当前位置:文档之家› 解析几何答案尤承业

解析几何答案尤承业

解析几何答案尤承业
解析几何答案尤承业

解析几何答案尤承业

解析几何答案尤承业

【篇一:数学专业参考书整理推荐】

>从数学分析开始讲起:

数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。当大四考研复习再看时会感觉轻松许多。数学系的数学分析讲三个学期共计15学分270学时。将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分

数学分析书:

初学从中选一本教材,一本参考书就基本够了。我强烈推荐11,推荐1,2,7,8。另外建议看一下当不了教材的16,20。

中国人自己写的:

1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)

应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。网络上可以找到课后习题的参考答案,不过建议自己做。不少经济类工科类学校也用这一本书。里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。不过仍然不失为一本好书。能广泛被使用一定有它自己的一些优势。

2《数学分析》华东师范大学数学系著

师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。课本最后讲了一些流形上的微积分。虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。3《数学分析》陈纪修等著

以上三本是考研用的最多的三本书。

4《数学分析》李成章,黄玉民

是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。

5《数学分析讲义》刘玉链

我的数学分析老师推荐的一本书,不过我没有看,最近应该出了新版,貌似是第五?版,最初是一本函授教材,写的应该比较详细易懂。不要因为是函授教材就看不起,事实上最初的函授工作都是由最好的教授做的。细说就远了,总之可以看看。

6《数学分析》曹之江等著

内蒙古大学数理基地的教材,偏重于物理的实现,会打一个很好的基础,不会盲目的向n维扩展。适合初学者。国家精品课程的课本。

7《数学分析新讲》张筑生

公认是一本新观点的书,课后没有习题。材料的处理相当新颖。作者已经去世。8《数学分析教程》常庚哲,史济怀著

中国科学技术大学教材,课后习题极难。

9《数学分析》徐森林著

与上面一本同出一门,清华大学教材。程度好的同学可以试着看一看。书很厚,看起来很慢。

10《数学分析简明教程》邓东翱著

也是一本可以经常看到的书,作者已经去世。国家精品课程的课本。

11许绍浦《数学分析教程》南京大学出版社

这些书应该够了,其他书不一一列举。从中选择一本当作课本就可以了。

外国数学分析教材:

11《微积分学教程》菲赫金格尔茨著

数学分析第一名著,不要被它的大部头吓到。我大四上半年开始看,发现写的非常清楚,看起来很快的。强烈推荐大家看一下,哪怕买了收藏。买书不建议看价格,而要看书好不好。一本好的教科书能打下坚实的基础,影响今后的学习。

12《数学分析原理》菲赫金格尔茨著

上本书的简写,不提倡看,要看就看上本。

13《数学分析》卓立奇

观点很新,最近几年很流行,不过似乎没有必要。

14《数学分析简明教程》辛钦

课后没有习题,但是推荐了《吉米多维奇数学分析习题集》里的相应习题。但是随着习题集的更新,题已经对不上号了,不过辛钦的文笔还是不错的。

15《数学分析讲义》阿黑波夫等著

莫斯科大学的讲义,不过是一本讲义,看着极为吃力,不过用来过知识点不错。16《数学分析八讲》辛钦大师就是大师,强烈推荐。

17《数学分析原理》rudin

中国的数学是从前苏联学来的,和俄罗斯教材比较像,看俄罗斯的书不会很吃力。不过这本美国的书还是值得一看的。写的简单明了,

可以自己试着把上面的定理推导一遍。18《微积分与分析引论》库朗

又一本美国的经典数学分析书。有人认为观点已经不流行了,但是数学分析是一门基础课目的是打下一个好的基础。

19《流形上的微积分》斯皮瓦克

分析的进一步。中国的数学分析一般不讲流形上的微积分,不过流形上的微积分是一种潮流,还是看一看的好。

20《在南开大学的演讲》陈省身

从中会有一些领悟,不过可惜好像网络上流传的版本少了一些内容。

21华罗庚《高等数学引论》科学出版社

数学分析习题集

不做题就如同没有学过一样。希望将课本后的习题一道道自己做完,不要看答案。买习题集也要买习题集,不买习题集的答案。

1《吉米多维奇数学分析习题集》

最近几年人们人云亦云的说这本书多么不好,批评计算题数目过多,不适合数学系等等。但这本习题集不再被广泛使用的原因是那本习题解答的出现,学生对答案的抄袭使这部书失去了价值。如果你不看答案的话它依然是数学分析第一习题集。不要没有做过就盲目的批评。有没有做过自己心里知道,并会影响自己今后的学习。

2《数学分析习题课教材》第一版或《数学分析解题指南》第二版,林源渠,方企勤等两本书一样的,再版换了名字。第一版网上有电子版,第二版可以买纸版。和3成一套。3《数学分析习题集》林源渠,方企勤等

由于《吉米多维奇数学分析习题集》答案的出现使这本书得到的评价变高了,原因是这本书没有答案。只能自己做。

4《数学分析习题精解》科学出版社版,还有裴礼文或者钱吉林的书

过考试不错,要学数学分析不提倡。

5各种教材的答案书

一堆垃圾。毁人不倦。

解析几何:

解析几何有被代数吃掉的趋势,不过就数学系的学生而言,还是应该好好学一下,我大一没有好好学,后来学别的课时总感觉哪里有些不太对劲,后来才发现是自己的数学功底尤其是几何得功底没有打好。

1吴光磊《解析几何简明教程》高等教育出版社

写的简单明了,我基础没有打好,快速翻了一下这本书收获还是不少的。不过打基础的时候还是从下面三本选一本看,把这本当参考书。

2《解析几何》丘维声,北京大学出版社

我大一时的课本

3《解析几何》吕根林,许子道

4《解析几何》尤承业

2,3,4写的大同小异

习题集有巴赫瓦洛夫的《解析几何习题集》不过不是那么容易找的到了

代数

前面说过代数有吃掉几何的倾向,所以有许多与时俱进的《代数与几何》。不过还是建议分开学,一门一门的打好基础。许多所谓的简明教程,还有将代数与解析几何合在一起的课本目前都还不是非常成熟。不建议使用。

1《高等代数》北京大学数学系代数与几何教研室代数小组

目前国内各大学尤其是综合大学数学系广泛采用的代数教材,有着悠久的传统。目前通常使用的是第三版。也是各大学的考研指定用书。这本书更多以教师为主,给了教师以很大的发挥空间,受到教师的普遍欢迎。不过对基础不好的学生在某些地方有一定的难度。讲到了所有应该讲的内容。

2《高等代数》张禾瑞,郝鈵新

被各个师范大学的数学系广泛使用,和1同分天下。张禾瑞已经去世,但书已经出到第五版。

3《线性代数》李烔生,中国科学技术大学出版社

中科大的书一向比较难。

4《线性空间引论》叶明训,武汉大学出版社

5《高等代数学》张贤科,清华大学出版社

6《线性代数与矩阵论》许以超,高等教育出版社

以上三本是一份书单上写的,拿了过来,不过我知道5还是不错的

7《代数学引论》柯斯特利金

一本和菲赫金戈尔茨的《微积分学教程》齐名的伟大数学著作。一本传世经典,没有什么可多说的。最近刚刚有新译本出版,共分了三册,但都不是很厚,也不贵。

8《线性代数习题集》普罗斯库列柯夫

9《高等代数习题集》法捷耶夫,索明斯基

8,9是前苏联的经典代数习题集分别有两千道和一千道题,做完会打下非常好的基本功。

10《高等代数》丘维声著

书写的不错,不过是北京大学数学系用书,北京大学的教学内容和重点一贯与国内其他大学的不太一样,而且邱维声采用了与其他教材完全不同的编排方式,所以用这本书研也许有一些不适应。建议用来作参考书而不是教材。

11《高等代数习题集》杨子胥著

相对8,9很容易买到,很多人用来做考研的参考书,而且符合所谓的教学或考研大纲。12《线性代数》蒋尔雄,高锟敏,吴景琨著

名为线性代数,实际上是一本高等代数教材。是一本非常老的为当时计算数学专业编写的书。市面上根本找不到,但各大学的藏书中肯定会有。

近世代数:不光是数学系最重要的几门课,而且在计算机方面有很多应用,通常的离散数学第二部分就是近世代数内容,也叫抽象代数。

1《近世代数引论》冯克勤

2《近世代数》熊全淹

3《代数学》莫宗坚

4《代数学引论》聂灵沼

5《近世代数》盛德成

分析的后继课程有常微分方程,偏微分方程,实变函数,复变函数,泛函分析。下面一一介绍:

常微分方程:

1《常微分方程教程》丁同仁、李承治,高等教育出版社

公认的国内写的最好的教材。

2《常微分方程》王高雄等

使用相当广泛的教材。初学建议从1,2中选

3《常微分方程》v.i.arnold

常微分不可不读的书。

4《常微分方程》庞特里亚金

前苏联教材,作者是数学奇才,因为化学实验的一次事故导致双目失明,不得已转而学数学,成为一代数学大师。

5常微分方程习题集》菲利波夫

很简单,打通这本书。不是题目简单,是对你的要求简单。

复变函数:

1《简明复分析》龚昇

写的非常有特色的一本书。

2《complex analysis 》l.v.ahlfors

学数学还是提倡多看大师的著作

3《复变函数》余家荣

4《复变函数》钟玉泉

上面两本是国内数学系用的最多的书,不过通常会剩下一到两章讲不完。

5《解析函数论初步》h.嘉当

6《应用复分析》任尧福

7《复变函数论习题集》沃尔科维斯

实变函数:

1《实变函数与泛函分析概要》郑维行

很好的入门书。

2《实变函数论》周民强

普遍认为是一本非常好的书,不过个人认为对基础不是很好的人来说比较难懂。写法和其他几本不太一样。

3《实变函数》江泽坚,吴志泉

我初学时用的书,和2相比我更愿意用这本和4

4《实变函数与泛函分析》夏道行,伍卓人,严绍宗,舒五昌

上世纪八十年代中国大学数学系的标准课本,2009年3月会出新版。强烈推荐这本和上一1《随机过程及应用》陆大金

2《随机过程》孙洪祥

3《随机过程论》钱敏平,龚鲁光

很多学校没有随机过程,但这部分还是相当重要的,无论工科还是经济或者数学本身。微分几何:

1《微分几何》彭家贵

2《微分几何》陈省身

3《微分几何讲义》吴大任

4《微分几何》陈维垣

5《微分几何习题集》菲金科

6《微分几何理论与习题》里普希茨

拓扑学:

1《点集拓扑讲义(第二版)》熊金城

2《拓扑空间论》儿玉之宏

3《基础拓扑学》m.a.armstrong

4《点集拓扑学》《点集拓扑学题解与反例》陈肇姜

5《几何学与拓扑学习题集》巴兹列夫

再说一次,忽视几何,包括解析几何,微分几何,拓扑学会后悔的。

数学基础

1《数学基础》汪芳庭

2《数学概观》戈丁

刚开始学时翻一翻会知道数学什么。

3《什么是数学》克朗,罗宾

一代名著。

离散数学:建议分开学。

1《基础集合论》北师大

2《面向计算机科学的数理逻辑》陆钟万

3《图论及其算法》王树禾

4《图论及其应用》bondy,murty

5《离散数学》耿素云,屈婉玲

6《具体数学》格拉厄姆,高德纳等

有英文版与中文版,我大四上过英文版的课,不是很难。建议大家看一看,还有组合数学的书也要看一下。

算法

1 introduction to algorithmscorman

数值分析:计算数学方向传统的科目是数值逼近,数值代数,数值优化,微分方程数值解法。数值逼近,数值代数,微分方程数值解法合

称数值分析,数值优化和运筹学有点像。传统的教材是下面四本(不算1):全部由人民教育出版社出版

1蒋尔雄,高坤敏,吴景坤的《线性代数》

2李岳生,黄友谦的《数值逼近》

3曹志浩,张德玉,李瑞遐的《矩阵计算和方程求根》

4王德人的《非线性方程组解法与最优化方法》

【篇二:数学专业参考书整理推荐】

结合自己的经验进行了整理:

从数学分析开始讲起:

数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。当大四考研复习再看时会感觉轻松许多。数学系的数学分析讲三个学期共计15学分270学时。将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。

记住以下几点:

1,对于数学分析的学习,勤奋永远比天分重要。

2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。

3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。4,看得懂的仔细看,看不懂的硬着头皮看。

5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。

6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。

7,经常回头看看自己走过的路

以上几点请在学其他课程时参考。

数学分析书:

初学从中选一本教材,一本参考书就基本够了。我强烈推荐11,推荐1,2,7,8。另外建议看一下当不了教材的16,20。

中国人自己写的:

1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)

应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。网络上可以找到课后习题的参考答案,不过建议自己做。不少经济类工科类学校也用这一本书。里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。不过仍然不失为一本好书。能广泛被使用一定有它自己的一些优势。

2《数学分析》华东师范大学数学系著

师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。课本最后讲了一些流形上的微积分。虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。3《数学分析》陈纪修等著

以上三本是考研用的最多的三本书。

4《数学分析》李成章,黄玉民

是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。

5《数学分析讲义》刘玉链

我的数学分析老师推荐的一本书,不过我没有看,最近应该出了新版,貌似是第五?版,最初是一本函授教材,写的应该比较详细易懂。不要因为是函授教材就看不起,事实上最初的函授工作都是由最好的教授做的。细说就远了,总之可以看看。

6《数学分析》曹之江等著

内蒙古大学数理基地的教材,偏重于物理的实现,会打一个很好的基础,不会盲目的向n维扩展。适合初学者。国家精品课程的课本。

7《数学分析新讲》张筑生

公认是一本新观点的书,课后没有习题。材料的处理相当新颖。作者已经去世。8《数学分析教程》常庚哲,史济怀著

中国科学技术大学教材,课后习题极难。

9《数学分析》徐森林著

与上面一本同出一门,清华大学教材。程度好的同学可以试着看一看。书很厚,看起来很慢。10《数学分析简明教程》邓东翱著

也是一本可以经常看到的书,作者已经去世。国家精品课程的课本。

11许绍浦《数学分析教程》南京大学出版社

这些书应该够了,其他书不一一列举。从中选择一本当作课本就可以了。

外国数学分析教材:

11《微积分学教程》菲赫金格尔茨著

数学分析第一名著,不要被它的大部头吓到。我大四上半年开始看,发现写的非常清楚,看起来很快的。强烈推荐大家看一下,哪怕买了收藏。买书不建议看价格,而要看书好不好。一本好的教科书能打下坚实的基础,影响今后的学习。

12《数学分析原理》菲赫金格尔茨著

上本书的简写,不提倡看,要看就看上本。

13《数学分析》卓立奇

观点很新,最近几年很流行,不过似乎没有必要。

14《数学分析简明教程》辛钦

课后没有习题,但是推荐了《

吉米多维奇数学分析习题集》里的相应习题。但是随着习题集的更新,题已经对不上号了,不过辛钦的文笔还是不错的。

15《数学分析讲义》阿黑波夫等著

莫斯科大学的讲义,不过是一本讲义,看着极为吃力,不过用来过知识点不错。16《数学分析八讲》辛钦

大师就是大师,强烈推荐。

17《数学分析原理》rudin

中国的数学是从前苏联学来的,和俄罗斯教材比较像,看俄罗斯的书不会很吃力。不过这本美国的书还是值得一看的。写的简单明了,可以自己试着把上面的定理推导一遍。18《微积分与分析引论》库朗

又一本美国的经典数学分析书。有人认为观点已经不流行了,但是数学分析是一门基础课目的是打下一个好的基础。

19《流形上的微积分》斯皮瓦克

分析的进一步。中国的数学分析一般不讲流形上的微积分,不过流形上的微积分是一种潮流,还是看一看的好。

20《在南开大学的演讲》陈省身

从中会有一些领悟,不过可惜好像网络上流传的版本少了一些内容。

21华罗庚《高等数学引论》科学出版社

数学分析习题集

不做题就如同没有学过一样。希望将课本后的习题一道道自己做完,不要看答案。买习题集也要买习题集,不买习题集的答案。

1《吉米多维奇数学分析习题集》

最近几年人们人云亦云的说这本书多么不好,批评计算题数目过多,不适合数学系等等。但这本习题集不再被广泛使用的原因是那本习题解答的出现,学生对答案的抄袭使这部书失去了价值。如果你不看答案的话它依然是数学分析第一习题集。不要没有做过就盲目的批评。有没有做过自己心里知道,并会影响自己今后的学习。

2《数学分析习题课教材》第一版或《数学分析解题指南》第二版,林源渠,方企勤等两本书一样的,再版换了名字。第一版网上有电子版,第二版可以买纸版。和3成一套。3《数学分析习题集》林源渠,方企勤等

由于《吉米多维奇数学分析习题集》答案的出现使这本书得到的评价变高了,原因是这本书没有答案。只能自己做。

4《数学分析习题精解》科学出版社版,还有裴礼文或者钱吉林的书

过考试不错,要学数学分析不提倡。

5各种教材的答案书

一堆垃圾。毁人不倦。

解析几何:

解析几何有被代数吃掉的趋势,不过就数学系的学生而言,还是应该好好学一下,我大一没有好好学,后来学别的课时总感觉哪里有些不太对劲,后来才发现是自己的数学功底尤其是几何得功底没有打好。

1吴光磊《解析几何简明教程》高等教育出版社

写的简单明了,我基础没有打好,快速翻了一下这本书收获还是不少的。不过打基础的时候还是从下面三本选一本看,把这本当参考书。

2《解析几何》丘维声,北京大学出版社

我大一时的课本

3《解析几何》吕根林,许子道

4《解析几何》尤承业

2,3,4写的大同小异

习题集有巴赫瓦洛夫的《解析几何习题集》不过不是那么容易找的到了

代数

前面说过代数有吃掉几何的倾向,所以有许多与时俱进的《代数与几何》。不过还是建议分开学,一门一门的打好基础。许多所谓的简明教程,还有将代数与解析几何合在一起的课本目前都还不是非常成熟。不建议使用。

1《高等代数》北京大学数学系代数与几何教研室代数小组

目前国内各大学尤其是综合大学数学系广泛采用的代数教材,有着悠久的传统。目前通常使用的是第三版。也是各大学的考研指定用书。这本书更多以教师为主,给了教师以很大的发挥空间,受到教师的普遍欢迎。不过对基础不好的学生在某些地方有一定的难度。讲到了所

有应该讲的内容。

2《高等代数》张禾瑞,郝鈵新

被各个师范大学的数学系广泛使用,和1同分天下。张禾瑞已经去世,但书已经出到第五版。3《线性代数》李烔生,中国科学技术大学出版社

中科大的书一向比较难。

4《线性空间引论》叶明训,武汉大学出版社

5《高等代数学》张贤科,清华大学出版社

6《线性代数与矩阵论》许以超,高等教育出版社

以上三本是一份书单上写的,拿了过来,不过我知道5还是不错的

7《代数学引论》柯斯特利金

一本和菲赫金戈尔茨的《微积分学教程》齐名的伟大数学著作。一本传世经典,没有什么可多说的。最近刚刚有新译本出版,共分了三册,但都不是很厚,也不贵。

8《线性代数习题集》普罗斯库列柯夫

9《高等代数习题集》法捷耶夫,索明斯基

8,9是前苏联的经典代数习题集分别有两千道和一千道题,做完会打下非常好的基本功。10《高等代数》丘维声著

书写的不错,不过是北京大学数学系用书,北京大学的教学内容和重点一贯与国内其他大学的不太一样,而且邱维声采用了与其他教材完全不同的编排方式,所以用这本书研也许有一些不适应。建议用来作参考书而不是教材。

11《高等代数习题集》杨子胥著

相对8,9很容易买到,很多人用来做考研的参考书,而且符合所谓的教学或考研大纲。12《线性代数》蒋尔雄,高锟敏,吴景琨著

名为线性代数,实际上是一本高等代数教材。是一本非常老的为当时计算数学专业编写的书。市面上根本找不到,但各大学的藏书中肯定会有。

近世代数:不光是数学系最重要的几门课,而且在计算机方面有很多应用,通常的离散数学第二部分就是近世代数内容,也叫抽象代数。

1《近世代数引论》冯克勤

2《近世代数》熊全淹

3《代数学》莫宗坚

4《代数学引论》聂灵沼

【篇三:数学推荐教材1】

>数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。当大四考研复习再看时会感觉轻松许多。数学系的数学分析讲三个学期共计15学分270学时。将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。

记住以下几点:

1,对于数学分析的学习,勤奋永远比天分重要。

2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。

3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,

第阿列夫遍。

4,看得懂的仔细看,看不懂的硬着头皮看。

5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。

6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。

7,经常回头看看自己走过的路

以上几点请在学其他课程时参考。

数学分析书:

初学从中选一本教材,一本参考书就基本够了。我强烈推荐11,推荐1,2,7,8。另外建议看一下当不了教材的16,20。

中国人自己写的:

1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)

应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。网络上可以找到课后习题的参考答案,不过建议自己做。不少经济类工科类学校也用这一本书。里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。不过仍然不失为一本好书。能广泛被使用一定有它自己的一些优势。

2《数学分析》华东师范大学数学系著

师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。课本最后讲了一些流形上的微积分。虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。3《数学分析》陈纪修等著

以上三本是考研用的最多的三本书。

解析几何第四版吕林根课后习题答案第三章(同名3095)

第三章 平面与空间直线 § 3.1平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1)Θ }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: ?? ? ??++-=-=--=v u z u y v u x 212123 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又 }3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: ?? ? ??+-=+-=+=v u z u y u x 317521 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: ?? ? ??+-=+=--=v u z u y v u x 235145 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=, }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?

解析几何第四版习题答案第四章

第四章 柱面、锥面、旋转曲面与二次曲面 § 4.1柱面 1、已知柱面的准线为: ? ? ?=+-+=-+++-0225 )2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。 解:(1)从方程 ?? ?=+-+=-+++-0 225 )2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(2 2 2 =-+++--z y y z 即:02 3 5622=----+z y yz z y 此即为要求的柱面方程。 (2)取准线上一点),,(0000z y x M ,过0M 且平行于直线? ??==c z y x 的直线方程为: ??? ??=-=-=? ?? ? ??=+=+=z z t y y t x x z z t y y t x x 0 00000 而0M 在准线上,所以 ?? ?=+--+=-++-+--0 2225 )2()3()1(222t z y x z t y t x 上式中消去t 后得到:026888232 22=--+--++z y x xy z y x 此即为要求的柱面方程。 2 而0M 在准线上,所以: ?? ?+=-++=-) 2(2)2(2 2t z t x t z y t x 消去t ,得到:010******* 22=--+++z x xz z y x 此即为所求的方程。 3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过 又过准线上一点),,(1111z y x M ,且方向为{ }1,1,1的直线方程为: ??? ??-=-=-=? ?? ? ??+=+=+=t z z t y y t x x t z z t y y t x x 1 11111 将此式代入准线方程,并消去t 得到: 013112)(5222=-++---++z y x zx yz xy z y x 此即为所求的圆柱面的方程。 4、已知柱面的准线为{})(),(),((u z u y u x u =γ,母线的方向平行于矢量{}Z Y X ,,=,试证明柱面的矢量式参数方程与坐标式参数方程分别为: S v u Y x +=)( 与 ?? ? ??+=+=+=Zv u z z Yv u y y Xv u x x )()()( 式中的v u ,为参数。 证明:对柱面上任一点),,(z y x M ,过M 的母线与准线交于点))(),(),((u z u y u x M ',则, v M =' 即 1、求顶点在原点,准线为01,0122 =+-=+-z y z x 的锥面方程。 解:设为锥面上任一点),,(z y x M ,过M 与O 的直线为: z Z y Y x X == 设其与准线交于),,(000Z Y X ,即存在t ,使zt Z yt Y xt X ===000,,,将它们代入准线方程,并消去参数t ,得: 0)()(222=-+--y z y z z x 即:02 22=-+z y x 此为所要求的锥面方程。 2、已知锥面的顶点为)2,1,3(--,准线为0,12 22=+-=-+z y x z y x ,试求它的方程。

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1(,)F x y ,2(,)F x y 及3(,)F x y . (1)22221x y a b +=;(2)22 221x y a b -=;(3)22y px =;(4)223520;x y x -++= (5)2226740x xy y x y -+-+-=.解:(1)221 0010 000 1a A b ?? ? ? ?= ? ?- ? ???;121(,)F x y x a =221 (,)F x y y b =3(,)1F x y =-;(2)2210010 000 1a A b ?? ? ? ?=- ? ?- ? ?? ? ;121(,)F x y x a =221(,)F x y y b =-;3(,)1F x y =-.(3)0001000p A p -?? ? = ? ? -?? ; 1(,)F x y p =-;2(,)F x y y =;3(,)F x y px =-;(4)51020 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+;2(,)3F x y y =-;35 (,)22 F x y x =+;(5)1232 171227342 A ??-- ? ? ?=- ? ? ?-- ??? ;11(,)232F x y x y =- -;217(,)22F x y x y =-++;37(,)342 F x y x y =-+-. 2. 求二次曲线2 2 234630x xy y x y ----+=与下列直线的交点.(1)550 x y --=

解析几何课后答案按

第1章 矢量与坐标 §1.1 矢量的概念 1.下列情形中的矢量终点各构成什么图形? (1)把空间中一切单位矢量归结到共同的始点; (2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点; (4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆 (3)直线; (4)相距为2的两点 §1.3 数量乘矢量 1.要使下列各式成立,矢量,应满足什么条件? (1-=+ (2+=+ (3-=+ (4+=-

(5 = [解]:(1), -=+; (2), +=+ (3 ≥且, -=+ (4), +=- (5), ≥ -=- 2. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量, , 可 以构成一个三角形. [证明]: )(21 AC AB AL += )(21 BM += 0= 3. 设L 、 [证明] 4. [证明] 但 OB OD OC OA OB OC OA OD +=+-=-∴=-=-= 由于)(OC OA +∥,AC )(OD OB +∥,BD 而AC 不平行于BD , ∴0=+=+OB OD OC OA , 从而OA=OC ,OB=OD 。

5. 如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明 OA +OB ++=4. [证明]:因为OM = 21 (OA +OC ), =2 1 (OB +), 所以 2=2 1 (OA +OB ++OD ) 所以 OA +OB ++OD =4OM . 6. [所以所以显然所以 1. [所以从而 OP =λ+1. 2. 在△ABC 中,设=1e ,AC =2e ,AT 是角A 的平分线(它与BC 交于T 点),试将分解为1e ,2e 的线性组合. 图1-5

解析几何第四版吕林根课后习题答案第三章

第三章 平面与空间直线 § 平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1)Θ }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:

042:=+-+z y x π. 解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为: 14 24=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-, ∴ 所求平面的参数式方程为: 3.证明矢量},,{Z Y X =平行与平面0=+++D Cz By Ax 的充要条件为: 0=++CZ BY AX . 证明: 不妨设0≠A , 则平面0=+++D Cz By Ax 的参数式方程为: 故其方位矢量为:}1,0,{},0,1,{A C A B --, 从而v 平行于平面0=+++D Cz By Ax 的充要条件为: ,}1,0,{},0,1,{A C A B -- 共面? ? 0=++CZ BY AX . 4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标. 解: Θ }5,2,3{z +-= 而平行于0147=--+z y x 由题3知:0)5(427)3(=+-?+?-z 从而18=z . 5. 求下列平面的一般方程. ⑴通过点()1,1,21-M 和()1,2,32-M 且分别平行于三坐标轴的三个平面; ⑵过点()4,2,3-M 且在x 轴和y 轴上截距分别为2-和3-的平面;

空间解析几何(练习题参考答案)

1. 过点Mo (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程. 39.02=+-z y 3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离 相等. 7.)5 1,1,57(. 5.已知:→ →-AB prj D C B A CD ,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( ) A.4 B .1 C. 2 1 D .2 7.设平面方程为0=-y x ,则其位置( ) A.平行于x 轴 B.平行于y 轴 C.平行于z 轴 D.过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D.重合 9.直线 3 7423z y x =-+=-+与平面03224=---z y x 的位置关系( ) A.平行 B.垂直 C .斜交 D.直线在平面内 10.设点)0,1,0(-A 到直线?? ?=-+=+-0 720 1z x y 的距离为( ) A.5 B . 6 1 C. 51 D.8 1 5.D 7.D 8.B 9.A 10.A. 3.当m=_____________时,532+-与m 23-+互相垂直. 4 . 设 ++=2, 22+-=, 243+-=,则 )(prj c += . 4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:442 2 2 =++z y x ,它是由曲线________绕_____________旋转而成的.

解析几何吕林根课后习题解答一到五.docx

第一章矢量与坐标 § 1.1矢量的概念 1.下列情形中的矢量终点各构成什么图形? (1)把空间中一切单位矢量归结到共同的始点; (2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点; (4)把平行于某一直线的一切单位矢量归结到共同的始点. 解: 2.设点 O 是正六边形 ABCDEF的中心, 在矢量 OA 、 OB 、 OC 、 OD 、 OE 、 OF 、 AB 、 BC 、 CD、DE 、 EF O 和 FA 中,哪些矢量是相等的? [解 ]: 图 1-1 3.设在平面上给了一个四边形ABCD,点 K、L、 M、N 分别是边AB、BC、CD、 DA的中点,求证:KL = NM .当ABCD是空间四边形时,这等式是否也成立? [证明 ]: . 4.如图1-3,设ABCD-EFGH是一个平行六面体, 在下列各对矢量中,找出相等的矢量和互为相反 矢量的矢量: (1) AB、; (2) AE、; (3) AC 、 CD CG EG ; (4)AD 、 GF ;(5)BE 、 CH . 解: 图1—3

§ 1.2矢量的加法 1.要使下列各式成立,矢量a,b 应满足什么条件? (1)a b a b;(2)a b a b ; (3)a b a b ;(4)a b a b ; (5)a b a b . 解: § 1.3数量乘矢量 1试解下列各题. ⑴化简 (x y) (a b) (x y) (a b) . ⑵已知 a e1 2 e2e3, b 3e12e2 2 e3,求a b , a b 和 3 a 2 b . ⑶ 从矢量方程组解:3 x 4 y a ,解出矢量 x ,y.2 x 3 y b 2 已知四边形ABCD 中, AB a 2 c ,CD 5 a 6 b 8 c ,对角线AC 、 BD 的中 点分别为 E 、 F ,求EF. 解: 3 设AB a 5 b , BC 2 a 8 b ,CD3( a b) ,证明: A 、 B 、 D 三点共线.解:

高等代数与解析几何第七章习题7答案

习题 习题设A 是一个n 阶下三角矩阵。证明: (1)如果A 的对角线元素jj ii a a ≠),,2,1,(n j i Λ=,则A 必可对角化; (2)如果A 的对角线元素nn a a a ===Λ2211,且A 不是对角阵,则 A 不可对角化。 证明:(1)因为A 是一个n 阶下三角矩阵,所以A 的特征多项式为)())((||2211nn a a a A E ---=-λλλλΛ,又因jj ii a a ≠),,2,1,(n j i Λ=,所以A 有 n 个不同的特征值,即A 有n 个线性无关的特征向量,以这n 个线性无 关的特征向量为列构成一个可逆阵P ,则有AP P 1-为对角阵,故A 必可对角化。 (2)假设A 可对角化,即存在对角阵???? ?? ? ? ?=n B λλλO 2 1 ,使得A 与B 相似,进而A 与B 有相同的特征值n λλλ,,,21Λ。又因为矩阵A 的特征多项式为n a A E )(||11-=-λλ,所以1121a n ====λλλΛ,从而 E a a a a B nn 112211 =???? ?? ? ? ?=O ,于是对于任意非退化矩阵X ,都有B E a EX a X BX X ===--111111,而A 不是对角阵,必有A B BX X ≠=-1,与 假设矛盾,所以A 不可对角化。 习题设n 维线性空间V 的线性变换σ有s 个不同的特征值 s λλλ,,,21Λ,i V 是i λ的特征子空间),,2,1(s i Λ=。证明: (1)s V V V +++Λ21是直和;

(2)σ可对角化的充要条件是s V V V V ⊕⊕⊕=Λ21。 证明:(1)取s V V V +++Λ21的零向量0,写成分解式有 021=+++s αααΛ,其中i i V ∈α,s i ,,2,1Λ=。现用1 2,,,-s σσσΛ分别作用分解式两边,可得 ??? ??? ?=+++=+++=+++---000 1212111221121s s s s s s s s αλαλαλαλαλαλαααΛΛΛΛΛΛΛΛΛ。 写成矩阵形式为 )0,,0,0(11 1 ),,,(11221 1 121ΛΛ M M M Λ ΛΛ=???? ?? ? ? ?---s s s s s s λλλλλλααα。 由于s λλλ,,,21Λ是互不相同的,所以矩阵???? ?? ? ? ?=---11221 1111 1 s s s s s B λλλλλλΛ M M M Λ Λ的行列式不为零,即矩阵B 是可逆的,进而有 )0,,0,0()0,,0,0(),,,(1121ΛΛΛ==--B BB s ααα,)0,,0,0(),,,(21ΛΛ=s ααα。 这说明s V V V +++Λ21的零向量0的分解式是唯一的,故由定义可得 s V V V +++Λ21是直和。 (2))(?因i V ,s i ,,2,1Λ=都是V 的子空间,所以有s V V V V ⊕⊕⊕?Λ21。 又因σ可对角化,所以σ有n 个线性无关的特征向量,它们定属于某一特征值,即它们都属于s V V V ⊕⊕⊕Λ21。对任意的V ∈α,一定可由n 个线性无关的特征向量线性表示,所以s V V V ⊕⊕⊕∈Λ21α,即得 s V V V V ⊕⊕⊕?Λ21成立,故有s V V V V ⊕⊕⊕=Λ21。 )(?因s V V V V ⊕⊕⊕=Λ21, 所以分别取i V ),,2,1(s i Λ=的基:i id i i ααα,,,21Λ,

空间解析几何(练习题(答案))

1. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程. 39.02=+-z y 3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离 相等. 7.)5 1,1,57 (. 5.已知:→ →-AB prj D C B A CD ,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( ) A .4 B .1 C . 2 1 D .2 7.设平面方程为0=-y x ,则其位置( ) A .平行于x 轴 B .平行于y 轴 C .平行于z 轴 D .过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D .重合 9.直线 3 7423z y x =-+=-+与平面03224=---z y x 的位置关系( ) A .平行 B .垂直 C .斜交 D .直线在平面内 10.设点)0,1,0(-A 到直线?? ?=-+=+-0 720 1z x y 的距离为( ) A .5 B . 6 1 C . 51 D .8 1 5.D 7.D 8.B 9.A 10.A . 3.当m=_____________时,532+-与m 23-+互相垂直. 4 . 设 ++=2, 22+-=, 243+-=,则 )(b a p r j c += . 4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:442 2 2 =++z y x ,它是由曲线________绕_____________旋转而成的. 3.34-=m ; 4.29 19 9.33 2212--=+=-x y x ; 10.曲线1422=+z y 绕z 轴

解析几何第三章知识点

第三章 平面与空间直线 版权所有,侵权必究 §3.1 平面的方程 1.平面的点位式方程 在空间给定了一点M 0与两个不共线的向量a ,b 后,通过点M 0且与a ,b 平行的平面π 就惟一被确定. 向量a ,b 叫平面π 的方位向量. 任意两个与π 平行的不共线的向量都可作为平面 π 的方位向量. 取标架{}321,,;e e e O ,设点M 0的向径0r =0OM ={}000,,z y x , 平面π 上任意一点M 的向径为r =OM = {x ,y ,z }(如图). 点M 在平面π上的充要条件为向量M M 0与向量a ,b 共面. 由于a ,b 不共线,这个共面的条件可以写成 M M 0= u a +v b 而M M 0= r -r 0,所以上式可写成 r = r 0+u a +v b (3.1-1) 此方程叫做平面π 的点位式向量参数方程,其中u ,v 为参数. 若令a = {1X ,1Y ,1Z },b = {2X ,2Y ,2Z },则由(3.1-1)可得 ?????++=++=++=v Z u Z z z v Y u Y y y v X u X x x 210210210 (3.1-2) 此方程叫做平面π 的点位式坐标参数方程,其中u ,v 为参数. (3.1-1)式两边与a ×b 作内积,消去参数u ,v 得 (r -r 0,a ,b ) = 0 (3.1-3) 此即 2 2 2 111000Z Y X Z Y X z z y y x x ---=0 (3.1-4)

这是π 的点位式普通方程. 已知平面π上三非共线点i M (i = 1,2,3). 建立坐标系{O ;e 1, e 2, e 3},设r i = i OM ={i x , i y ,i z },i = 1,2,3. 对动点M ,设r =OM ={x ,y ,z },取21M M 和31M M 为方位向量,M 1 为定点,则平面π的向量参数方程,坐标参数方程和一般方程依次为 r = 1r +u(2r -1r )+v(3r -r 1) (3.1-5) ?????-+-+=-+-+=-+-+=)()()()() ()(131211312113121z z v z z u z z y y v y y u y y x x v x x u x x (3.1-6) 1 31 31 3121212111z z y y x x z z y y x x z z y y x x ---------= 0 (3.1-7) (3.1-5),(3.1-6)和(3.1-7)统称为平面的三点式方程. 特别地,若i M 是π 与三坐标轴的交点,即1M (a ,0,0),2M (0,b ,0),3M (0,0,c ),其中abc ≠0,则平面π 的方程就是 c a b a z y a x 00---=0 (3.1-8) 即 1=++c z b y a x (3.1-9) 此方程叫平面π的截距式方程,其中a ,b ,c 称为π 在三坐标轴上的截距. 2.平面的一般方程 在空间任一平面都可用其上一点M 0(x 0,y 0,z 0)和两个方位向量a = {1X ,1Y ,1Z },b = {2X ,2Y ,2Z }确定,因而任一平面都可用方程将其方程(3.1-4)表示. 将(3.1-4)展开就可写成 Ax +By +Cz +D = 0 (3.1-10) 其中 A = 22 11 Z Y Z Y ,B =2 2 11X Z X Z ,C = 2 21 1 Y X Y X 由于a = {1X ,1Y ,1Z }与b = {2X ,2Y ,2Z }不共线,所以A ,B ,C 不全为零,这说明空间任一平面都可用关于a ,b ,c 的一三元一次方程来表示. 反之,任给一三元一次方程(3.1-10),不妨设A ≠0,则(3.1-10)可改写成 02=++??? ? ? +ACz ABy A D x A

解析几何第四版吕林根课后习题答案第二章

第二章 轨迹与方程 §2.1平面曲线的方程 1.一动点M 到A )0,3(的距离恒等于它到点)0,6(-B 的距离一半,求此动点M 的轨迹方程,并指出此轨迹是什么图形? 解:动点M 在轨迹上的充要条件是MB MA 2 1 =。设M 的坐标),(y x 有 2222)6(2 1 )3(y x y x ++= +- 化简得36)6(22=+-y x 故此动点M 的轨迹方程为36)6(2 2 =+-y x 此轨迹为椭圆 2.有一长度为a 2a (>0)的线段,它的两端点分别在x 轴正半轴与y 轴的正半轴上移动, 是求此线段中点的轨迹。A ,B 为两端点,M 为此线段的中点。 解:如图所示 设(,),A x o (,)B o y .则(,)22 x y M .在Rt AOB 中有 222()(2)x y a +=.把M 点的坐标代入此式得: 222()x y a +=(0,0)x y ≥≥.∴此线段中点的轨 迹为2 2 2 ()x y a +=. 3. 一动点到两定点的距离的乘积等于定值2 m ,求此动点的轨迹. 解:设两定点的距离为2a ,并取两定点的连线为x 轴, 两定点所连线段的中垂线为y 轴.现有: 2AM BM m ?=.设(,)M x y 在Rt BNM 中 2 2 2 ()a x y AM ++=. (1) 在Rt BNM 中 2 22()a x y BM -+=. (2) 由(1)(2)两式得: 22222244()2()x y a x y m a +--=-. 4.设,,P Q R 是等轴双曲线上任意三点,求证PQR 的重心H 必在同一等轴双曲线上. 证明:设等轴双曲线的参数方程为x ct c y t =?? ?=?? 11(,)P x y ,22(,)Q x y ,33(,)R x y .重心H

解析几何第四版吕林根课后习题答案第三章

第三章平 §3.1平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点M J QI-I)和点M2(1,—1,0)且平行于矢量{—1,0,2}的平面(2)通过点M^l,—5,1)和 M 2 (3,2,—2)且垂直于xoy坐标面的平面; (3)已知四点A(5,1,3) , B(1,6,2) , C(5,0,4) D(4,0,6)。求通过直线AB且平行于直线CD的平面, 并求通过直线AB且与MBC平面垂直的平面。 解:(1) M1M2 ={_2,_2,1},又矢量{—1,0,2}平行于所求平面, 故所求的平面方程为: 般方程为:4x -3y+2Z -7 =0 (2)由于平面垂直于xoy面,所以它平行于z轴,即{0,0,1}与所求的平面平行,又 M 1M 2 ={2,7,-3},平行于所求的平面,所以要求的平面的参数方程为: 般方程为:7(x—1)—2(y+5)=0,即7x—2y-17 = 0。 (3)( i)设平面兀通过直线AB,且平行于直线CD : AB={m,5,—1},CD ={-1,0,2} 从而兀的参数方程为: 般方程为:10x +9y + 5z-74=0。 (ii)设平面兀'通过直线AB,且垂直于MBC所在的平面 AB ={75,-1},ABX AC ={-4,5,-1}x{0T,1} ={4,4,4} =4{1,1,1} 均与兀’平行,所以兀’的参数式方程为: 般方程为:2X+ y -3z - 2 = 0 . 2.化一般方程为截距式与参数式: 兀:X +2y-z+4 =0. 解:兀与三个坐标轴的交点为:(—4,0,0), (0—2,0), (0,0,4), 所以,它的截距式方程为:△+丄+2 =1 又与所给平面方程平行的矢量为:{4, —2,0},

解析几何第三章习题及解答

第三章 常见曲面 习题3.1 1.证明:如果2220a b c d ++->,那么由方程 2222220x y z ax by cz d ++++++= 给出的曲面是一球面,求出它的球心坐标和半径。 证明:将方程配方得 222222()()()x a y b z c a b c d +++++=++-,由2220a b c d ++->,得到方 程表示球心是(,,)a b c --- 2.求过三点(3,0,0),(0,2,0),(0,0,1)的圆的方程。 解:空间中的圆可由过三点(3,0,0),(0,2,0),(0,0,1)的一个球面和一个平面的交线表示,设过该三点的球面方程为2220x y z ax by cz d ++++++=,得到 930,420,10a d b d c d ++=?? ++=??++=? 球面方程为22294(1)032 d d x y z x y d z d ++++- --++=,其中d 任意。 过该三点的平面方程是 132 x y z ++=,所以所求圆的方程可以为 2226()2(9)3(4)6(1)60, 23660 x y z d x d y d z d x y z ?++-+-+-++=? ++-=? 其中d 任意。 3.证明曲线 24224 3 24 ,1,(,)1,1t x t t t y t t t t z t t ? =?++? ? =∈-∞+∞?++??=?++? 在一球面上,并此球面方程。 证明:因为曲线满足

232 2 2 2 2 2 242424 2 224 2424 ()()()111()(1)11t t t x y z t t t t t t t t t t y t t t t ++=++++++++=++==++++ 即22211 ()24 x y z +- +=,所以曲线在一个球面上。 4.适当选取坐标系,求下列轨迹的方程 (1)到两定点距离之比等于常数的点的轨迹; (2)到两定点距离之和等于常数的点的轨迹; (3)到定平面和定点等距离的点的轨迹。 解(1)选直角坐标系使得定点坐标为(0,0,),(0,0,)a a -。设定比常数为0k >。所以动点(,,)x y z 满足2222222()(())x y z a k x y z a ++-=+++,化简有 222222222(1)(1)(1)2(1)(1)0k x k y k z a k z k a -+-+--++-=, 当1k =时,轨迹为平面0z =。 当01k <≠时,轨迹为球面2 2 2 2 22 1201k x y z a z a k +++-+=-。 (2)选直角坐标系使得定点坐标为(0,0,),(0,0,)a a -。设常数为0k >。所以动点 (,,)x y z k =,化简有 222222222444(416)40.k x k y k a z k a k ++-+-= (3)选直角坐标系使得定点坐标为(0,0,),a 定平面为z a =-。所以动点(,,)x y z 满足 z a =+,化简有224.x y az += 5.曲面S 在柱面坐标系(,,)R u v 下的方程为2 cos 2v R u =,求S 的直角坐标方程。 解:将柱面坐标与直角坐标的关系cos ,sin ,x R u y R u z v ===代入方程得到 22.x y z -= 6.曲面S 的直角坐标方程为22225x y z +-=,试求其球面坐标方程。 解:将球面坐标与直角坐标的关系cos cos ,cos sin ,sin x R y R z R θ?θ?θ===代 入方程得到2222222cos sin 25,x y z R R θθ+-=-=即2 cos 225.R θ=

空间解析几何习题答案

一、计算题与证明题 1.已知1||=a , 4||=b , 5||=c , 并且0=++c b a . 计算a c c b b a ?+?+?. 解:因为1||=a , 4||=b , 5||=c , 并且0=++c b a 所以a 与b 同向,且b a +与c 反向 因此0=?b a ,0=?c b ,0=?a c 所以0=?+?+?a c c b b a 2.已知3||=?b a , 4||=?b a , 求||||b a ?. 解:3cos ||=?=?θb a b a (1) 4sin ||=?=?θb a b a (2) ()2 22)1(+得()252 =?b a 所以 5=?b a 4.已知向量x 与)2,5,1(,-a 共线, 且满足3=?x a ρ ρ, 求向量x 的坐标. 解:设x 的坐标为()z y x ,,,又()2,5,1-=a 则325=-+=?z y x x a (1) 又x 与a 共线,则0=?a x 即 ()()()0 52525121252 51=-+++--=+---=-k y x j x z i z y k y x j y x i z y z y x k j i 所以 ()()()052522 22=-+++--y x x z z y 即010********* 2 2 =-++++xy xz yz z y x (2) 又x 与a 共线,x 与a 夹角为0或π () 30 3 25110cos 2 2 2 2 2 2 2 2 2 ?++= -++?++?= =z y x z y x a x 整理得 10 3 2 2 2 = ++z y x (3) 联立()()()321、、 解出向量x 的坐标为??? ? ?-51,21,101

解析几何第四版吕林根课后习题答案第一章

第一章矢量与坐标 §1.1 矢量的概念 1.下列情形中的矢量终点各构成什么图形? (1)把空间中一切单位矢量归结到共同的始点; (2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点; (4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面;(2)单位圆 (3)直线;(4)相距为2的两点 2. 设点O是正六边形ABCDEF的中心, 在矢量、OB、、OD、OE、 、AB、、、DE、 和中,哪些矢量是相等的? [解]:如图1-1,在正六边形ABCDEF中, 相等的矢量对是:图1-1 . 和 和 和 和 3. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=NM. 当ABCD是空间四边形时,这等式是否也成立? [证明]:如图1-2,连结AC, 则在?BAC中, 2 1 AC. KL与方向相同;在?DAC 中, 2 1 AC. NM与AC方向相同,从而 KL=NM且KL与NM方向相同,所以KL=. 4. 如图1-3,设ABCD-EFGH是一个平行六面 体,在下列各对矢量中,找出相等的矢量和互 为相反矢量的矢量: (1) 、; (2) 、; (3) 、 ; (4) AD 、; (5) BE、. [解]:相等的矢量对是(2)、(3)和(5); 互为反矢量的矢量对是(1)和(4)。 §1.2 矢量的加法 1.要使下列各式成立,矢量b a,应满足什么条件? (1- = +(2+ = + (3- = +(4+ = - C

(5 = [解]:(1), -=+; (2), +=+ (3 ≥且, -=+ (4), +=- (5), ≥ -=- §1.3 数量乘矢量 1 试解下列各题. ⑴ 化简)()()()(→ →→→-?+--?-b a y x b a y x . ⑵ 已知→ → → → -+=3212e e e a ,→ → → → +-=321223e e e b ,求→ → +b a ,→ → -b a 和→ → +b a 23. ⑶ 从矢量方程组?????=-=+→ →→→ →→b y x a y x 3243,解出矢量→x ,→y . 解 ⑴ → →→→→→→→→→→→→→-=+-+---+=-?+--?-a y b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ → →→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a , → →→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , → →→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→ BD 的中点分别为E 、F ,求→ EF . 解 →→→→ →→→→→→→ -+=-+-+=+=c b a c a c b a AB CD EF 533)2(2 1)865(212121. 3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→ →→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→ →→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382 ∴→AB 与→ BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线. 4 在四边形ABCD 中,→ → → +=b a AB 2,→ → → --=b a BC 4,→ → → --=b a CD 35,证明ABCD 为梯形.

解析几何(第四版吕林)-根课后答案

第一章 矢量与坐标 §1.1 矢量的概念 1.下列情形中矢量终点各构成什么图形? (1)把空间中一切单位矢量归结到共同的始点; (2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点; (4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆 (3)直线; (4)相距为2的两点 2. 设点O 是正六边形ABCDEF 的中心, 在矢量OA 、、 OC 、、、 OF 、、BC 、CD 、 、EF 和FA 中,哪些矢量是相等的? [解]:如图1-1,在正六边形ABCDEF 中, 相等的矢量对是: 图1-1 .DE OF CD OE AB OC FA OB EF OA 和;和;和;和;和 3. 设在平面上给了一个四边形ABCD ,点K 、L 、M 、N 分别是边AB、BC、CD、 DA的中点,求证:KL =. 当ABCD 是空间四边形时,这等式是否也成立? [证明]:如图1-2,连结AC , 则在?BAC 中, 2 1 AC. KL 与AC 方向相同;在?DAC 中, 2 1 AC . 与方向相同,从而KL =NM 且KL 与方向相同,所以KL = NM . 4. 如图1-3,设ABCD -EFGH 是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量: (1) AB 、 ; (2) AE 、; (3) 、EG ; (4) 、GF ; (5) 、CH . [解]:相等的矢量对是(2)、(3)和(5); 互为反矢量的矢量对是(1)和(4)。 §1.2 矢量的加法 1.要使下列各式成立,矢量b a ,应满足什么条件? (1-=+ (2+=+ (3-=+ (4+=- (5= C

解析几何第四版吕林根课后习题答案第三章

解析几何第四版吕林根课后习题答案第三章

第三章 平面与空间直线 § 3.1 平面的方程 1.求下列各平面的坐标式参数方程和 一般方程: (1)通过点)1,1,3(1 -M 和点) 0,1,1(2 -M 且平行 于矢量}2,0,1{-的平面(2)通过点 ) 1,5,1(1-M 和) 2,2,3(2 -M 且垂直于xoy 坐 标面的平面; (3)已知四点 ) 3,1,5(A , ) 2,6,1(B , )4,0,5(C ) 6,0,4(D 。求通过直线AB 且 平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1) Θ } 1,2,2{21--=M M ,又矢量} 2,0,1{-平行于所求平面, 故所求的平面方程为: ?? ? ??++-=-=--=v u z u y v u x 212123 一般方程为:07234=-+-z y x

?? ? ??+-=++=+-=v u z v u y v u x 35145 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式: 042:=+-+z y x π. 解: π 与三个坐标轴的交点为: ) 4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为:14 24=+-+-z y x . 又与所给平面方程平行的矢量为: } 4,0,4{},0,2,4{-, ∴ 所求平面的参数式方程为: ?? ? ??=-=++-=v z u y v u x 24 3.证明矢量 } ,,{Z Y X =平行与平面 =+++D Cz By Ax 的充要条件为: =++CZ BY AX . 证明: 不妨设0≠A , 则平面0=+++D Cz By Ax 的参数式方程为: ??? ? ??? ==---=v z u y v A C u A B A D x

平面解析几何(经典)习题

平面解析几何(经典)练习题 一、选择题 1.方程x 2 + 6xy + 9y 2 + 3x + 9y –4 =0表示的图形是 ( ) A .2条重合的直线 B .2条互相平行的直线 C .2条相交的直线 D .2条互相垂直的直线 2.直线l 1与l 2关于直线x +y = 0对称,l 1的方程为y = ax + b ,那么l 2的方程为 ( ) A .a b a x y -= B .a b a x y += C .b a x y 1 += D .b a x y += 3.过点A (1,-1)与B (-1,1)且圆心在直线x+y -2=0上的圆的方程为 ( ) A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .4(x +1)2+(y +1)2=4 D .(x -1)2+(y -1)2= 4.若A(1,2),B(-2,3),C(4,y )在同一条直线上,则y 的值是 ( ) A .2 1 B .23 C .1 D .-1 5.圆2223x y x +-=与直线1y ax =+的交点的个数是 ( ) A .0个 B .1个 C .2个 D .随a 值变化而变化 6.已知半径为1的动圆与定圆22(5)(7)16x y -++=相切,则动圆圆心的轨迹方程是 ( ) A .22(5)(7)25x y -++= B .22(5)(7)3x y -++= 或22(5)(7)15x y -++= C .22(5)(7)9x y -++= D .22(5)(7)25x y -++= 或22(5)(7)9x y -++= 7.直线kx -y +1=3k ,当k 变动时,所有直线都通过定点 ( ) A .(0,0) B .(0,1) C .(3,1) D .(2,1) 8.下列说法的正确的是 ( ) A .经过定点() P x y 000,的直线都可以用方程()y y k x x -=-00表示 B .经过定点()b A ,0的直线都可以用方程y kx b =+表示 C .不经过原点的直线都可以用方程 x a y b +=1表示 D .经过任意两个不同的点() ()222111y x P y x P ,、,的直线都可以用方程 ()()()()y y x x x x y y --=--121121表示 9.已知两定点A (-3,5),B (2,15),动点P 在直线3x -4y +4=0上,当PA +PB 取 最小值时,这个最小值为 ( ) A .513 B .362 C .155 D .5+102

相关主题
文本预览
相关文档 最新文档