故动点轨迹为
y 0,
z
0,
x
c.
这是x轴上的线段.
② 当a c时,令b2 a2 c2,则动点轨迹为
x2 a2
y2 b2
z2 b2
1,
(旋转椭球面 ).
例 3 建立球心在点 M0 ( x0 , y0 , z0 )、半径为R
的球面方程.
解 设M( x, y, z)是球面上任一点,
根据题意有 | MM0 | R
OM r(u,v), 的终点M (x(u, v), y(u, v), z(u, v))所画出的轨迹一般
为一张曲面.(图1) 定义2.2.2 对u, v (a u b, c v d ),若由(2.2 5)
表示的向径r(u, v)的终点M总在曲面上,同时,曲面
上的任意点M总对应着以它为终点的向径, 而这向径
面,如
x2 y2 z2 1 0,
又 三元方程F(x, y, z) 0有时代表一条曲线(包
括直线),如
x2 y2 0,
代表直线 x y 0,即z 轴.
有时代表一个点,如
x2 y2 z2 0, 即坐标原点 (0,0,0). 曲面与方程研究中的两个基本问题: 1) 给定作为点的几何轨迹 的曲面,建立其方程.
(讨论旋转曲面)
2) 给定坐标x, y, z间的方程, 研究这方程的曲面的
形状. (讨论柱面、二次曲面)
以下讨论问题 1)的实例.
例1 求两坐标面 xoz, yoz所成二面角的平分面方 程.
解 因所求平分面是与xoz, yoz面有等距离的点的
轨迹, 所以
点M(x, y, z)在平分面上 y x.
§2.2曲面的方程
1.曲面的方程
曲面的实例: 水桶的表面、台灯的罩子面等.