当前位置:文档之家› 层次分析法(正反矩阵)

层次分析法(正反矩阵)

层次分析法(正反矩阵)
层次分析法(正反矩阵)

1、建立递阶层次结构;

所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。其用法是构造判断矩阵,求出其最大特征值。及其所对应的特征向量W,归一化后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。

2、构造两两比较判断矩阵;(正互反矩阵)

例:购物层次分析模型

对各指标之间进行两两对比之后,然后按9分位比率排定各评价指标的相对优劣顺序,依次构造出评价指标的判断矩阵A。

其中

为判别矩阵,

要素

与要素

重要性比较结果,并且有如下关系:

有9种取值,分别为1/9, 1/7, 1/5, 1/3, 1/1, 3/1, 5/1, 7/1, 9/1,分别表示

要素对于

要素的重要程度由轻到重。

3、针对某一个标准,计算各备选元素的权重;

关于判断矩阵权重计算的方法有两种,即几何平均法(根法)和规范列平均法(和法)。

(1)几何平均法(根法)

计算矩阵A各行各个元素的乘积,得到一个n行一列的矩阵B;

计算矩阵每个元素的n次方根得到矩阵C;

对矩阵C进行归一化处理得到矩阵D;

该矩阵D即为所求权重向量。

(2)规范列平均法(和法)

矩阵A每一列归一化得到矩阵B;

将矩阵B每一行元素的平均值得到一个一列n行的矩阵C;

矩阵C即为所求权重向量。

AHP (Analytic Hierarchy Process)层次分析法是美国运筹学家T. L. Saaty 教授于二十世纪70年代提出的一种实用的多方案或多目标的决策方法,是一种定性与定量相结合的决策分析方法。常被运用于多目标、多准则、多要素、多层次的非结构化的复杂决策问题,特别是战略决策问题,具有十分广泛的实用性。用AHP分析问题大体要经过以下五个步骤:

1建立层次结构模型

将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。

2构造判断矩阵

在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Saaty等人提出:一致矩阵法,即:

不把所有因素放在一起比较,而是两两相互比较。

对比时采用相对尺度,以尽可能减少性质不同因素相互比较的困难,以提高准确度。

3层次单排序

所谓层次单排序是指,对于上一层某因素而言,本层次各因素的重要性的排序。

4判断矩阵的一致性检验

所谓一致性是指判断思维的逻辑一致性。如当甲比丙是强烈重要,而乙比丙是稍微重要时,显然甲一定比乙重要。这就是判断思维的逻辑一致性,否则判断就会有矛盾。

5层次总排序

确定某层所有因素对于总目标相对重要性的排序权值过程,称为层次总排序。这一过程是从最高层到最底层依次进行的。对于最高层而言,其层次单排序的结果也就是总排序的结果。

层次分析法的优点

系统性——将对象视作系统,按照分解、比较、判断、综合的思维方式进行决策——系统分析(与机理分析、测试分析并列);

实用性——定性与定量相结合,能处理传统的优化方法不能解决的问题;3简洁性——计算简便,结果明确,便于决策者直接了解和掌握。

基于Matlab的层次分析法与运用

基于Matlab的层次分析法与运用 摘要:本文通过使用Matlab软件进行编程,在满足同一层次中各指标对所有的下级指标均产生影响的假定条件下,实现了层次分析法的分析运算。本程序允许用户自由设定指标层次结构内的层次数以及各层次内的指标数,通过程序的循环,用户只需输入判断矩阵的部分数据,程序可依据层次分析法的计算流程进行计算并作出判断。本程序可以方便地处理层次分析法下较大的运算量,解决层次分析法的效率问题,提高计算机辅助决策的时效性。 关键词:Matlab层次分析法判断矩阵决策 在当前信息化、全球化的大背景下,传统的手工计算已不能满足人们高效率、高准确度的决策需求。因此计算机辅助决策当仁不让地成为了管理决策的新工具、新方法。基于此,本文在充分发挥计算机强大运算功能的基础上,选用美国MathWorks公司的集成数学建模环境Matlab R2009a作为开发平台,使用M语言进行编程,对计算机辅助决策在层次分析法中的运用进行讨论。试图通过程序实现层次分析法在计算机系统上的运用,为管理决策探索出新的道路职称论文。 1 层次分析法的计算流程 根据层次分析法的相关理论,层次分析法的基本思想是将复杂的决策问题进行分解,得到若干个下层指标,再对下层指标进行分解,得到若干个再下层指标,如此建立层次结构模型,然后根据结构模型构造判断矩阵,进行单排序,最后,求出各指标对应的权重系数,进行层次总

排序。 1.1 构造层次结构模型在进行层次分析法的分析时,最主要的步骤是建立指标的层次结构模型,根据结构模型构造判断矩阵,只有判断矩阵通过了一致性检验后,方可进行分析和计算。其中,结构模型可以设计成三个层次,最高层为目标层,是决策的目的和要解决的问题,中间层为决策需考虑的因素,是决策的准则,最低层则是决策时的备选方案。一般来讲,准则层中各个指标的下级指标数没有限制,但在本文中设计的程序尚且只能在各指标具有相同数量的下级指标的假定下,完成层次分析法的分析,故本文后文选取的案例也满足这一假定。 1.2 建立判断矩阵判断矩阵是表示本层所有因素针对上一层某一个因素的相对重要性的比较给判断矩阵的要素赋值时,常采用九级标度法(即用数字1到9及其倒数表示指标间的相对重要程度),具体标度方法如表1所示。 1.3 检验判断矩阵的一致性由于多阶判断的复杂性,往往使得判断矩阵中某些数值具有前后矛盾的可能性,即各判断矩阵并不能保证完全协调一致。当判断矩阵不能保证具有完全一致性时,相应判断矩阵的特征根也将发生变化,于是就可以用判断矩阵特征根的变化来检验判断的一致性程度。在层次分析法中,令判断矩阵最大的特征值为λmax,阶数为n,则判断矩阵的一致性检验的指标记为:⑴ CI的值越大,判断矩阵的一致性越差。当阶数大于2时,判断矩阵的一致性指标CI与同阶平均随机一致性指标RI之比称为随机一致性

层次分析法实例与步骤

层次分析法实例与步骤 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: *目标层(最高层):指问题的预定目标; *准则层(中间层):指影响目标实现的准则; *措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。

波士顿矩阵分析法

波士顿矩阵分析法 波士顿矩阵是由波士顿咨询集团(Boston Consulting Group, BCG)在上世纪70年代初开发的。BCG矩阵将组织的每一个战略事业单位(SBUs)标在一种2维的矩阵图上,从而显示出哪个战略事业单位提供高额的潜在收益,以及哪个战略事业单位是组织资源的漏斗。BCG矩阵的发明者、波士顿公司的创立者布鲁斯认为“公司若要取得成功,就必须拥有增长率和市场分额各不相同的产品组合。组合的构成取决于现金流量的平衡。” 波士顿矩阵通过市场增长率和市场占有率两个维度对业务单位进行分析 ? 横坐标表示相对市场份额,表示各项业务或产品的市场占有率和该市场最大竞争者的市场占有率之比。比值为1就表示此项业务是该市场的领先者。 ? 纵坐标为市场成长率,表明各项业务的年销售增长率。具体坐标值可以根据行业的整体增长而定; ? 图中圆圈表示企业现有的各项不同的业务或产品,圆圈的大小表示它们销售额的大小,圆圈的位置表示它们的成长率和相对市场份额所处的地位。 通过分析不同的业务单位在矩阵中的不同位置可以将业务单位分解为出4 种业务组合。 (1)问题型业务(Question Marks,指高增长、低市场份额) 处在这个位置中的是一些投机性产品,带有较大的风险。这些产品可能利润率很高,但占有的市场份额很小。这通常是一个公司的新业务,为发展问题业务,公司必须建立工厂,增加设备和人员,以便跟上迅速发展的市场,并超过竞争对手,这些意味着大量的资金投入。“问题”非常贴切地描述了公司对待这类业务的态度,因为这时公司必须慎重回答“是否继续投资,发展该业务?”这个问题。只有那些符合企业发展长远目标、企业具有资源优势、能够增强企业核心竞争力的业务才得到肯定的回答。得到肯定回答的问题型业务适合于采用战略框架中提到的增长战略,目的是扩大SBUs的市场份额,甚至不惜放弃近期收入来达到这一目标,因为要问题型要发展成为明星型业务,其市场份额必须有较大的增长。得到否定回答的问题型业务则适合采用收缩战略。 (2)明星型业务(stars,指高增长、高市场份额) 这个领域中的产品处于快速增长的市场中并且占有支配地位的市场份额,但也许会或也许不会产生正现金流量,这取决于新工厂、设备和产品开发对投资的需要量。明星型业务是由问题型业务继续投资发展起来的,可以视为高速成长市场中的领导者,它将成为公司未来的现金牛业务。但这并不意味着明星业务一定可以给企业带来源源不断的现金流,因为市场还在高速成长,企业必须继续投资,以保持与市场同步增长,并击退竞争对手。企业如果没有明星业务,就失去了希望,但群星闪烁也可能会闪花企业高层管理者的眼睛,导致做出错误的

层次分析法(正反矩阵)

1、建立递阶层次结构; 所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。 层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。其用法是构造判断矩阵,求出其最大特征值。及其所对应的特征向量W,归一化后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。 2、构造两两比较判断矩阵;(正互反矩阵) 例:购物层次分析模型 对各指标之间进行两两对比之后,然后按9分位比率排定各评价指标的相对优劣顺序,依次构造出评价指标的判断矩阵A。 其中 为判别矩阵, 要素

与要素 重要性比较结果,并且有如下关系: 有9种取值,分别为1/9, 1/7, 1/5, 1/3, 1/1, 3/1, 5/1, 7/1, 9/1,分别表示 要素对于 要素的重要程度由轻到重。 3、针对某一个标准,计算各备选元素的权重; 关于判断矩阵权重计算的方法有两种,即几何平均法(根法)和规范列平均法(和法)。 (1)几何平均法(根法) 计算矩阵A各行各个元素的乘积,得到一个n行一列的矩阵B; 计算矩阵每个元素的n次方根得到矩阵C; 对矩阵C进行归一化处理得到矩阵D; 该矩阵D即为所求权重向量。 (2)规范列平均法(和法) 矩阵A每一列归一化得到矩阵B; 将矩阵B每一行元素的平均值得到一个一列n行的矩阵C; 矩阵C即为所求权重向量。 AHP (Analytic Hierarchy Process)层次分析法是美国运筹学家T. L. Saaty 教授于二十世纪70年代提出的一种实用的多方案或多目标的决策方法,是一种定性与定量相结合的决策分析方法。常被运用于多目标、多准则、多要素、多层次的非结构化的复杂决策问题,特别是战略决策问题,具有十分广泛的实用性。用AHP分析问题大体要经过以下五个步骤:

分析方法-战略地位与行动评价矩阵(space)分析法

战略地位与行动评价矩阵 战略地位与行动评价矩阵(SPACE矩阵) [编辑] SPACE矩阵简介 战略地位与行动评价矩阵(Strategic Position and Action Evaluation Matrix,简称SPACE矩阵)主要是分析企业外部环境及企业应该采用的战略组合。 SPACE矩阵有四个象限分别表示企业采取的进取、保守、防御和竞争四种战略模式。这个矩阵的两个数轴分别代表了企业的两个内部因素——财务优势(FS)和竞争优势(CA);两个外部因素——环境稳定性(ES)和产业优势(IS)。这四个因素对于企业的总体战略地位是最为重要的

[编辑] 建立SPACE矩阵的步骤 1)选择构成财务优势(FS)、竞争优势(CA)、环境稳定性(ES)和产业优势(IS)的一组变量; 2)对构成FS和IS的各变量给予从+1(最差)到+6(最好)的评分值。而对构成ES和CA 的轴的各变量从-1(最好)到-6(最差)的评分值; 3)将各数轴所有变量的评分值相加,再分别除以各数轴变量总数,从而得出FS、CA、IS和ES各自的平均分数; 4)将FS、CA、IS和ES各自的平均分数标再各自的数轴上; 5)将X轴的两个分数相加,将结果标在X轴是;将Y轴的两个分数相加,将结果标在Y轴上;标出X、Y数轴的交叉点; 6)自SPACE矩阵原点到X、Y 数值的交叉点画一条向量,这一条向量就表示企业可以采取的战略类型:进取、竞争、防御或保守。 SPACE矩阵要按照被研究企业的情况而制定,并要依据尽可能多的事实信息。根据企业类型的不同,SPACE矩阵的轴线可以代表多种不同的变量。如,投资收益、财务杠杆比率、偿债能力、流动现金、流动资金等。 SPACE矩阵的轴线可以代表多种不同的变量

层次分析法矩阵权重和,根,特征值法,c语言计算

// ???óè¨??2010.cpp : ?¨ò?????ì¨ó|ó?3ìDòμ?è??úμ??£ #include "stdafx.h" //vs2010ò?é?°?±?óD′??? #include"stdio.h" #include"math.h" void sum(int N,double a[13][13]) { double sum[13]={0},pro[13]={0}; int i,j,k; for(i=0;i

} for(k=0;k

层次分析法实例与步骤(精)讲课教案

层次分析法实例与步 骤(精)

层次分析法实例与步骤 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构

波士顿理论-战略分析方法

波士顿理论-战略分析方法 SWOT是一种战略分析方法,通过对被分析对象的优势、劣势、机会和威胁的加以综合评估与分析得出结论,通过内部资源、外部环境有机结合来清晰地确定被分析对象的资源优势和缺陷,了解所面临的机会和挑战,从而在战略与战术两个层面加以调整方法、资源以保障被分析对象的实行以达到所要实现的目标。 SWOT分析法又称为态势分析法,也称波士顿矩阵,它是由旧金山大学的管理学教授于20世纪80年代初提出来的,是一种能够较客观而准确地分析和研究一个单位现实情况的方法。 SWOT分别代表:strengths(优势)、weaknesses(劣势)、opportunities(机会)、threats(威胁)。 SWOT分析通过对优势、劣势、机会和威胁的加以综合评估与分析得出结论,然后再调整企业资源及企业策略,来达成企业的目标。 SWOT分析已逐渐被许多企业运用到包括:企业管理、人力资源、产品研发等各个方面。 SWOT分析方法从某种意义上来说隶属于企业内部分析方法,即根据企业自身的既定内在条件进行分析。SWOT分析有其形成的基础。按照企业竞争战略的完整概念,战略应是一个企业“能够做的”(即组织的强项和弱项)和“可能做的”(即环境的机会和威胁)之间的有机组合。著名的竞争战略专家迈克尔.波特提出的竞争理论从产业结构入手对一个企业“可能做的”方面进行了透彻的分析和说明,而能力学派管理学家则运用价值链解构企业的价值创造过程,注重对公司的资源和能力的分析。SWOT分析,就是在综合了前面两者的基础上,以资源学派学者为代表,将公司的内部分析(即20世纪80年代中期管理学界权威们所关注的研究取向,以能力学派为代表)与产业竞争环境的外部分析(即更早期战略研究所关注的中心主题,以安德鲁斯与迈克尔.波特为代表)结合起来,形成了自己结构化的平衡系统分析体系。与其他的分析方法相比较,SWOT分析从一开始就具有显著的结构化和系统性的特征。就结构化而言,首先在形式上,SWOT分析法表现为构造SWOT结构矩阵,并对矩阵的不同区域赋予了不同分析意义;其次内容上,SWOT分析法的主要理论基础也强调从结构分析入手对企业的外部环境和内部资源进行分析。另外,早在SWOT诞生之前的20世纪60年代,就已经有人提出过SWOT分析中涉及到的内部优势、弱点,外部机会、威胁这些变化因素,但只是孤立地对它们加以分析。SWOT方法的重要贡献就在于用系统的思想将这些似乎独立的因素相互匹配起来进行综合分析,使得企业战略计划的制定更加科学全面。 SWOT方法自形成以来,广泛应用于战略研究与竞争分析,成为战略管理和竞争情报的重要分析工具。分析直观、使用简单是它的重要优点。即使没有精确的数据支持和更专业化的分析工具,也可以得出有说服力的结论。但是,正是这种直观和简单,使得SWOT不可避免地带有精度不够的缺陷。例如SWOT分析采用定性方法,通过罗列S、W、O、T的各种表现,形成一种模糊的企业竞争地位描述。以此为依据作出的判断,不免带有一定程度的主观臆断。所以,在使用SWOT方法时要注意方法的局限性,在罗列作为判断依据的事实时,要尽量真实、客观、精确,并提供一定的定量数据弥补SWOT定性分析的不足,构造高层定性分析的基础。 基本规则 进行SWOT分析的时候必须对公司的优势与劣势有客观的认识; 进行SWOT分析的时候必须区分公司的现状与前景; 进行SWOT分析的时候必须考虑全面。 进行SWOT分析的时候必须与竞争对手进行比较,比如优于或是劣于你的竞争对手; 保持SWOT分析法的简洁化,避免复杂化与过度分析; SWOT分析法因人而异。 一旦使用SWOT分析法决定了关键问题,也就确定是市场营销的目标。SWOT分析法可与PESTanalysis和Porter'sFive-Forcesanalysis等工具一起使用。市场营销课程的学生之所以热衷于SWOT分析法是因为它的易学性与易用性。运用SWOT分析法的时候,要将不用的要素列入相关的表格

层次分析法的应用实例

第二节 层次分析法的应用实例 层次分析法在解决定量与定性复杂问题时,由于方法的简单性、直观性,同时在解决各种领域的实际问题时又显示其有效性和可行性,因而深受广大工程技术人员和应用数学工作者的欢迎而被广泛采用。下面我们举例说明它的实用性。 设某港务局要改善一条河道的过河运输条件,要确定是否建立桥梁或隧道以代替现在的轮渡。 此问题可得到两个层次结构:过河效益层次结构和过河代价层次结构;由图5-3(a)和(b)分别表示。 例 过河的代价与效益分析。 (a) 过河效益层次结构 (b) 过河代价层次结构 图5-3 过河的效益与代价层次结构图 过河的效益 A 过河的效益 2B 经济效益 1B 过河的效益 3B 隧 道 2D 桥 梁 1D 渡 船 3D 美化 11 C 进出方便 10 C 舒适 9 C 自豪感 8 C 交往沟通 7C 安全可靠 6 C 建筑就业 5 C 当地商业4C 岸间商业3C 收入2C 节省时间1 C 过河的代价 A 社会代价 2B 经济代价 1B 环境代价 3B 隧 道 2D 桥 梁 1D 渡 船 3D 对生态的污染 9 C 对水的污染 8 C 汽车的排放物 7 C 居民搬迁 6 C 交往拥挤 5C 安全可靠 4 C 冲击渡船业 3 C 操作维护 2 C 投入资金 1 C

在过河效益层次结构中,对影响渡河的经济因素来说桥梁或隧道具有明显的优越性。一种是节省时间带来的效益,另一种是由于交通量的增加,可使运货增加,这就增加了地方政府的财政收入。交通的发达又将引起岸间商业的繁荣,从而有助于本地商业的发展;同时建筑施工任务又创造了大量的就业机会。以上这些效益一般都可以进行数量计算,其判断矩阵可以由货币效益直接比较而得。但社会效益和环境效益则难以用货币表示,此时就用两两比较的方法进行。从整体看,桥梁和隧道比轮渡更安全,更有助于旅行和交往,也可增加市民的自豪感。从环境效益看,桥梁和隧道可以给人们更大的舒适性、方便性,但渡船更具有美感。由此得到关于效益的各个判断矩阵如表5-9—表5-23所示。 表5-9 表5-10 表5-11 表5-12 表5-13 表5-14

层次分析法的基本步骤和要点

层次分析法的基本步骤和要点 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。

层次分析法实例

层次分析法应用实例 问题描述:通讯交流在当今社会显得尤其重要,手机便是一个例子,现在每个人手里都有至少一部手机。但如今生产手机的厂家越来越多,品种五花八门,如何选购一款适合自己的手机这个问题困扰了许多人。 目标:选购一款合适的手机 准则:选择手机的标准大体可以分成四个:实用性,功能性,外观,价格。 方案:由于手机厂家有几十家,我们不妨可以将其归类:○1欧美(iphone);○2亚洲(索爱);○3国产(华为). 解决步骤: 1.建立递阶层次结构模型 图1 选购手机层次结构图 2.设置标度 人们定性区分事物的能力习惯用5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到9个数值,即9个标度。

为了便于将比较判断定量化,引入1~9比率标度方法,规定用1、3、5、7、9

分别表示根据经验判断,要素i与要素j相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而2、4、6、8表示上述两判断级之间的折衷值。 注:aij表示要素i与要素j相对重要度之比,且有下述关系: aij=1/aji ;aii=1; i,j=1,2,…,n 显然,比值越大,则要素i的重要度就越高。 3.构造判断矩阵 A B1B2B3B4 B11351 B2 1/313 1/3 B3 1/5 1/31 1/5 B41351 表1 判断矩阵A—B B1C1C2C3 C1 1 1/3 1/5 C2 3 1 1/3 C3 5 3 1 表2 判断矩阵B1—C

B2 C1 C2 C3 C1 1 3 3 C2 1/3 1 1 C3 1/3 1 1 表3 判断矩阵B2—C B3 C1 C2 C3 C1 1 3 6 C2 1/3 1 4 C3 1/6 1/4 1 表4 判断矩阵B3—C B4 C1 C2 C3 C1 1 1/4 1/6 C2 4 1 1/3 C3 6 3 1 表5 判断矩阵B4—C 4.计算各判断矩阵的特征值,特征向量和一致性检验 用求和发计算特征值: ○1将判断矩阵A 按列归一化(即列元素之和为1):bij= aij /Σaij; ○2将归一化的矩阵按行求和:ci=Σbij (i=1,2,3….n); ○3将ci 归一化:得到特征向量W=(w1,w2,…wn )T ,wi=ci /Σci , W 即为A 的特征向量的近似值; ○4求特征向量W 对应的最大特征值: 1).1 5 3 1 5 1131113111531 = A ,按列归一化后为 38 15145229381538 314 122138 3385143223539 151452293815 2).按行求和并归一化后得() T 389.0069 .0153 .0389 .0=W

层次分析法例题94055

。数 学 建 模 作 业 班级:高分子材料与工程 姓名:林志许、朱金波、任宇龙

。 学号:1211020115、1211020126、1211020134 层次分析法 某物流企业需要采购一台设备,在采购设备时需要从功能、价格与可维护性三个角度进行评价,考虑应用层次分析法对3个不同品牌的设备进行综合分析评价和排序,从中选出能实现物流规划总目标的最优设备,其层次结构如下图所示。以A 表示系统的总目标,判断层中1B 表示功能,2B 表示价格,3B 表示可维护性。1C ,2C ,3C 表示备选的3种品牌的设备。 解题步骤: 1、标度及描述 人们定性区分事物的能力习惯用5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到9个数值,即9个标度。 为了便于将比较判断定量化,引入1~9比率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i 与要素j 相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而2、4、6、8表示上述两判断级之间的折衷值。 目标层 判断层 方案层 图 设备采购层次结构图

注:a ij 表示要素i与要素j相对重要度之比,且有下述关系: a ij =1/a ji ; a ii =1; i,j=1,2,…,n 显然,比值越大,则要素i的重要度就越高。 2、构建判断矩阵A 判断矩阵是层次分析法的基本信息,也是进行权重计算的重要依据。根据结构模型,将图中各因素两两进行判断与比较,构造判断矩阵: ●判断矩阵B A-(即相对于物流系统总目标,判断层各因素相对重要性比较)如表1所示; ●判断矩阵C B- 1(相对功能,各方案的相对重要性比较)如表2所示; ●判断矩阵C B- 2(相对价格,各方案的相对重要性比较)如表3所示; ●判断矩阵C B- 3(相对可维护性,各方案的相对重要性比较)如表4所示。 B A- C B- 1 C B- 3 3、计算各判断矩阵的特征值、特征向量及一致性检验指标 一般来讲,在AHP法中计算判断矩阵的最大特征值与特征向量,必不需

层次分析法的基本步骤和要点

层次分析法的基本步骤与要点 结合一个具体例子,说明层次分析法的基本步骤与要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案就是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即就是多准则决策问题,考虑运用层次分析法解决。 1、建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求就是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些就是主要的准则,有些就是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次与组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该就是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标就是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益与环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。

层次分析法判断矩阵程序

先确定判断矩阵; 然后用以下程序就好了: %层次分析法的matlab程序%%%%diertimoxingyi clc,clear disp('输入判断矩阵');% 在屏幕显示这句话 A=input('A=');% 从屏幕接收判断矩阵 [n,n]=size(A);% 计算A的维度,这里是方阵,这么写不太好 x=ones(n,100);% x为n行100列全1的矩阵 y=ones(n,100);% y同x m=zeros(1,100);% m为1行100列全0的向量 m(1)=max(x(:,1));% x第一列中最大的值赋给m的第一个分量 y(:,1)=x(:,1);% x的第一列赋予y的第一列 x(:,2)=A*y(:,1);% x的第二列为矩阵A*y(:,1) m(2)=max(x(:,2));% x第二列中最大的值赋给m的第二个分量 y(:,2)=x(:,2)/m(2);% x的第二列除以m(2)后赋给y的第二列 p=0.0001;i=2;k=abs(m(2)-m(1));% 初始化p,i,k为m(2)-m(1)的绝对值 while k>p% 当k>p是执行循环体 i=i+1;% i自加1 x(:,i)=A*y(:,i-1);% x的第i列等于A*y的第i-1列 m(i)=max(x(:,i));% m的第i个分量等于x第i列中最大的值 y(:,i)=x(:,i)/m(i);% y的第i列等于x的第i列除以m的第i个分量 k=abs(m(i)-m(i-1));% k等于m(i)-m(i-1)的绝对值 end a=sum(y(:,i));% y的第i列的和赋予a w=y(:,i)/a;% y的第i列除以a t=m(i);% m的第i个分量赋给t disp('权向量:');disp(w);% 显示权向量w disp('最大特征值:');disp(t);% 显示最大特征值t %以下是一致性检验 CI=(t-n)/(n-1);% t-维度再除以维度-1的值赋给CI RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];% 计算的标准 CR=CI/RI(n);% 计算一致性

层次分析法具体应用与实例

层次分析法步骤与实例 1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序. 2次分析法的步骤: 找准各因素之间的隶属度 关系建立递阶层次结构 构造判断矩阵(成对比较阵) 并赋值 层次单排序(计算权向量)与检验 (一致性检验) 层次总排序(组合权向量)与检验 (一致性检验) 结果分析

3以一个具体案例进行说明: 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经 济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层 次分析法解决。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综 合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互 关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以 有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作 为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。 同时,为了方便后面的定量表示,一般从上到下用A、 B、 C、 D。。。代表不同层次,同一层次从左到右用 1、 2、 3、 4。。。代表不同因素。这样构成的递阶层次结构如下图。 目标层 A 合理建设市政工程,使综合效益最高(A) 准则层 B 经济效益 (B1) 社会效益 (B2) 环境效益 (B3) 准则层 C 直接经间接带方便日方便假减少环改善城 济效益动效益常出行日出行境污染市面貌 (C1)(C2)(C3)(C4)(C5)(C6) 措施层 D 建高速路 (D1) 建地铁 (D2) 图1 递阶层次结构示意图 2.构造判断矩阵(成对比较阵)并赋值 根据递阶层次结构就能很容易地构造判断矩阵。 构造判断矩阵的方法是:每一个具有向下隶属关系的元素(被称作准则)作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行和第一列。

层次分析法正反矩阵

层次分析法正反矩阵文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

1、建立递阶层次结构; 所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。 层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。其用法是构造,求出其最大。及其所对应的W,后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。 2、构造两两比较判断矩阵;() 例:购物层次分析模型 对各指标之间进行两两对比之后,然后按9分位比率排定各评价指标的相对优劣顺序,依次构造出评价指标的判断矩阵A。 其中 为判别矩阵, 要素 与要素 重要性比较结果,并且有如下关系: 有9种取值,分别为1/9, 1/7, 1/5, 1/3, 1/1, 3/1, 5/1, 7/1, 9/1,分别表示 要素对于 要素的重要程度由轻到重。 3、针对某一个标准,计算各备选元素的权重;

大战略矩阵

大战略矩阵 大战略矩阵(Grand Strategy Matrix) 目录 [隐藏] ? 1 大战略矩阵简介 ? 2 位于不同象限的战略选择 ? 3 适用范围 ? 4 大战略矩阵案例分析 o 4.1 案例一:伊藤洋华堂(Ito-Yokado) o 4.2 案例二:金融危机对深圳市A机械有限公司的影响 [1] ? 5 参考文献 [编辑] 大战略矩阵简介 这是由市场增长率和企业竞争地位两个坐标所组成一种模型,在市场增长率和企业竞争地位不同组合情况下,指导企业进行战略选择的一种指导性模型,它是由小汤普森(A. A. Thompson. Jr.)与斯特里克兰(A. J. Strickland)根据波士顿矩阵修改而成。 大战略矩阵(Grand Strategy Matrix)是一种常用的制定备选战略工具。它的优点是可以将各种企业的战略地位都置于大战略矩阵的四个战略象限中,并加以分析和选择。公司的各分部也可按此方式被定位。大战略矩阵基于两个评价数值:横轴代表竞争地位的强弱,纵轴代表市场增长程度。位于同一象限的企业可以采取很多战略,下图例举了适用于不同象限的多种战略选择,其中各战略是按其相对吸引力的大小而分列于各象限中的。

战略管理工具 A 安索夫矩阵 ADL矩阵 B 贝恩利润池分析工具波特竞争战略轮盘模型波特竞争对手分析模型辩证式探询法 变革五因素 C 策略资讯系统 策略方格模型 产品剔除策略 创新动力模型 D 定量战略计划矩阵 大战略矩阵 多点竞争战略 定向政策矩阵 E

[编辑] 位于不同象限的战略选择 位于大战略矩阵第一象限的公司处于极佳的战略地位。对这类公司,继续集中经营于当前的市场(市场渗透和市场开发)和产品(产品开发)是适当的战略。第一象限公司大幅度偏离已建立的竞争优势是不明智的。当第一象限公司拥有过剩资源时,后向一体化、前向一体化和横向一体化可能是有效的战略。当第一象限公司过分偏重于某单一产品时,集中化多元经营战略可能会降低过于狭窄的产品线所带来的风险。第一象限公司有能力利用众多领域中的外部机会,必要时它们可以冒险进取。 位于第二象限的公司需要认真地评价其当前的参与市场竞争的方法。尽管其所在产业正在增长,但它们不能有效地进行竞争。这类公司需要分析企业当前的竞争方法为何无效,企业又应如何变革而提高其竞争能力。由于第二象限公司处于高速增长产业,加强型战略(与一体化或多元化经营战略相反)通常是它们的首选战略。然而,如果企业缺乏独特的生产能力或竞争优势,横向一体化往往是理想的战略选择。为此,可考虑将战略次要地位的业务剥离或结业清算,剥离可为公司提供收购其他企业或买回股票所需要的资金。 位于第三象限的公司处于产业增长缓慢和相对竞争能力不足的双重劣势下。在确定产业正处于永久性衰退前沿的前提下,这类公司必须着手实施收割战略。首先应大幅度地减少成本或投入,另外可将资源从现有业务领域逐渐转向其他业务领域。最后便是以剥离或结业清算战略迅速撤离该产业。 位于第四象限的公司其产业增长缓慢,但却处于相对有利的竞争地位。这类公司有能力在有发展前景的领域中进行多元经营。这是因为第四象限公司具有较大的现金流量,并对资金的需求有限,有足够的能力和资源实施集中多元化或混合式多元化战略。同时,这类公司应在原产业中求得与竞争对手合作与妥协,横向合并或进行合资经营都是较好的选择。 [编辑]

相关主题
文本预览
相关文档 最新文档