曲面方程是__4224()x y z =+_____,曲线 C 绕y 轴旋转后产生的曲面方程是___222x z y +=_______________. 7.椭球面125 492 22=++z y x 的体积是_________________. 二、计算题(共4题,第1题10分,第2题15分,第3题20分, 第4题10分,共55分) 1. 过点(,,)P a b c 作3个坐标平面的射影点,求过这3个射影点的平面方程.这里 ,,a b c 是3个非零实数. 解: 设点(,,)P a b c 在平面0z =上的射影点为1(,,0)M a b ,在平面0x =上的射影 点为2(0,,)M a b ,在平面0y =上的射影点为3(,0,)M a c ,则12(,0,)M M a c =-u u u u u u r ,13(0,,)M M b c =-u u u u u u r

向量代数与空间解析几何期末复习题高等数学下册

第七章 空间解析几何 一、选择题 1. 在空间直角坐标系中,点(1,-2,3)在[ D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限 2.方程2222=+y x 在空间解析几何中表示的图形为[ C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面 3.直线3 1 2141: 1+= +=-z y x l 与?? ?=-++=-+-0 20 1:2z y x y x l ,的夹角是 [ C ] A. 4 π B. 3π C. 2 π D. 0 4. 在空间直角坐标系中,点(1,2,3)关于xoy 平面的对称点是[ D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 5.将xoz 坐标面上的抛物线x z 42=绕z 轴旋转一周,所得旋转曲面方程是[B ] A. )(42y x z += B. 2224y x z +±=

C. x z y 422=+ D. x z y 422±=+ 6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是[B ] A. 13 - B. 13 C. 23 - D. 23 7. 在空间直角坐标系中,点(1,2,3)关于yoz 平面的对称点是[ A ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 8.方程22 222x y z a b +=表示的是 [ B ] A.椭圆抛物面 B.椭圆锥面 C. 椭球面 D. 球面 9. 已知a ={0, 3, 4}, b ={2, 1, -2},则=b proj a [ C ] A. 3 B.3 1- C. -1 10.已知,a b 为不共线向量,则以下各式成立的是 D A. 222()a b a b =? B. 222()a b a b ?=? C. 22()()a b a b ?=? D. 2222()()a b a b a b ?+?= 11.直线1l 的方程为0 3130290 x y z x y z ++=?? --=?,直线2l 的方程为

空间解析几何与向量微分

第七章:空间解析几何与向量微分 本章内容简介 在平面解析几何中,通过坐标把平面上的点与一对有序实数对应起来,把平面上的图形和方程对应起来,从而可以用代数方法来研究几何问题,空间解析几何也是按照类似的方法建立起来的。 7.1空间直角坐标系 一、空间点的直角坐标 为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。 过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位.这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴.通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。(如下图所示) 三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称坐标面。 取定了空间直角坐标系后,就可以建立起空间的点与有序数组之间的对应关系。 例:设点M为空间一已知点.我们过点M作三个平面分别垂直于x轴、y轴、z轴,它们与x轴、y轴、z轴的交点依次为P、Q、R,这三点在x轴、y轴、z轴的坐标依次为x、y、z.于是空间的一点M就唯一的确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标,纵坐标和竖坐标。(如下图所示)

坐标为x,y,z的点M通常记为M(x,y,z). 这样,通过空间直角坐标系,我们就建立了空间的点M和有序数组x,y,z之间的一一对应关系。 注意:坐标面上和坐标轴上的点,其坐标各有一定的特征. 例:如果点M在yOz平面上,则x=0;同样,zOx面上的点,y=0;如果点M在x轴上,则y=z=0;如果M是原点, 则x=y=z=0,等。 二、空间两点间的距离 设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d我们有公式: 例题:证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形△ABC是一等腰三角形. 解答:由两点间距离公式得: 由于,所以△ABC是一等腰三角形 7.2 方向余弦与方向数 解析几何中除了两点间的距离外,还有一个最基本的问题就是如何确定有向线段的或有向直线的方向。 方向角与方向余弦 设有空间两点,若以P1为始点,另一点P2为终点的线段称为有 向线段.记作.通过原点作一与其平行且同向的有向线段.将与Ox,Oy,Oz三个 坐标轴正向夹角分别记作α,β,γ.这三个角α,β,γ称为有向线段的方向角.其中

(完整版)高等数学空间解析几何与向量代数练习题与答案.doc

空间解析几何与矢量代数小练习 一填空题 5 ’x9=45 分 1、平行于向量a(6,7, 6) 的单位向量为______________. 2、设已知两点M1( 4, 2 ,1)和 M 2 (3,0,2) ,计算向量M1M2的模_________________,方向余弦 _________________和方向角 _________________ 3、以点 (1,3,-2) 为球心,且通过坐标原点的球面方程为__________________. 4、方程x2 y 2 z 2 2x 4 y 2z 0 表示______________曲面. 5、方程x2 y2 z 表示______________曲面. 6、x2 y2 z2 表示 ______________曲面 . 7、在空间解析几何中y x2 表示 ______________图形 . 二计算题11 ’x5=55 分 1、求过点 (3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程. 2、求平行于x 轴且过两点 (4,0,-2)和(5,1,7)的平面方程. 3、求过点 (1,2,3) 且平行于直线x y 3 z 1 的直线方程 . 2 1 5 4、求过点 (2,0,-3) x 2 y 4z 7 0 且与直线 5 y 2z 1 垂直的平面方3x 0 5、已知:OA i 3k ,OB j 3k ,求OAB 的面积。 1

参考答案 一 填空题 1、 6 , 7 , 6 11 11 11 2、 M 1 M 2 =2, cos 1 ,cos 2 ,cos 1 , 2 , 3 , 2 2 2 3 4 3 3、 ( x 1) 2 ( y 3) 2 ( z 2) 2 14 4、以 (1,-2,-1) 为球心 , 半径为 6 的球面 5、旋转抛物面 6、 圆锥面 7、 抛物柱面 二 计算题 1、 3x 7y 5 z 4 0 2 、 9 y z 2 0 3、 x 1 y 2 z 3 4 、 16x 14y 11z 65 0 2 1 5 5 S 1 OA OB 19 2 2 2

相关主题
文本预览
相关文档 最新文档