当前位置:文档之家› 舵系计算书.龙de船人

舵系计算书.龙de船人

舵系计算书.龙de船人
舵系计算书.龙de船人

舵系安装通用工艺

舵系安装通用工艺 G21-LR1

舵系安装通用工艺目录 序: 舵系安装通用工艺说明 一: 舵系中心线找中应具备的条件 二: 舵系中心线的找中 三: 舵系镗孔 四: 舵系衬套的加工及安装 五: 舵杆玻璃钢包覆工艺 六: 舵系的安装 七: 舵“零”位及舵叶灵活性检查 八:悬式平衡舵的安装说明 九:下水前的工作

舵系安装通用工艺说明: 本工艺通用于我厂目前建造的各类内河、沿海使用的中、小型船舶。 舵系结构为:设有舵销承座的普通平衡舵、设有导流管的普通平衡舵及悬式平衡舵。 舵系数量为:单舵或多叶舵;操舵装臵为:手操、液压推舵等型式。 由于各建造船舶产品的舵系结构和特点不同,有本工艺顾及不到的特殊之处,车间工艺股应根据施工船舶产品特点的个性,制订补充工艺(其中包括工艺布臵图、舵系拉线图、舵系镗孔图等)以完善建造船舶的舵系安装工艺,但舵系安装的主要顺序,方法及技术要 1.舵系船台焊接工作结束。上舵承本体(舵杆套筒)或舵托应全部装配完工,船体密性泵水报验合格。 2.舵系中心位臵及尺寸已确定,应符合图纸要求,并经报验合格。 3.上舵承座面板平行于基线。距基线的理论尺寸应符合要求,且上舵承座面板应留有镗削余量≥5mm。 4.下舵承本体,舵销承座内孔,均应留有镗削余量。 5.轴系中心线已测定。 6.舵系找中及安装期间,应停止一切振动性作业。

二:舵系中心线的找中: 1.上基准点:可在舵机舱顶部,亦可在舵机平台甲板舵中心线上方,设臵可调拉线支架 一具。 2.基准点:在舵销承座下方约800~1000mm处,焊装钢性支架,并在其上设臵可调节拖 板。 悬式平衡舵系可在船台地面设臵刚性支架,亦可不设下基准点,利用钢丝挂重划线。 或者将已加工内孔的下舵承本体直接装焊于船体上。 3.通过上基准点和下调节拖板拉线,采用φ0.8mm的琴钢丝,挂重60kg,钢丝应平直, 清洁和无扭曲,调节上、下基准,使其中心与舵系中心线同轴。 4.拉舵线与拉轴线应同时进行,其舵中心线位臵应符合图纸要求: 1)舵系中心线与轴系中心线的相对位臵偏差,每米不得大于1mm(即角度偏差<4′) (见图示) 2)舵系中心线与轴系中心线的相对位臵偏差,不得超过下式计算数值: δ=0.001 3 L ,L Array 3) 均不应大于5~10mm 5. 偏移及镗孔余量。 6. 镗削余量。 7. 上舵承座镗削平面至基线距离h 舵销承座镗削平面至基线距离,应符合图纸要求。 8.舵杆实际加工长度的确定: 测量记录舵销承座镗削平面及下舵承座端面至上舵承座镗削平面的实际距离尺寸,与 图纸相应位臵的理论尺寸来确定舵杆加工的实际长度,供机加车间加工。

圆形水池计算书

圆形水池设计 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》 《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《给水排水工程构筑物结构设计规范》(GB 50069-2002), 本文简称《给排水结构规范》《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138-2002), 本文简称《水池结构规程》 钢筋:d - HPB300; D - HRB335; E - HRB400; F - RRB400; G - HRB500; P - HRBF335; Q - HRBF400; R - HRBF500 ----------------------------------------------------------------------- 1 设计资料 1.1 基本信息 圆形水池形式:有盖 池内液体重度10.0kN/m3 浮托力折减系数1.00 裂缝宽度限值0.20mm 抗浮安全系数1.10 水池的几何尺寸如下图所示:

1.2 荷载信息 顶板活荷载:1.50kN/m2 地面活荷载:10.00kN/m2 活荷载组合系数:0.90 荷载分项系数: 自重 :1.20 其它恒载:1.27 地下水压:1.27 其它活载:1.40 荷载准永久值系数: 顶板活荷载 :0.40 地面堆积荷载:0.50 地下水压 :1.00 温(湿)度作用:1.00 活载调整系数: 其它活载:1.00 不考虑温度作用 1.3 混凝土与土信息 土天然重度:18.00kN/m3土饱和重度:20.00kN/m3 土内摩擦角ψ:30.0度 地基承载力特征值fak=40.00kPa 基础宽度和埋深的地基承载力修正系数ηb=1.00、ηd=1.00 混凝土等级:C25 纵筋级别:HRB400 混凝土重度:25.00kN/m3 配筋调整系数:1.20 纵筋保护层厚度: 2 计算内容 (1)荷载标准值计算 (2)抗浮验算 (3)地基承载力计算 (4)内力及配筋计算 (5)抗裂度、裂缝计算 (6)混凝土工程量计算 3 荷载标准值计算 顶板:恒荷载: 顶板自重 :5.00kN/m2 活荷载:

30000吨散货船舵系计算书

审 定 日 期 2004.01 标 检 审 核 校 对 描 校 编 制 吴 强 描 打 30000吨级散货船 详 细 设 计 舵系计算书 JH403-230-01js 上海佳豪船舶工程有限公司 标记 数量 修改单号 签 字 日 期 总面积 m 2 0.6875 共 页 11 第 页 1 会 签 旧底图登记号 底图登记号

1、概述 本船为单甲板、双底层、艉机型、单机、单桨、单舵船。航行在国内沿海港口。本船装载货物以煤炭为主,兼运铁矿石谷物等散货。 2、计算依据 本计算书是根据“2001钢质海船入级与建造规范”第2分册第3章第一节的有关要求进行计算的。 3、船舶的主要尺度及要素: 总长L0a 178.00m 垂线间长Lbp 170.80m 型宽B 27.60m 型深D 13.90m 设计吃水d 9.60m 服务航速v 13.5m 4、舵的要素计算 型式:半平衡半悬挂舵 舵数量:1只 4.1舵面积:A=A1+A2=2 5.26m2 A1= A11+ A1?==15.482m2 A2= A22+ A2 ?==9.78m2 ?1——系数0.33(正车),0.66(倒车) ?2——系数0.25(正车),0.55(倒车) A1?=5.318 m2 A11=10.16 m2 A2 ?=1.425 m2 A2 2=8.357 m2

正车: F=132×1.27×1.1×1.0×25.26×13.52=848.93KN 倒车: F=132×1.27×0.8×1.0×25.26×6.752=154.35KN 4.3舵杆扭矩 T=F ·R NM 式中:F —舵力 正车 F=848.93KN 倒车 F=154.35KN R —臂矩 m R=c 1(α1-β1) A A 1+ c 2(α2-β2)A A 2 (m) 式中:A 1=15.482 m 2 A 2=9.78 m 2 c 1=78.32 432 .1614.2=+ c 2=2 2h A =2158.2815.2+=2.49 β1=11A f A =482.15318 .5=0.343 β2=2 2A f A = 78 .9425 .1=0.146 正车时: R=3.78×(0.33-0.343)×235.25482.15+2.49×(0.25-0.146)×235 .25753 .9 =-0.03+0.1=0.07 m 又在正车时 R> A 101 (A 1c 1+ A 2c 2)=26 .25101?×(15.483×3.78+9.753×2.49)=0.328

矩形水池结构计算书

矩形水池结构计算书 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、示意图: 二、基本资料: 1.依据规及参考书目: 《水工混凝土结构设计规》(SL 191-2008),以下简称《砼规》 《建筑地基基础设计规》(GB 50007-2002),以下简称《地基规》 《给水排水工程构筑物结构设计规》(GB50069-2002),以下简称《给排水结规》 《给水排水工程钢筋混凝土水池结构设计规程》(CECS138-2002),简称《水池结规》 《建筑结构静力计算手册》(第二版) 2.几何信息: 水池类型: 无顶盖,半地下水池 水池长度L =11940 mm,宽度B =5990 mm,高度H =4180 mm 地面标高=0.000 m,池底标高=-4.180 m 池壁厚度t3=400 mm,池壁贴角c1=0 mm 底板中间厚度t2=400 mm,底板两侧厚度t4=400 mm 底板贴角长度c2=0 mm,底板外挑长度a =400 mm 池壁顶端约束形式: 自由 底板约束形式: 固定 3.地基土、地下水和池水信息: 地基土天然容重γ=18.00 kN/m3,天然容重γm=20.00 kN/m3 地基土摩擦角φ=30.00 度,地下水位标高=-2.000 m 池水深H W=0.00 mm,池水重度γs=10.00 kN/m3 地基承载力特征值f ak=120.00 kPa 宽度修正系数ηb=0.00,埋深修正系数ηd=1.00 修正后地基承载力特征值f a=170.89 kPa 浮托力折减系数=1.00,抗浮安全系数K f=1.05

船舶稳性校核计算书

一、概述 本船为航行于内河B级航区的一条旅游船。现按照中华人民共和国海事局《内河船舶法定检验技术规则》(2004)第六篇对本船舶进行完整稳性计算。 二、主要参数 总长L OA13.40 m 垂线间长L PP13.00 m 型宽 B 3.10 m 型深 D 1.40 m 吃水 d 0.900 m 排水量?17.460 t 航区内河B航区 三、典型计算工况 1、空载出港 2、满载到港

五、受风面积A及中心高度Z 六、旅客集中一弦倾侧力矩L K L K=1 ? 1? n 5lb =0.030 m n lb =1.400<2.5,取 n lb =1.400 式中:C—系数,C=0.013lb N =0.009<0.013,取C=0.013 n—各活动处所的相当载客人数,按下式计算并取整数 n=N S bl=28.000 S—全船供乘客活动的总面积,m2,按下式计算: S=bl=20.000 m2 b—乘客可移动的横向最大距离,b=2.000 m; l—乘客可移动的横向最大距离,b=2.000 m。 七、全速回航倾侧力矩L V L V=0.045V m2 S KG?a2+a3F r d KN?m 式中:Fr—船边付氏数,F r=m 9.81L ; Ls—所核算状态下的船舶水线长,m; d—所核算状态下的船舶型吃水,m; ?—所核算状态下的船舶型排水量,m2; KG—所核算状态下的船舶重心至基线的垂向高,m; Vm—船舶最大航速,m/s;

a3—修正系数,按下式计算; a3=25F r?9 当a3<0,取a3=0;当a3>1时,取a3=1; a2—修正系数,按下式计算; a2=0.9(4.0?Bs/d) 当Bs/d<3.5时,取Bs/d=3.5;当Bs/d>4.0时,取Bs/d=4.0;

坞修流程

船舶常规坞修工艺流程及质量对策浅谈 摘要:文章介绍了船舶常规坞修的主要工作内容及工艺流程,并在此基础上提出了船舶坞修过程中各环节的质量控制要点。 关键词:坞修;工艺流程;质量控制 船舶常规坞修就是按船级社的规定,在一定的营运周期后必须在船坞里对船舶进行的检验。坞修作业流程包括:①螺旋桨作业流程;②轴系作业流程;③舵系作业流程;④海底阀、通海阀作业流程。 1进坞前准备 在船体方面,应要求船方准备总布置图、线型图、坞墩图、船底塞布置图、外板标记图等。在轮机方面,应要求轮机长准备海底阀箱布置图、通海阀布置图;舵、舵杆、舵销、舵承的装配图和零件图,舵杆和舵销的安装工艺图和计算书;艉轴、轴套、艉轴密封,艉轴承,螺旋桨的零件图和装配图;防渔网装置的零件图和装配图;艉管布置图和结构图;艉尖舱或艉管冷却水舱图及加热管、压载管、空气测探管等需在坞内安装的管系图纸;螺旋桨拆装工艺和安装计算书;侧推器装配图;计程仪、测探仪等安装图。必须详细了解及参考该船的历史资料,海损船还应提供海损部位的详细报告。同时注意如有外加电流阴极保护,要求关掉电源。如果要拆检艉轴,还应当在进坞之前拆开艉轴的连接法兰,测量其偏移及曲折值并作记录,以作修理安装的参考和比较。 进坞前与船方明确船在坞期间应当遵守的条例和签订相关协议,要求船方尽量将船调平,干坞和浮坞前后水尺尽量不要超过1%。主要防止坐墩

时船体附加折断应力。但是浮坞万一由于某种原因达不到1%,可以放大一点,在1.5%以内。横倾角度也要求不超过1.5°(国外要求为0.5°),同时也要求船方将双层底舱,深油舱,污水沟处的污水、油腻及泥等清除干净,特别是海损船,尽量防止对船坞的污染。 2坞内主要常规工程项目及质量控制要点 2.1船体及舵、桨等外观检查 坞内抽干水后,坞修主管应和船东、轮机长、大副一起查看和确认船体的坐墩情况,同时要查看船体外板、舵和螺旋桨等的外观状况,以便确定是否有计划外的修理项目。同时还应对桨、舵等重要部位拍照以存查备用。 2.2海底阀箱检查及海底阀修理 应在船壳高压水清洗前打开海底阀箱的格栅,以便对阀箱内部冲洗。冲洗结束后,修船主管应立即会同轮机长对阀箱内部情况进行检查并确认修理项目内容。海底阀箱内部特别是底部淤积的污泥必须彻底冲洗干净,清除阀箱表面所有海生物。因进坞时所有海底阀都关闭,查看是否有滴水,如果有说明这些阀漏水,要重点跟踪记录。 海底阀修理虽然较简单,但稍有疏忽,就会对坞期造成较大的延误,因此必须对其修理质量重点把关。一般的检验方法为阀盘及阀座的接触环带作着色研配检查,如整体拆解的则可进行水压试验。 2.3轴系及螺旋桨拆检修理

海工项目稳性计算案例分析

中远船务海工班讲座
海工项目稳性计算案例分析
张利军 利 2011年4月20日
内容概要
? 船舶及海工的主要性能介绍 ? 静水力分析 ? 完整稳性 ? 抗沉性计算 ? 稳性计算实例
2
1

主要性能介绍
海工项目与船舶关注对象的相似与不同……
3
浮 性 船舶在一定装 船舶在 定装 载情况下浮于 一定水面位置 的能力。
不沉
4
2

稳 性 船舶在外力作用下,船 舶发生倾斜而不致倾覆 ,当外力作用消失后, 仍能回复到原来平衡位 置的能力。 不翻
5
抗沉性
船舶在破损进水的情况 下仍然具备一定的浮性 和稳性的能力。
不沉不翻
6
3

快速性
? 船舶阻力
? 船型研究:使得设计航速下的船舶阻力最小 ? 阻力确定:为确定主机功率提供依据
? 船舶推进
? 主机功率最小 主机功率最小:给定航速,通过螺旋桨设计, 给定航速 通过螺旋桨设计 使所需功率最小 ? 航速达到最大:给定主机功率,通过螺旋桨设 计,使得船舶达到最大航速
7
耐波性
? 研究船舶的摇荡运动 研究船舶的摇荡运动:在六个自由度下的运动 在六个自由度下的运动 ? 摇荡引起的动力响应:砰击、甲板上浪、螺旋桨 飞车、波浪弯矩等
8
4

耐波性
垂荡Heave z 艏摇Yaw 横摇Roll x
纵荡Surge 纵摇Pitch y 横荡Sway
9
操纵性
? 航向稳定性 航向稳定性:匀速直线航行的船舶,当受到外力偏 匀速直线航行的船舶 当受到外力偏 离航线,在外力消除后,回到原来航行方向的能力 ? 回转性:在一定舵角下作圆周运动的能力
5

水池计算书(手写版本)

保管期限 密级 设计计算书 建设单位上海美梭羊绒纺织品有限公司 工程名称山东建得佳纺织有限公司 工程号-子项号M1117-06 子项名称消防泵房设计专业结构页数部门一所计算人年月日校核人年月日审核人年月日 上海纺织建筑设计研究院

目录 一、设计采用规范 二、荷载选用及计算 三、基础工程 四、上部结构设计 五、图形文件及程序计算书

一、设计采用规范 1.《建筑结构可靠度设计统一标准》【GB50068-2001】 2.《建筑结构荷载规范》【GB50009-2001】(2006年版) 3.《混凝土结构设计规范》【GB50010-2010】 4.《建筑抗震设计规范》【GB50011-2010】 5.《建筑地基基础设计规范》【GBJ50007-2002】 6.《砌体结构设计规范》【GB50003-2001】 二、工程概况: 本工程位于位于山东聊城东阿县东阿工业园区,胶光路以北鑫大地建材厂东邻。本工程泵房结构形式为砖混砌体结构。室内外高差为0.300米。 本工程抗震设防烈度为7度,建筑场地类别为Ⅲ类,框架抗震等级为三级。 三、荷载选用及计算 1.泵房屋面(结构找坡)荷载的标准值: 1) 恒载 40厚C20细石混凝土找平层 0.04x25=1.0 KN/m2 40厚挤塑聚苯板保温层(仅用于保温屋面)0.50x0.04=0.02 KN/m2 1.2厚三元乙丙橡胶防水片材防水层 0.01 KN/m2 20厚1:3水泥砂浆找平层 0.02x20=0.4 KN/m2

100厚楼板自重 0.10x25=2.5 KN/m2 15厚1:2:4混合砂浆打底粉刷0.015x20=0.3 KN/m2 合计 4.23 KN/m2 取 4.50 KN/m2 2)屋面活载: 0.50 KN/m2 2.水池盖板(建筑找坡)荷载的标准值: 1) 恒载 40厚C20细石混凝土找平层 0.04x25=1.0 KN/m2 40厚挤塑聚苯板保温层(仅用于保温屋面)0.50x0.04=0.02 KN/m2 1.2厚三元乙丙橡胶防水片材防水层 0.01 KN/m2 20厚1:3水泥砂浆找平层 0.02x20=0.4 KN/m2 100厚楼板自重 0.10x25=2.5 KN/m2 15厚1:2:4混合砂浆打底粉刷 0.015x20=0.3 KN/m2 建筑2%砂浆找坡 0.09x10=0.9 KN/m2 合计 5.13 KN/m2 取 5.50 KN/m2 2)屋面活载: 2.00 KN/m2 3.风荷载: 0.45 KN/m2 4.雪荷载: 0.35 KN/m2 5.地震作用: 抗震设防烈度为7度,设计地震分组为第二组,设计基本地震加速 度为0.10g,建筑场地类别为Ⅲ类。

小型船舶的操舵装置

小型船舶的操舵装置 1.前言 船舶的自动化、省力化也渗透到了小型船舶。最近受劳动力不足的影响,甚至连只有数吨的渔船也装备起最新的电子仪器和省力的渔捞机械。 最近以来渔场逐步变得越来越远,到渔场去的驾驶已是相当繁重的劳动。特别是在一个人的时候,连吃饭时也得掌舵,真是够呛。 自动操舵装置(自动驾驶仪)却为我们一举解决了这些苦恼。只要用小的标度盘拨正了航向,说得过份一点就是睡着了船也会朝着那个方向驶去。 由于自动驾驶仪能使船沿直线驶向目的地,所以在缩短航行时间、延长渔捞作业时间的同时,其最大优点还可节约燃料。最近船上增加了这种自动驾驶仪,对主机的操作也可实行遥控,小型船舶的省力化更向前推进了一步。 但是这些装置并不能防止碰撞的危险,所以了望工作绝对不能松懈。 现将最近装备于小型渔船上的操舵装置举例说明如下。 2.操舵装置的种类 小型船的操舵方法有下列六种:(1)棒舵;(2)机械式;(3)手动油压式;(4)机动油压式; (6)电动式;(6)电气——油压式。 2—1棒舵 这是一种最古老而简单的装置, 仅仅是把舵柄装在舵轴上直接用人力 操纵。因为用的是人力,转舵扭矩有 限,逢恶劣夭气等情况甚为不便。 2—2机械式 设有舵轮,通过链条、齿轮、连 杆或钢丝绳等带动舵。图1是典型的 钢丝绳式舵机。 当然,舵轮是装在离舵很远的“操 舵室”中,即使遇到恶劣夭气也不会 淋湿。另外,使用减速器后可提高扭 矩,使舵变轻。 2—3手动油压式 舵轮上安装油泵,使它回转产生油压动力。舵轴 与油压执行器连接,油压执行器与油泵间配以管路, 由油泵产生的油压动力推动油压执行器操舵。 因油泵的驱动源是人力,所以产生的动力是有限 的,不过可把舵轮放大,以得到较大的转舵扭矩。如 图2.。 手动油泵内装有为防止油箱和舵产生逆压的阀件 等。 2—4机动油压式 手动油压式是依靠人力产生油压动力的,与此相 反,机动油压式是由主机、辅机或电动机等驱动油泵 产生油压动力的。 图3是机动油压式舵机。

舵系布置图设绘通则

舵系布置图设绘通则

1 主题内容与适用范围 1.1本标准规定了普通流线型舵“舵系布置图”的设绘依据、基本要求、内容要点、图面要求、注意事项、校审要点、质量要求以及附录。 1.2本标准适用于详细设计阶段的"舵系布置图"设绘。技术设计、施工设计亦可参照采用。 2 引用标准及设绘依据图纸 2.1 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效,所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 2.2 设绘依据图纸 a)设计任务书或技术规格书; b)船体说明书; c) 总布置图; d) 型线图; e) 尾部结构图; f) 尾柱图; g) 舵设备计算书; h) 舵机图; i) 舵机舱布置图。 3 基本要求 3.1 详细设计的舵系布置图,应按总布置图及舵设备计算书以及设计任务书对舵的数量及型式的要求绘制。图上应明确地表示出舵叶的外形尺寸,舵杆的外形尺寸及连接方式(包括上、下舵承,上、下舵销等),以及舵杆在舵机平台上的布置位置。 3.2 图纸还要画上舵杆与舵柄的联接方式,因为联接方式涉及零件舵杆图的设计。 3.3 图上还应标注出各零部件的外形尺寸及其装配关系,绘制出各联接部件的节点图,供设绘舵系另部件图之用,并作为供船东和船检审查的图样之一。

3.4 目前我院设计的大部分船舶舵的数量与螺旋桨数量相同(舵的型式大多采用悬挂式舵和挂舵臂舵,另外还有襟翼舵)。 3.5 舵与螺旋桨的纵向距离一般不应防碍螺旋桨拆装要求,纵向距离一般为1/4~1/2D(D—螺旋桨直径)。舵叶中心大多与螺旋桨中心的垂向距离二者接近一致为佳,若有偏移在0.1D范围内。 3.6 舵设计时要考虑舵维修时舵杆与舵叶的拆装方便性,另外还要考虑保证舵叶的水密性。 4 内容要点 4.1 应绘制出整个舵系的布置位置,以装配图的形式表示出整个舵系的所有零部件,并进行编号列入材料表内,注明相应的图号或标准号,有特殊要求的场合应加以说明。 4.2应注明上述零件的配合尺寸,定位尺寸或主要外形尺寸。 4.3 为了清楚地表明舵机的相对位置以及与上述另部件的传动关系,本图中也可把舵机绘入,但需注意重量、安装位置、型号等不要与“舵机舱布置图”相违或重复。 5 图面要求 5.1 图纸幅面应符合GB4476-84金属船体制图的要求。 5.2 图中主要位置应绘出舵系的整个侧视图,绘制双舵时,建议增绘尾部舵杆中心线处的横剖面视图,以观察舵叶从一舷最大舵角转至另一舷最大舵角后,是否与船体外板相碰。以及下舵承体是否与船体有效联接。对上、下舵承、上、下舵销等重要部位设局部放大图。布图时应注意图面布局的匀称和合理。 5.3 常用比例:一般采用1:10,1:20,1:25,1:5。 5.4 线条 凡属本图的零部件用粗实线表示,尾部船体轮廓、舵机甲板或平台、舱壁、尾柱、挂舵臂、舵踵等用细双点划线表示,船体中心线、基线及件号引出线用细实线表示。 5.5尺寸标注 图中各配合面应标注配合尺寸,如舵杆与上舵承和下舵承的公差及配合尺寸,以及舵销与舵叶铸钢件等的公差及配合尺寸。重要的零

消防水池计算书

消防水池计算书 (一)处理池没水时荷载 1、池壁计算 主动土压力系数Ka取1/3 土重度r=18KN/m3无地下水池壁4.7m深 ∵LB/HB=5.3>2 ∴按单向板计算 主动土压力q土=rHKa=18x1/3x4.7=28.2KN/m 地面荷载产生侧压力q活=10x1/3=3.33KN/m ①竖向配筋计算 第一种情况 三种压力产生的弯矩 部位类型土压力弯矩Ms 水压力弯矩Mw 地荷载弯矩Mm 下端支座-41.5 0 -9.2 跨中18.6 0 5.2 支座基本组合弯矩值M=(Ms+Mw)x1.27+1.4xMm=65.585KN·m

支座准永久组合弯矩值Mq=Ms+Mw+0.5Mm=46.1 KN·m 跨中基本组合弯矩值M=(Ms+Mw)x1.27+1.4xMm=30.9KN·m 跨中准永久组合弯矩值Mq=Ms+Mw+0.5Mm=21.2KN·m 假设壁厚h=250,混凝土强度C30 查表可知选筋12100的裂缝(0.25mm)和承载力弯矩分别为63.33KN·m、67.22KN·m,大于支座计算准永久弯矩46.1 KN·m和基本组合弯矩65.585KN·m,满足要求。且配筋率0.452%,合适。 所以外钢筋选配12100 As=1131mm2/m 弯矩图 第二种情况 水压力q水=rh=10x4.7=47KN/m

两种压力产生的弯矩 部位类型土压力弯矩Ms 水压力弯矩Mw 下端支座-41.5 -69.22 跨中18.6 30.94 支座基本组合弯矩值M=1.27Mw-Ms=46.4KN*m 支座准永久组合弯矩值Mq=Mw-Ms=27.72KN*m 跨中基本组合弯矩值M=1.27Mw-Ms=20.69N*m 跨中准永久组合弯矩值Mq=Mw-Ms=12.34KN*m 池壁侧、外侧为12100均满足强度和裂缝要球。

舵系的设计计算

舵系的设计计算 1. 目的 通过对舵系的各组成部分的设计、计算和验算确保本设计设计的舵系能满足船舶航行实现转向及安全的需要。 2. 适用范围 本设计计算中的有关设计数据和内容,只适用于本设计中的舵系。 2. 舵系计算分析 本设计采用双舵销半平衡舵,从图可知舵梁有三个支座,因此它是一个一次静不定梁系,也就是说由静力平衡条件的二个方程式无法求得三个支反力。为此我们去掉一个“多余”支座(通常取为弹性支座),而代以“多余”支反力,使梁系成为静定梁系。这样即可求得另外二个支座的支反力(为“多余”支反力的函数)。可以计算梁及弹性支座的变形能,b V 和s V 系统的总变形能 s b V V V +=。根据最小变形能定理可得到一个补充方程: 0=??a R V (1) 这样就可以由(1)求得弹性支反力a R 。再由二个静力平衡方程式即可

求得另二个支反力b R 和c R 。接着就可按材料力学的方法作出断面剪力和弯矩图了。 因为 ?=l z b d z EI z M V 02) (2) ( 所以 ????=??l z a a b d R z M z EI z M R V 0)()()(。 又因梁是由几个不同断面的梁段组成,所以又可写成: zi n i l b d EIi zi M V ∑? ==1 21 2) (, ∑?=???=??n i l z a a b i d R zi M EIi zi M R V 10)()( 弹性支座a 的支座变形能a a s Z R V 2 21=, 所以 a a a s Z R R V = ?? (1) 式可写为: a a zi a n i l Z R d R zi M EIi zi M +???∑? =)()(1 1 (1a ) 式中 )(z M ,)(zi M —距原点z 处的断面变矩)(z M 和第i 段梁的距第i 段梁原点zi 断面弯矩)(zi M ; )(z I ,Ii —距原点z 处的断面惯性距)(z I 和第i 段梁段数; a Z —弹性支座a 的支座弹簧常数。按规范给出的公式计算。 求弹性支座a 的支反力a R a R = R c M a M Q Q K M K M K Q K Q K c a ?+?+?+?2121 式中 );,,,,(4242a R R Z I I l l F K =

船舶稳性和吃水差计算

船舶稳性和吃水差计算 Ship stability and trim calculations 1.总则General rules 保证船舶稳性和强度在任何时候都保持在船级社认可的稳性计算书规定范围内,防止因受载不当,产生应力集中造成船体结构永久性变形或损伤。Ensure stability and strength of the ship at all times to maintain stability within stability calculations approved by the classification societies in order to prevent due to load improperly resulting in stress concentration which will cause the ship structure permanent deformation or subversion. 2.适用范围Sphere of application 公司所属和代管船舶的稳性、强度要求 To satisfy the requirement of company owned and managed ships stability and strength 3.责任Responsibility 3.1.大副根据本船《装载手册》或《稳性计算手册》等法定装载资料,负责合理配载或对 相关部门提供的预配方案进行核算,确保船舶稳性及强度处于安全允许值范围。Based on the ship "loading manual" or "stability calculations manual" and other legal loading information, the chief officer is responsible for making reasonable stowage plan or adjust accounts of the pre plan from relevant departments to ensure stability and strength of the ship in a safe range of allowed values. 3.2.船长负责审批大副确认的配载方案和稳性计算。 The captain is responsible for checking and approving the stowage plan and stability calculation that has been confirmed by chief officer. 4.实施步骤Implementation steps 4.1.每次装货前,大副必须对相关部门提供的预配方案仔细核算,报船长审核签字后才可 实施。 Every time before loading, the chief officer should carefully adjust accounts of the pre stowage plan from the relevant department and transfer it to captain, the stowage plan should be implemented after captain reviewing and signing. 4.2.船舶装货前后大副应认真进行船舶稳性及强度计算校核,包括装货前的预算和装货后 的船舶局部强度和应力状况的核算,货品发生变化后,要重新进行计算。计算时充分考虑自由液面,油水消耗,污水变化及甲板结冰等对船舶稳性产生的影响,确保船舶在离港、航行、抵港的过程中均满足要求。 Every time before loading, the chief officer should carefully calculate and check the ship’s stability and strength, including calculation before loading and the partial strength and stress condition of the ship after loading, if cargos changes, the stability and strength should be re-calculated. When calculating, should fully consider the free surface, water and oil consumption, sewage and water ice on deck and other changes on the impact of ship stability, to ensure that the ship departure, navigating and arriving at port in the process can meet the requirements. 4.3.开航前,大副应完成初稳性高度和强度的计算。稳性计算结果应满足: Before departure, the chief officer should complete the calculations of height of initial stability and strength. Stability calculation results should be satisfied as below: hc - ⊿h > hL 式中:hc:计算的初稳性高度The calculating height of initial stability ⊿h:自由液面修正值Free surface correction value hL:临界初稳性高度The critical height of initial stability 船舶静水力弯矩和剪力以及局部强度不得超过允许值。 Hydrostatic moment of force, shear force and partial strength of the ship can not to exceed the allowable values. 4.4.大副要将每航次的稳性计算资料包括积载图留存,并将稳性计算中的重要内容摘录记 在航海日志中,报船长审核确认签字。 The chief officer should preserve such documents including stability calculation information and stowage plan, and records the important contents of the stability calculation into the log, which shall be reported to captain to verify and sign.

水池计算书

矩形水池设计 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》 《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《给水排水工程构筑物结构设计规范》(GB 50069-2002), 本文简称《给排水结构规范》《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138-2002), 本文简称《水池结构规程》 钢筋: E - HRB400 1 基本资料 1.1 几何信息 水池类型: 有顶盖半地上 长度L=7.750m, 宽度B=14.300m, 高度H=6.350m, 底板底标高=-1.850m 池底厚h3=350mm, 池壁厚t1=300mm, 池顶板厚h1=150mm,底板外挑长度t2=350mm 注:地面标高为±0.000。 (平面图) (剖面图) 1.2 土水信息 土天然重度18.00 kN/m3 , 土饱和重度20.00kN/m3, 土内摩擦角30度 修正后的地基承载力特征值fa=210.00kPa 地下水位标高-2.000m,池内水深5.000m, 池内水重度10.00kN/m3, 浮托力折减系数1.00, 抗浮安全系数Kf=1.05 1.3 荷载信息 活荷载: 池顶板1.50kN/m2, 地面10.00kN/m2, 组合值系数0.90 恒荷载分项系数: 水池自重1.20, 其它1.27 活荷载分项系数: 地下水压1.27, 其它1.27 活载调整系数: 其它1.00 活荷载准永久值系数: 顶板0.40, 地面0.40, 地下水1.00, 温湿度1.00 不考虑温湿度作用. 1.4 钢筋砼信息 混凝土: 等级C30, 重度25.00kN/m3, 泊松比0.20

舵系的检修(补充内容)

第十三节舵系的检修 船舶舵系是实现船舶转向、调头、直航等操纵的船舶航向控制装臵,是船舶航行的重要设备。舵系是由那些将舵机动力传递到舵叶产生舵效的部件和构件组成的,包括固定件——舵杆舵承(上、下舵承)、舵销轴承、舵轴等,及运动件一一舵杆、舵叶和舵销等。不包括舵机及其操纵系统。 舵系安装在船舶尾部螺旋桨的正后方,有单、双舵系之分。一般远洋及近海商船为单桨、单舵;客船、军舰及有的内河船舶为双桨、双舵。舵叶浸在水中,转动舵叶时,舵叶水动力对船舶产生力矩,迫使船舶改变航向或保持直线航行。 一、舵系结构和舵的种类 l.舵系结构 舵系结构类型很多,随船舶类型、大小和舵系布臵等的不同有不同的舵系结构。较为广泛应用的是穿心舵轴平衡舵。舵叶在舵杆转动轴线两侧非对称分布,舵叶上端面与舵杆用法兰连接。舵轴穿过舵叶,其中心线与舵杆中心线重合。舵叶随舵杆左右转动。舵杆支承是位于船体内部舵机房的上舵承,使其承受舵叶的部分重量和舵杆的径向、轴向负荷。上舵承为滚动止推轴承。舵轴上端与尾柱用法兰连接,舵叶内设有2个铁梨木舵承,用以支承包有钢套的穿心舵轴。舵轴的下端锥体臵于舵底托支承中(下舵承)。穿心舵轴平衡舵属于三支点舵,具有结构简单、舵效高和便于修造等特点。 2.舵的种类 舵的种类很多,主要有以下几种: 1)按舵的旋转轴线位臵分为平衡舵、半平衡舵和不平衡舵 (1)平衡舵转动轴线在舵叶的中间,把舵叶分为两部分。舵叶转动时两部分均承受水压产生力矩。此二力矩方向相反,使转舵力矩降低,在某一舵角时为零,达到完全平衡。平衡舵所需舵机功率较小。如图1(a)所示。 (2)半平衡舵仅舵的下半部起平衡作用,如图1(b)所示。 (3)不平衡舵舵的旋转轴线在舵叶的一边,即舵杆一侧有舵叶,对转舵力矩不起平衡作用,如图1(c)所示。

货船完整稳性计算书

船舶静力学计算及稳性衡准系统V4.0(0406) WH00033 * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 船舶完整稳性计算书* * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * 船名: 杨小城船 数据库名: 杨小城船.mdy 图纸号: 委托单位: 计算标识: 计算单位: 扬州华海船舶设计有限公司 计算签名: 审核签名: 批准签名: 计算日期: 2009 年04 月11 日 程序编制单位: 中国船级社武汉规范研究所

船舶稳性计算书 CALCULTION ON STABILITY 一概述 1选用规范: 2004年版《内河船舶法定检验技术规则》第六篇稳性(以下简称《规则》)2船舶种类: 干货船---- 货船 3航区: J2级航段, A级航区 4主要要素: 船长L -------------------- 110.000 m 垂线间长Lp -------------------- 106.300 m 型宽 B -------------------- 19.200 m 型深 D -------------------- 7.060 m 设计吃水T -------------------- 6.300 m 舭龙骨面积Ab -------------------- 0.000 m^2 设计航速Vm -------------------- 16.000 km/h 水的重量密度r -------------------- 1.000 t/m^3 船型特征TYPE -------------------- 常规船型 5计算说明: 本计算书用静水力数据计算 进水位置极限静倾位置项目垂向坐标纵向坐标横向坐标垂向坐标纵向坐标横向坐标 单位(m) (m) (m) (m) (m) (m) 位置 1 7.580 -41.210 7.600 7.080 0.000 9.600 6结论: 本船完整稳性满足《规则》要求

水池壁计算书

单向板式地下室外墙计算 一、计算条件: 工程名称: 工程一 工程项目: 项目一 外墙编号: 外墙1 计算方式: 按受弯构件 是否考虑人防荷载: 否 地下室层数n: 1 地下一层层高H1(m): 4.15 地下一层墙厚t1(mm): 300 地下一层顶板标高DbBg(m): 0 室外地坪标高DpBg(m): 0 水位标高SwBg(m): 0 地面活载Q h(kPa): 0 土的内摩擦角θ(°): 30 是否考虑基坑支护的影响: 否 水位以上土的容重r(kN/m3): 0.00001 水位以下土的浮容重r'(kN/m3): 0.00001 外墙单侧最小配筋率(%): 0.125 外墙裂缝限值(mm): 0.3 地下一层顶板处支座型式: 铰接 是否进行支座弯矩调幅: 否 地下一层混凝土强度等级: C35 钢筋级别: HRB400 墙外侧保护层厚度c1(mm): 40 墙内侧保护层厚度c2(mm): 15 裂缝计算依据《混凝土结构设计规范》GB50010-2010 二、计算依据: 《混凝土结构设计规范》GB50010-2010 《建筑结构荷载规范》GB5009-2012 三、计算结果: (1)计算简图符号说明: T - 静止土压力S - 静止水压力 Q - 活载侧压力R - 人防等效静荷载 (2)荷载计算 静止土压力系数: K = 1 - sin(θ) = 1 - sin(30.0) = 0.50 基础底板上皮标高: JcBg = DbBg - H1 = 0.000 - 4.150 = -4.150 m 总的水头高度: H s = SwBg - JcBg = 0.000 - ( - 4.150) = 4.150 m 基础底板上皮静止水压力: Q s = H s × 10 = 4.150 × 10 = 41.50 Kpa 水位以上土的高度: H t1 = DpBg - SwBg = 0.000 - 0.000 = 0.000 m 水位标高静止土压力: Q t1 = K ×H t1 ×r = 0.50 × 0.000 × 0.0 = 0.00 Kpa 水位以下基础底板以上土的高度: H t = SwBg - JcBg = 0.000 - ( - 4.150) = 4.150 m 基础底板上皮静止土压力: Q t = Q t1 + K ×H t ×r' = 0.00 + 0.50 × 4.150 × 0.0 = 0.00 Kpa

相关主题
文本预览
相关文档 最新文档