当前位置:文档之家› 弹塑性有限元分析

弹塑性有限元分析

弹塑性有限元分析
弹塑性有限元分析

弹塑性力学总结汇编

弹塑性力学总结 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。通过一学期的弹塑性力学的学习,对其内容总结如下: 一、弹性力学 1、弹性力学的基本假定 求解一个弹性力学问题,通常是已知物体的几何形状(即已知物体的边界),弹性常数,物体所受的外力,物体边界上所受的面力,以及边界上所受的约束;需要求解的是物体内部的应力分量、应变分量与位移分量。求解问题的方法是通过研究物体内部各点的应力与外力所满足的静力平衡关系,位移与应变的几何学关系以及应力与应变的物理学关系,建立一系列的方程组;再建立物体表面上给定面力的边界以及给定位移约束的边界上所给定的边界条件;最后化为求解一组偏分方程的边值问题。

在导出方程时,如果考虑所有各方面的因素,则导出的方程非常复杂,实际上不可能求解。因此,通常必须按照研究对象的性质,联系求解问题的范围,做出若干基本假定,从而略去一些暂不考虑的因素,使得方程的求解成为可能。 (1)假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 (2)假设物体是线弹性的。就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。 (3)假设物体是均匀的。就是说整个物体是由同一种质地均匀的材料组成的。这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量和泊松比才不随位置坐标而变。 (4)假设物体是各向同性的。也就是物体内每一点各个不同方向的物理性质和机械性质都是相同的。 (5)假设物体的变形是微小的。即物体受力以后,整个物体所有各点的位移都小于物体的原有尺寸,因而应变和转角都远小于1。这样,在考虑物体变形以后的平衡状态时,可以用变

有限元与数值方法-讲稿19 弹塑性增量有限元分析课件

材料非线性问题有限元方法 教学要求和内容 1.掌握弹塑性本构关系和塑性力学的基本法则; 2.掌握弹塑性增量分析的有限元格式; 3.学习常用非线性方程组的求解方法: (1)直接迭代法; (2) Newton-Raphson 方法,修正的N-R 方法; (3)增量法等。 请大家预习,争取对相关内容有大概的了解和把握。

弹塑性增量有限元分析 一.材料弹塑性行为的描述 弹塑性材料进入塑性的特点:存在 不可恢复的塑性变形; 卸载时:非线性弹性材料按原路径 卸载; 弹塑性材料按不同的路径卸载,并 且有残余应变,称为塑性应变。

1.单向加载 1) 弹性阶段: 卸载时不留下残余变形; 2) 初始屈服:s σσ= 3) 强化阶段:超过初始屈服之后,按弹性规律卸载,再加载弹性范 围扩大:ss σσ'>,s σ'为相继屈服应力。

4) 鲍氏现象(Bauschinger ): 二.塑性力学的基本法则 1.初始屈服准则: 00(,)0ij F k σ= 已经建立了多种屈服准则: (1) V . Mises 准则:000(,)()0ij ij F k f k σσ=-= 2 2 001 1 ()(),()2 3ij ij ij s f s s J k σσ===第二应力不变量1122221 ,() 3 ij ij ij m m s σδσσσσσ=-=++偏应力张量:平均应力: (2) Tresca 准则(最大剪应力准则): 0max ()0ij s F S ττ=-=

2.流动法则 V . Mises 流动法则: 0(,)()ij ij p ij ij ij F k f d d d σσελ λ σσ??==??, 0d λ> 待定有限量 塑性应变增量 p ij d ε 沿屈服面当前应力点的法线方向增加。 因此,称为法向流动法则。 3.硬化法则: (1)各向同性硬化:(,)()0ij ij F k f k σσ=-=

弹塑性力学有限单元法-交通运输工程学院-中南大学

中南大学2014年博士研究生入学考试 《弹塑性力学有限单元法》考试大纲 本考试大纲由交通运输工程学院教授委员会于2013年7月通过。 I.考试性质 弹塑性力学有限单元法是我校“载运工具运用工程”专业博士生入学考试的专业基础课,它是为我校招收本专业博士生而实施的具有选拔功能的水平考试;其目的是科学、公平、有效地测试考生掌握弹性力学、塑性力学及有限单元数值方法课程的基本知识、基本理论,以及相关理论和方法分析解决实际问题的能力;评价的标准是高等学校优秀硕士毕业生能达到的及格或及格以上水平,以保证被录取者能较好的掌握了本专业必备的基础知识。 II.考查目标 弹塑性力学有限单元法课程考试弹性力学、塑性力学及有限单元数值方法等内容,重点在检查力学基本概念与基本方法的掌握和应用,难度适中,覆盖主要章节,能区分学生优劣层次。要求考生:(1)掌握弹塑性力学的基本知识、结构有限元分析的基本方法和过程,要求学生具备使用有限元方法进行车辆结构强度分析的能力。 Ⅲ.考试形式和试卷结构 1、试卷满分及考试时间 本试卷满分为100 分,考试时间为180 分钟 2、答题方式 答题方式为闭卷,笔试。 3、试卷内容结构 弹性力学约30 % 30 有限单元法约50 % 50

塑性力学基本理论约20 % 20 Ⅳ.考查内容 1. 弹性力学 (1)掌握弹性力学问题基本方程及边界条件。 (2)掌握应力理论及变形理论、二阶张量的坐标转换; (3)掌握使用位移法和应力法求解弹性力学问题; (4)掌握使用半逆解法求解简单平面问题; 2. 有限单元法 (1)掌握有限元方法的基本概念; (2)掌握平面、空间及等参单元分析的过程 (3)掌握有限单元位移模式的选取、刚度矩阵数值积分方法;(4)掌握结构刚度矩阵性质、边界条件处理; (5)掌握薄板弯曲问题有限元分析方法; (6)掌握车辆典型结构有限元分析的步骤和处理技巧; 3. 塑性力学 (1)掌握塑性力学的基本概念; (2)掌握Tresca和Mises屈服条件; (3)掌握几种常用的弹塑性力学模型; (4)掌握应力空间和屈服曲面的概念、加载曲面和塑性流动法则;

有限元分析材料塑性

有限元分析材料塑性 篇一:塑性成形有限元分析 贵州师范大学 《塑性成形有限元分析》 课程期末考查 学年第学期 学院:机电学院专业:材料成型及控制工程姓名:谭世波学号:111404010056科目:dEFoRm-3d塑性成形caE应用教程日期:20XX 年1月3日 塑性成形有限元分析 20XX级材料成型与控制工程 (谭世波111404010056) 摘要:本文主要是在dEFoRm-3d软件上模拟圆柱形毛坯的墩粗成型,对零件 进行有限元模拟分析。 引言:何为有限元模拟分析?如何完成一个墩粗的模拟 分析,运用dEFoRm-3d对毛坯进行分析的目的。 模拟直径为50mm,高度60mm的钢棒的镦粗成形工艺,工艺工序参数如下: (1)几何体与工具采用整体分析;(2)单位:公制

(3)材料:aiSi-1045(4)温度:20℃ (5)上模移动速度:2mm/s(6)模具行程:10mm; 模拟过程:先用UG画出钢棒的三维模型,导出为STL格 式。 1.在dEFoRm-3d软件中进行模拟分析,打开软件创建 一个新的问题。 2.设置模拟控制 3.设置材料基本属性 篇二:塑性成形有限元分析考查题目 《塑性成形有限元分析》课程期末考查试题 (20XX级材料成型与控制工程) 下面试题二选一,上交时间:20XX年1月5日上午9:00。 1、请模拟直径为50mm,高度60mm的钢棒的镦粗成形工序,工艺参数如下: (1)几何体与工具采用整体分析; (2)单位:公制 (3)材料:aiSi-1045 (4)温度:20℃ (5)上模移动速度:2mm/s (6)模具行程:10mm; 按照论文的格式撰写研究报告(打印),描述模拟过程,并详细解读分析模拟结果(注:交报告时带上演示模拟结果)。

弹塑性有限元方法

第三章 弹塑性有限元方法的实施 §3.1 增量平衡方程和切线刚度矩阵 1、 分段线性化的求解思想 塑性变形的特点决定了塑性本构关系的非线性和多值性,上面由塑性增量理论给 出了塑性应力—应变关系{}{}ep d D d σε=???? 其中 [][] {}{}[]{}[]{} T ep T F F D D D D F F A D σσ σ σ ????=- ??+ ?????? 说明当前应力状态不仅与当前应变有关,而且和达到这一变形状态的路径(加载历史)有关。这里包含了屈服准则、强化条件和加卸载准则。 由此,对物理非线性问题,通常采用分段线性化的纯增量法和逐次迭代的方法求解。即将加载过程分成若干个增量步,选择其中任意一个增量步建立它的增量平衡方程并求解,对整个过程的求解有普遍意义。 2、 增量平衡方程和切线刚度矩阵 设t 时刻(加载至i -1步终),结构(单元)在当前载荷(广义体力{}v f 和表面力{}s f ) 的作用下处于平衡状态,此时物体内一点的应力、应变状态为{}{}σε、。在此基础上,施加一个载荷增量{}{}v s f f ??和,即从t t t →+?时刻,则在体内必然引起一个位移增量{}u ?和相应的{}σ?、{}ε?,只要{}{}v s f f ??和足够小,就有{}{}ep D σε?=?????。 倘若初始状态{}σ已知,加载过程已知,则ep D ????可以确定(即p ij d ε?可以确定,然后 可在硬化曲线上得到1p ε所对应的硬化系数)于是上面的方程成为线性的。在t t t →+?这一增量过程中,应用于虚功原理可得到如下虚功方程: ()()()0e e T T T V V s s V S f f u dV f f u dS σσδεδδ??+?-+??-+??=?? ?? (1) 根据小变形几何关系u N q B q ε?=??=?和,再由虚位移()q δ?的任意性,并设 ()()e e T T v v s s V S P P N f f dV N f f dS +?= +?+ +?? ? ,展开后,其中单元在t 时刻载荷等效节点 力:e e T T v s V S P N f dV N f dS = + ? ? ;t ?内增量载荷的等效力e e T T v s V S P N f dV N f dS ?= ?+ ?? ? 。

塑性成形过程中的有限元法

塑性成形过程中的有限元法 金属塑性成形技术是现代化制造业中金属加工的重要方法之一。它是金属材料在模具和锻压设备作用下发生变形,获得所需要求的形状、尺寸和性能的制件的加工过程。金属成形件在汽车、飞机仪表、机械设备等产品的零部件中占有相当大的比例。由于其具有生产效率高,生产费用低的特点,适合于大批量生产,是现代高速发展的制造业的重要成形工艺。据统计,在发达国家中,金属塑性成形件的产值在国民经济中的比重居行业之首,在我国也占有相当大的比例。 随着现代制造业的高速发展,对塑性成形工艺分析和模具设计方面提出了更高的要求。若工艺分析不完善、模具设计不合理或材料选择不当,则会造成产品达不到质量要求,造成大量的次品和废品,增加了模具的设计制造时间和费用。为了防止缺陷的产生,以提高产品质量,降低产品成本,国内外许多大公司企业及大专院校和研究机构对塑性成形件的性能、成形过程中的应力应变分布及变化规律进行了大量的理论分析、实验研究与数值计算,力图发现各种制件、产品成形工艺所遵循的共同规律以及力学失效所反映的共同特征。由于塑性成形工艺影响因素甚多,有些因素如摩擦与润滑、变形过程中材料的本构关系等机理尚未被人们完全认识和掌握,因而到目前为止还未能对各种材料各种形状的制件成形过程作出准确的定量判定。正因为大变形机理非常复杂,使得塑性成形研究领域一直成为一个充满挑战和机遇的领域。 一般来说,产品研究与开发的目标之一就是确定生产高质量产品的优化准则,而不同的产品要求不同的优化准则,建立适当的优化准则需要对产品制造过程的全面了解。如果不掌握诸如摩擦条件、材料性能、工件几何形状、成形力等工艺参数对成形过程的影响,就不可能正确地设计模具和选择加工设备,更无法预测和防止缺陷的生成。在传统工艺分析和模具设计中,主要还是依靠工程类比和设计经验,经过反复试模修模,调整工艺参数以期望消除成形过程中的产品缺陷如失稳起皱、充填不满、局部破裂等。仅仅依靠类比和传统的经验工艺分析和模具设计方法已无法满足高速发展的现代金属加工工业的要求。因此,现代金属成形工艺分析过程中,建立适当的“过程模拟”非常重要。随着计算机技术的发展,人们已经认识到数值模拟在金属成形工程中的重要价值,这一领域已成为现代国内外学者的研究热点。 应用塑性成形的数值模拟方法主要有上限法(Upper Bound Method)、边界元法(Boundary Element Method)和有限元法(Finite Element Method)。上限元法常用于分析较为简单的准稳态变形问题;而边界元法主要用于模具设计分析和温度计算。对于大变形的体积成形和板料成形,变形过程常呈非稳态,形状、边界、材料性质等都会发生很大的变化,有限元法可由实验和理论方法给出的本构关系、边界条件、摩擦关系式,按变分原理推导出场方程,根据离散技术建立计算模型,从而实现对复杂成形问题进行数值模拟。分析成形过程中的应力应变分布及其变化规律,由此提供较为可靠的主要成形工艺参数。因此基于有限元法的塑性成形数值模拟技术是当前国际上极具发展潜力的成形技术前沿研究课题之一。 正确设计和控制金属塑性成形过程的前提条件是充分掌握金属流动、应力应变状态、热传导、润滑、加热与冷却及模具结构设计等方面的知识。任何分析方法都是为工程技术人员服务的,其目的是帮助工程技术人员掌握金属流动过程中应力应变状态等方面知识,一个好的分析方法至少应包括以下几个功能: (1)在未变形体(毛坯)与变形体(产品)之间建立运动学关系,预测金属塑性成形过程中的金属流动规律,其中包括应力应变场量变化、温度变化及热传导等。 (2)计算金属塑性成形极限,即保证金属材料在塑性变形过程中不产生任何表面及内部缺陷的最大变形量可能性。 (3)预测金属塑性成形过程得以顺利进行所需的成形力及能量,为正确选择加工设备和进行模具设计提供依据。 当前,有限元法已成为分析和研究金属塑性成形问题的最重要的数值分析方法之一,它具有以下优点:(1)由于单元形状具有多样性,有限元法使用与任何材料模型,任意的边界条件,任意的结构形状,在原则上一般不会发生处理上的困难。金属材料的塑性加工过程,均可以利用有限元法进行分析,而其它的数值

基于D_P准则的三维弹塑性有限元增量计算的有效算法

基于D-P准则的三维弹塑性有限元 增量计算的有效算法 A practical3D ela sto2pla stic incremental method in FEM ba sed on D-P yield criteria 杨 强,陈 新,周维垣 (清华大学水利系,北京 100084) 摘 要:针对岩土材料常用的D-P准则,提出了一种新的增量分析方法,不用形成弹塑性增量矩阵,直接导出了符合正交流动法则的转移应力的解析解。该方法无论是对小步长还是大步长加载均有良好的收敛性。当采用精细的步长划分时,它就是严格意义上的理想弹塑性增量计算。在大步长情况下,在收敛域内最大载荷低于结构真实的极限承载力;对应的应力场是一个静力容许应力场;同时由于正交流动法则在平均意义下得到满足,收敛域内最大载荷接近结构真实的极限承载力。按此法所得结果接近真解且偏于安全。将整个计算模型装入三维非线性有限元程序TFI NE中,对某拱坝进行了超载分析。 关键词:转移应力;极限载荷;点安全度 中图分类号:T U452 文献标识码:A 文章编号:1000-4548(2002)01-0016-05 作者简介:杨 强(1964-),男,云南人。1988年在清华大学获硕士学位,1996年在奥地利Innsbruck大学获博士学位,现为清华大学水利系教授。主要从事水工结构及岩石力学方面的研究工作。 Y ANG Qiang,CHE N X in,ZH OU Wei2yuan (Department of Hydraulic Engineering,Tsinghua University,Beijing100084,China) Abstract:In this paper,focused on popularly used D-P yield criteria in geomaterials,a new incremental method in which the stresses to be trans2 ferred according to normal flow rule are directly derived without forming elasto2plastic increment matrix,was proposed.This method converges for either small load steps or large load steps.When very small load steps are used,the method is equivalent to standard elasto2plastic incremental method.When large load steps are used,the maximum load applied is lower than limit load in structure,the calculated stress field is an static ad2 missible one.As normal flow rule is satisfied in average,the maximum load is close to limit load.The soltion calculated by the method is on the safe side and close to real solution.The method was embedded into a3D nonlinear FEM software named TFINE,and overloading analysis was performed on an arch dam. K ey words:the stresses to be transferred;normal flow rule;limit load 1 引 言Ξ 岩土材料具有很复杂的本构特性,如各向异性、硬化、软化等,目前描述岩土材料的本构模型非常多。但在实际工程三维有限元计算分析中,尤其是在岩体工程里,大量使用的仍是最简单D-P准则及理想弹塑性分析。其主要原因是参数选取不易。如在二滩高拱坝建设中,做了大量坝肩岩体现场大型抗剪试验,但具体到某一岩级,试验点数仍然很有限,且离散性很大。很难完全依赖试验确定参数,一般都要进行工程类比,对中、小工程工程类比更是参数确定的主要手段。最终一般只能给出岩体的抗剪参数f,c值。在这种情况下,从工程实用角度来说,追求本构关系的精致、完备并无太多实用意义。 相对而言,在岩土工程三维非线性有限元分析里,计算收敛性是一个较大的问题。弹塑性增量计算要采用精细的步长划分,才能确保计算收敛到正确解。在岩土工程,尤其是岩体工程里,荷载量级都很大,如高拱坝对水荷载的极限承载力可达上亿吨,而这对两岸高陡边坡所承受的的自重荷载来说,还只是一个小数,又如高地应力区大型地下洞室、高边坡(如三峡船闸高边坡)开挖过程中的释放荷载量级也十分巨大。若采用精细的步长划分,计算量将很大。岩体地质构造复杂,三维网格划分时经常会有畸形单元。由于地址缺陷或加固措施导致相邻单元材料性质差异过大,再加上高水平的荷载,各种因素交互影响,使得在计算过程中,经常出现局部发散现象,使得增量计算难以进行下去,最终结果可信度低,也难以从计算结果判断何时结构丧失稳定性。而对岩土工程来说,往往更关注结构的稳定性和极限承载力,而非应力和位移分布。 Ξ基金项目:国家自然科学基金资助项目(59879005);清华大学基础研究基金资助项目 收稿日期:2001-04-12  第24卷 第1期岩 土 工 程 学 报V ol.24 N o.1 2002年 1月Chinese Journal of G eotechnical Engineering Jan., 2002

弹塑性有限元法与刚塑性有限元法

弹塑性有限元法与刚塑性有限元法 板料成形数值模拟涉及到连续介质力学中材料非线性、几何非线性、边界条件非线性三非线性问题的计算,难度很大。随着非线性连续介质力学理论、有限元方法和计算机技术的发展,通过高精度的数值计算来模拟板料成形过程已成为可能。从70年代后期开始,经过近二十年的发展,板料成形数值模拟逐渐走向成熟,并开始在汽车、飞机等工业领域得到实际应用。 本文评述了板料成形数值模拟的发展历史和最新进展,并指出了该领域的发展趋势。 1、板料成形的典型成形过程、物理过程与力学模型 典型成形过程 板料成形的具体过程多种多样,在模拟分析时,可归纳成如图1所示的典型成形过程。成形时,冲头在压力机的作用下向下运动,给板料一个作用压力,板料因此产生运动与变形。同时,冲头、压力圈和凹模按一定方式共同约束板料的运动与变形,从而获得所要求的形状与尺寸。 物理过程 板料成形的物理过程包括模具与板料间的接触与摩擦;由于金属的塑性变形而导致的加工硬化和各向异性化;加工中可能产生的皱曲、微裂纹与破裂及由于卸载而在零件中产生回弹。 力学模型 板料成形过程可归纳成如下的力学问题:

给定冲头位移、凹模位移及压边圈历程函数,求出板料的位移历程函数,使其满足运动方程、初始条件、边界条件、本构关系及接触摩擦条件。 2板料成形数值模拟的发展历史 塑性有限元方法的发展 根据材料的本构关系,用于板料成形分析的非线性有限元法大体上分为刚-(粘)塑性与弹-(粘)塑性两类。 粘塑性有限元法很早就在板料成形分析中应用过,只是未能推广。事实上,粘塑性有限元法适用于热加工。在热加工时,应变硬化效应不显著,材料形变对变形速率有较大敏感性。

刚粘塑性有限元法的基本原理

第二章 刚粘塑性有限元法的基本原理 在金属塑性成形过程中,对于大多数体积成形的问题,弹性变形量相对非弹性变形量来说很小,一般情况下是可以忽略不计的,也就是说可以将材料视为刚(粘)塑性材料。本章主要介绍刚粘塑性有限元法的理论基础,基于等效积分形式的虚功原理以及泛函变分法。 2.1刚粘塑性材料流动的基本方程 设变形体的体积为V ,在V 内给定体力i p ;表面积为S ,在S 的一部分力面t S 上给定面力i q ,在S 的另一部分速度(位移)面V S 上给定速度o i v ,则材料在流动过程中满足下列力学基本方程 1.力平衡方程 0,=+i j ij p σ (2.1) 2.力边界条件 即在t S 上 i j ij q n =σ (2.2) 3.几何方程 )(2 1,,i j j i ij v v +=ε (2.3) 4.速度边界条件 即在V S 上 0i i v v = (2.4) 5.体积不可压缩方程 0==ij ij v εδε (2.5) 6.屈服准则 采用Misers 屈服准则和等向强化模型,初始屈服准则为 0=-s σσ (2.6) 后继屈服条件,对于静态加载只考虑应变强化 )(,0? ==-εσd H K K (2.7) 式中H 可以由单向拉伸试验曲线确定。 对于粘塑性材料,加载还应考虑时间因素即变形速度的影响,瞬时屈服条件为 ),(,0ε εσ Y Y Y ==- (2.8) 式中Y 可以由一维动力试验确定。 7. 本构关系 对于粘塑性材料的本构关系将在下一章作详细的讨论。

通常我们把满足上述所有基本方程的应力场、应变率场、速度场称为真实应力场、应变率场、速度场。满足方程1、2、6即满足应力平衡方程,应力边界条件和屈服条件的应力场称为静力许可应力场;满足3、4、5的速度场称为运动许可速度场。 利用上述方程和边界条件,变形体在塑性成形时的场变量从理论上是可以求解的,但实际上很困难,只有在少数几种简单情况下才能求出较准确的解析解。对于大多数情况利用传统的解析方法如主应力法、滑移线法等往往需要对实际的问题进行简化,难以获得满意的计算结果。而塑性加工中的有限元法借助于虚功原理或变分法,采用离散化的方法将变形体进行离散,可以根据实际工程的需要得到较为满意的结果。下面着重阐述塑性加工有限元的基础,基于等效积分形式的近似方法:虚功原理和变分法。 2.2虚功原理 变形体的虚功原理可以叙述如下:变形体中满足平衡的力系在任意满足协调条件的变形状态上作的虚功等于零,即体系外力的虚功与内力的虚功之和等于零。 虚功原理是虚位移(功率)原理和虚应力(率)原理的总称,它们都是与某些控制方程相等效的积分“弱”形式,虚位移(功率)原理是平衡方程和力的边界条件的等效积分“弱”形式;虚应力原理则是几何方程和位移(速度)边界条件的等效积分“弱”形式。下面来推导虚功率原理。 首先考虑平衡方程 0,=+i j ij p σ (2.9) 以及力的边界条件 i j ij q n =σ (2.10) 我们可以采用相应的方法建立与他们等效的积分形式,在这里权函数不失一般地取速度的变分i v δ及其边界值(取负值)。这样就可得到上面两式的等效积分形式 0)()(,=--+??ds q n v dv p v i j ij s i i j ij i v t σδσδ (2.11) 对上式体积分中的第一项进行积分,并注意到应力张量是对称张量,以及由于i v δ是速度的变分,因而有在速度边界上0=i v δ,再考虑体积内部满足几何方程,则可以得到 ds n v dv dv v j ij s i ij v ij j ij v i t σδσεδσδ???+-= , (2.12) 将上式代入(2.11)式,就得到经分部积分后的“弱”形式虚功率方程 0=++-???ds q v dv p v dv i s i i v i ij v ij t δδσεδ (2.13) 上式第一项是变形体内应力在虚应变率上所作之功,即内力虚功率;第二、第三项分别为体积力、面力所作的虚功率。外力和内力的虚功率和为零。这就是虚功率原理。 应当指出虚功率原理是力系平衡的必要和充分条件。还应指出的是,在推导虚功效率方程时,并未涉及物理方程(应力—应变率)关系,所以虚功率方程不仅可以用于线弹性问题,而且还可用于非线性问题。所以虚功方程是建立塑性加工过程中有限元法的一个重要工具。

一种二维弹塑性裂纹有限元模型的分析

第13卷 第5期2008年10月   哈尔滨理工大学学报 JOURNAL HARB I N UN I V .SC I .&TECH.   Vol 113No 15  Oct .,2008 一种二维弹塑性裂纹有限元模型的分析 宋 欣, 张嘉振 (哈尔滨理工大学机械动力工程学院,黑龙江哈尔滨150080) 摘 要:利用非线性有限元软件ABAQUS,以较少的单元建立了模拟循环载荷下裂尖参数变化的二维弹塑性有限元模型,通过应力、位移及塑性区尺寸等裂尖参数的有限元计算值与力学公式计 算的理论值的比较,分析了不同单元类型对裂尖参数的影响,为解决有应力集中的二维弹塑性有限元问题提供了一种高效准确的模型. 关键词:疲劳裂纹;有限元模型;弹塑性中图分类号:O34413文献标识码:A 文章编号:1007-2683(2008)05-0009-05 Analysis of a Fi n ite Ele mentM odel of 2-D El asti c -Pl asti c Crack SON G X in, ZHAN G J ia 2Zhen (School of Mechanical and Power Engineering,Harbin University of Science and Technol ogy,Harbin 150080,China ) Abstract:An effective t w o -di m ensi onal elastic -p lastic finite ele ment model has been set up t o model the change of crack ti p parameters under cycle l oading .The non -linear finite ele ment s oft w are,ABAQUS,has been used in this analysis .The calculated results of the crack ti p para meters,such as stress,dis p lace ment and p lastic z one size,have been compared with the results obtained by the Fracture Mechanics la ws .The effects of the differ 2ent ele ment types on the crack ti p para meters have been analyzed .It is f ound that the t w o -di m ensi onal elastic -p lastic finite ele ment method is an effective model t o s olve the near crack ti p stress concentrati on p r oble m under cy 2cle l oading . Key words:fatigue crack;finite ele ment model;elastic 2p lastic 收稿日期:2007-07-01 基金项目:国家自然科学基金资助项目(10772063)作者简介:宋 欣(1970-),男,哈尔滨理工大学博士研究生,副教授. 金属材料中疲劳裂纹扩展是一个十分复杂的过程,至今还没有可以全面准确地描述整个扩展过程 的模型,但是,对于线弹性材料及平面单向载荷的弹塑性问题,其理论已较为成熟.本研究中利用大型非线性有限元商用软件Abaqus,以高强铝合金7049-OA 中的疲劳裂纹为研究对象,建立了模拟二维弹塑性疲劳裂纹的有限元模型,利用已有的理论公式,分析了不同网格单元类型对裂尖参数的影响,以验证有限元模型的准确性,为进一步疲劳裂纹扩展研究打下基础. 1 疲劳裂纹问题的描述 本研究中,疲劳裂纹扩展实验中使用的试件为中心贯穿裂纹平板(CCP )试件,几何尺寸为:长L =150mm ,宽W =40mm ,厚T =5mm ,在垂直裂纹面方向的试件远端上,施加单向疲劳载荷,σmax =89MPa,应力比R =0,如图1所示. 本研究中采用较为简单的,可以反映材料循环硬化和Bauschinger 效应的线性随动模型,M ises 屈服条件和Prandtl -Reuss 关联塑性流动法则进行弹

弹塑性理论

金属的塑性变形抗力及轧制过程的 滑动摩擦 ——弹塑性理论讨论课 学院:机械工程学院 班级:轧钢设备及工艺一班 小组成员:戴华平罗湘粤裴泽宇王奕答谢世豪 指导教师:李学通 完成时间:金属的塑性变形抗力 一、塑性变形抗力的基本概念及测定方法 塑性变形抗力:材料在一定温度、速度和变形程度条件下,保持原有状态而抵抗塑性变形的能力。在所设定的变形条件下,所研究的变形物体或其单元体能够实现塑性变形的应力强度。变形抗力与变形力数值相等方向相反。不同金属材料变形抗力不同。同一金属材料在一定变形温度、变形速度和变形程度下,以单向压缩(或拉伸)时的屈服应力的大小度量其变形抗力。 变形抗力测定方法条件:简单应力状态下,应力状态在变形物体内均匀分布。 1)拉伸试验法:。变形较均匀,均匀变形程度小。 2)压缩试验法:。能产生更大变形,与拉伸相比,变形不均匀,由 于接触摩擦,实测值较高。 3)扭转试验法:圆柱试样:。应力状态分布不均匀,为

降低不均匀性,可取空心管试样,数据换算到另外变形状态有困难,且 在大变形时,纯剪切遭到破坏等原因,未广泛应用。 二、金属的塑性变形抗力的影响因素 1.金属的化学成分及组织对塑性变形抗力的影响 1)对于各种纯金属,原子间结合力大,滑移阻力大,变形抗力也大。 2)同一种金属,纯度愈高,变形抗力愈小。 3)合金元素的存在及其在基体中存在的形式对变形抗力有显著影 响。原因:a溶入固溶体,基体金属点阵畸变增加;b形成化合物; c形成第二相组织,使增加。 4)合金元素使钢的再结晶温度升高,再结晶速度降低,因而硬化倾 向性和速度敏感性增加,变形速度高↑。 5)某些情况下改变合金的某主要成分的含量不会引起变形抗力的太 大变化。 2.组织对塑性变形抗力的影响。 1)基体金属原子间结合力大,大。 2)单相组织和多相组织单相 单相:合金含量越高,越大。原因:晶格畸变。 3)晶粒大小 d,变形抗力。 3.温度对塑性变形抗力的影响 变形抗力随温度↑的变化情况: 1)变形抗力↓例:Cu 2)情况较复杂,如:钢 随着温度↑,屈服应力↓,屈服延伸↓,至400℃消失。 <300℃:抗拉强度,塑性;>300℃:抗拉强度,塑性。 变形抗力降低的原因 1)软化效应:发生了回复和再结晶 2)其他变形机构的参与 a)温度升高,原子动能大,结合力弱,临界切应力低,滑 移系增加,由于晶粒取向不一致对变形抗力影响减弱。 b)温度升高,发生热塑性。 c)晶界性质发生变化,有利于晶间变形,有利于晶间破坏 的消除。 d)组织发生变化,如相变。 硬化随温度升高而降低的总效应决定于:

ANSYS弹塑性分析教程

弹塑性分析 在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的介绍人为以下几个方面: ? 什么是塑性 ? 塑性理论简介 ? ANSYS 程序中所用的性选项 ? 怎样使用塑性 ? 塑性分析练习题 什么是塑性 塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也 就 是说,当 移 走 载 荷 时,其应变也完全消失。 由于屈服点和比例极限相差很小,因此在ANSYS 程序中,假定它们相同。在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。塑性分析中考虑了塑性区域的材料特性。 路径相关性: 即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。 路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。 率相关性: 塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。 大多的材料都有某种程度上的率相关性,但在大多数静 力分 析所经历的应变率范围,两者的应力-应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。 工程应力,应变与真实的应力、应变: 塑性材料的数据一般以拉伸的应力—应变曲线形式给出。材料数据可能是工程应力(P A )与工程应变(?l l ),也可 能是真实应力(P/A )与真实应变( n L l l ()0 ) 。 大应变的塑性分析一般采用真实的应力,应变数据而小应变分析一般采用工程的应力、应变数据。 什么时候激活塑性: 当材料中的应力超过屈服点时,塑性被激活(也就是说,有塑性应变发生)。而屈服应力本身可能是下列某个参数的函数。 ? 温度 ? 应变率 ? 以前的应变历史 ? 侧限压力 ? 其它参数 塑性理论介绍 在这一章中,我们将依次介绍塑性的三个主要方面: ? 屈服准则 ? 流动准则 ? 强化准则 屈服准则: 对单向受拉试件,我们可以通过简单的比较轴向应力与材料的屈服应力来决定是否有塑性变形发生,然而,对于一般的应力状态,是否到达屈服点并不是明显的。 屈服准则是一个可以用来与单轴测试的屈服应力相比较的应力状态的标量表示。因此,知道了应力状态和屈服准则,程序就能确定是否有塑性应变产生。 屈服准则的值有时候也叫作等效应力,一个通用的屈服准则是Von Mises 屈服准则,当等效应力超过材料的屈服应力时,将会发生塑性变形。 可以在主应力空间中画出Mises 屈服准则,见 图3-1。 在3-D 中,屈服面是一个以 1 2 3 σσσ ==为轴的圆柱面,在2-D 中,屈服面是一个椭圆,在屈服面内部的任 何应力状态,都是弹性的,屈服面外部的任

有限元分析中的材料性选择

有限元分析中的材料性能单位 邹正刚(上海航天局第八设计部) 摘要: 本文对使用有限元软件分析工程问题时的材料性能单位问题作了一些探讨,通过实例说明了如何统一各物理量的单位,以保证分析结果的正确。 关键词:有限元、材料性能、单位 大多数有限元计算程序都不规定所使用的物理量的单位,不同问题可以使用不同的单位,只要在一个问题中各物理量的单位统一就可以。但是,由于在实际工程问题中可能用到多种不同单位的物理量,如果只是按照习惯采用常用的单位,表面上看单位是统一的,实际上单位却不统一,从而导致错误的计算结果。 比如,在结构分析中分别用如下单位:长度– m;时间– s;质量– kg;力- N;压力、应力、弹性模量等– Pa,此时单位是统一的。但是如果将压力单位改为MPa,保持其余单位不变,单位就是不统一的;或者同时将长度单位改为mm,压力单位改为MPa,保持其余单位不变,单位也是不统一的。由此可见,对于实际工程问题,我们不能按照手工计算时的习惯来选择各物理量的单位,而是必须遵循一定的原则。 物理量的单位与所采用的单位制有关。所有物理量可分为基本物理量和导出物理量,在结构和热计算中的基本物理量有:质量、长度、时间和温度。导出物理量的种类很多,如面积、体积、速度、加速度、弹性模量、压力、应力、导热率、比热、热交换系数、能量、热量、功等等,都与基本物理量之间有确定的关系。基本物理量的单位确定了所用的单位制,然后可根据相应的公式得到各导出物理量的单位。具体做法是:首先确定各物理量的量纲,再根据基本物理量单位制的不同得到各物理量的具体单位。 基本物理量及其量纲: ?质量m; ?长度L; ?时间t; ?温度T。 导出物理量及其量纲: ◆速度:v = L / t; ◆加速度: a = L / t 2; ◆面积:A = L 2; ◆体积:V = L 3; ◆密度:ρ= m / L 3; ◆力: f = m · a = m · L / t 2; ◆力矩、能量、热量、焓等: e = f · L = m · L 2 / t 2; ◆压力、应力、弹性模量等:p = f / A = m / (t 2 · L) ; ◆热流量、功率:ψ= e / t = m · L 2 / t 3; ◆导热率:k =ψ/ (L · T) = m · L/ (t 3 · T); ◆比热:c = e / (m · T) = L 2 / (t 2 · T); ◆热交换系数:Cv = e / (L 2 · T · t) = m / (t 3 · T) ◆粘性系数:Kv = p · t = m / (t · L) ; ◆熵:S = e / T = m · l 2 / (t 2 · T); ◆质量熵、比熵:s = S / m = l 2 / (t 2 · T); 在选定基本物理量的单位后,可导出其余物理量的单位,可以选用的单位制很多,下面举两个常用的例子。 1 基本物理量采用如下单位制: ?质量m – kg; ?长度L – mm;

有限元分析材料库

有限元分析材料库 篇一:有限元分析中的材料性能单位 有限元分析中的材料性能单位 #1有限元分析中的材料性能单位 摘要: 本文对使用有限元软件分析工程问题时的材料性能单位问题作了一些探讨,通过实例说明了如何统一各物理量的单位,以保证分析结果的正确。 关键词:有限元、材料性能、单位 大多数有限元计算程序都不规定所使用的物理量的单位,不同问题可以使用不同的单位,只要在一个问题中各物理量的单位统一就可以。但是,由于在实际工程问题中可能用到多种不同单位的物理量,如果只是按照习惯采用常用的单位,表面上看单位是统一的,实际上单位却不统一,从而导致错误的计算结果。 比如,在结构分析中分别用如下单位:长度–m;时间–s;质量–kg;力-n;压力、应力、弹性模量等–Pa,此时单位是统一的。但是如果将压力单位改为mPa,保持其余单位不变,单位就是不统一的;或者同时将长度单位改为mm,压力单位改为mPa,保持其余单位不变,单位也是不统一的。由此可见,对于实际工程问题,我们不能按照手工计算时的习惯来选择各物理量的单位,而是必须遵循一定的原

则。 物理量的单位与所采用的单位制有关。所有物理量可分为基本物理量和导出物理量,在结构和热计算中的基本物理量有:质量、长度、时间和温度。导出物理量的种类很多,如面积、体积、速度、加速度、弹性模量、压力、应力、导热率、比热、热交换系数、能量、热量、功等等,都与基本物理量之间有确定的关系。基本物理量的单位确定了所用的单位制,然后可根据相应的公式得到各导出物理量的单位。具体做法是:首先确定各物理量的量纲,再根据基本物理量单位制的不同得到各物理量的具体单位。 基本物理量及其量纲: n质量m; n长度L; n时间t; n温度T。 导出物理量及其量纲: u速度:v=L/t; u加速度:a=L/t2; u面积:a=L2; u体积:V=L3; u密度:ρ=m/L3; u力:f=m·a=m·L/t2; u力矩、能量、热量、焓等:e=f·L=m·L2/t2;

有限元分析的基本原理

有限元分析的基本原理 有限元原理和基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。 有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。 有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。 20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh-Ritz法+分片函数”,即有限元法是Rayleigh-Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh-Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。 对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。有限元求解问题的基本步骤通常为:第一步:问题及求解域定义 根据实际问题近似确定求解域的物理性质和几何区域。 第二步:求解域离散化 将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的

相关主题
文本预览
相关文档 最新文档