(, 0,0) ,y轴上点的坐标为 (0, , 0) ,z轴上点的坐标为 (0,0, ) ;
平面上点的坐标为(, , 0),平面上点的坐标为
(0, , ),平面上点的坐标为(, 0, ).
2.两点间距离公式
类似于平面上任意两点的距离,对于空间直角坐标系中任意
点1 (1 , 1 , 1 ),2 (2 , 2 , 2 )可以推出1 、2 的距离公式为:
→
→
→
→
→
→
( ) = ()
( + ) = +
( + ) →
= →
+→
其中、都是实数.
∘
→
→
→
设 是一个非零向量,常把与 同方向的单位向量记 ,
∘
→
则 =
→
→
,且±
→
→
均是与→
平行的单位向量(同向或反向
的两向量称为平行向量).
→
= {1 , 1 , 1 }.
例2
→
→ → →
→
→
已知 = {2, −1,3}, = {1,2, −2},求 + , − ,
→
→
3 + 2 .
→
→
解 + = {2 + 1, −1 + 2,3 + (−2)} = {3,1,1},
→
→
− = {2 − 1, −1 − 2,3 − (−2)} = {1, −3,5},
定义2
设→
是一个非零向量,是一个非零实数,则→
与的
乘积仍是一个向量,记作 →