微纳光学加工及应用
- 格式:doc
- 大小:5.36 MB
- 文档页数:18
微纳加工原理一、微纳加工的定义微纳加工是指将材料进行微小尺度处理和制造,通常包括微米和纳米级别的加工过程。
它是一种技术,用于制造各种各样的微型器件,如芯片、传感器、MEMS等。
二、微纳加工的分类1.光刻技术:光刻技术是利用光学系统将图形转移到光敏化材料中,然后通过化学反应来形成图案。
2.薄膜沉积:薄膜沉积是将物质沉积在基底表面上,以形成所需的结构和功能。
3.离子束雕刻:离子束雕刻是利用高能离子束对材料进行磨削和雕刻来形成所需的结构。
4.扫描探针显微镜(SPM):SPM是一种通过扫描探针来测量材料表面形貌和性质的技术。
三、微纳加工原理1.光刻技术原理光刻技术使用紫外线或电子束照射在光敏化材料表面上,通过化学反应来形成图案。
该过程包括以下步骤:(1)光敏化材料涂覆:将光敏化材料涂覆在基底上。
(2)曝光:使用掩模将紫外线或电子束照射在光敏化材料表面上,形成所需的图案。
(3)显影:使用显影剂去除未曝光的部分,形成所需的结构。
2.薄膜沉积原理薄膜沉积是将物质沉积在基底表面上,以形成所需的结构和功能。
该过程包括以下步骤:(1)气相沉积:利用化学反应将气体转化为固体,在基底表面上形成一层薄膜。
(2)物理气相沉积:利用高温或真空条件下,将固态物质直接转移到基底表面上,形成一层薄膜。
(3)溅射沉积:利用离子束轰击靶材,产生粒子并将其转移到基底表面上,形成一层薄膜。
3.离子束雕刻原理离子束雕刻是利用高能离子束对材料进行磨削和雕刻来形成所需的结构。
该过程包括以下步骤:(1)离子束的产生:利用离子源产生高能离子束。
(2)加速器:将离子加速到高能状态。
(3)控制系统:控制离子束轨迹,使其精确地磨削和雕刻材料。
4.扫描探针显微镜原理扫描探针显微镜(SPM)是一种通过扫描探针来测量材料表面形貌和性质的技术。
该过程包括以下步骤:(1)扫描探针:将扫描探针移动到要测量的位置。
(2)测量信号:通过测量信号来确定材料表面形貌和性质。
微纳加工技术的研究现状微纳加工技术是一种发展迅猛的科技领域,目前已经广泛应用于电子、光电子、生物医药、能源等领域。
本文将介绍微纳加工技术的研究现状及其应用。
一、微纳加工技术的定义及研究方向微纳加工技术是一种制备微纳米结构的技术,其尺寸范围一般在几微米到几纳米之间。
这种技术的特点在于具有高精度、高效率、高可重复性等特点。
微纳加工技术的研究方向包括物理、化学、材料学、机械学等各个领域,涉及到多种加工方法,例如:物理法、化学法、机械法等。
其中,物理法包括电子束、激光、等离子体等方法,化学法包括光刻、电化学、溅射等方法,机械法包括微机械加工、原子力显微镜等方法。
二、微纳加工技术的应用1.电子技术微纳加工技术已经广泛应用于电子器件的制备。
例如,集成电路中的微单元结构、微处理器结构、金属线路等都可以利用微纳加工技术加工制备。
此外,近年来,基于DNA分子构建的生物电子学研究也利用了微纳加工技术的手段。
2.光电子学微纳加工技术在光电子学中也有广泛的应用。
例如,光纤通讯和平面显示器可以利用微纳加工技术制备出微型元件,这些元件可以提高光纤通讯和显示器的性能和可靠性。
此外,微纳加工技术还可以用来制备MEMS(微机电系统),这些系统可以用于制造微型传感器和执行器等。
3.高分辨率影像技术微纳加工技术也可以用来制备高分辨率影像技术的材料和器件,例如:光学镜头、薄膜滤波器、极紫外光刻板等。
这些高分辨率影像技术可以提高各种成像设备的性能和分辨率。
4.生物医药微纳加工技术还可以用来制造微型生物医药器械和微型分析系统。
这些设备可以在分子、细胞和组织水平上研究和诊断疾病,例如:微型探头、微流控芯片、检测传感器等。
5.能源微纳加工技术也可以在能源技术方面发挥重要作用。
微纳加工技术可以制备太阳能电池、燃料电池、可再生能源发电机等设备,这些设备对于解决环境污染和能源短缺问题有一定的贡献。
三、微纳加工技术的前景随着纳米科技的发展,微纳加工技术有望在更多领域得到广泛应用。
微纳加工技术一、概述近年来,微纳加工技术作为一种新兴的制造技术,已经成为了科技发展的热点和焦点。
随着科技的不断进步和应用的不断深化,微纳加工技术的应用范围越来越广泛,其中包括了许多重要的领域,如电子、光学、生物、化学等等。
本文将就微纳加工技术的基本原理、应用领域以及发展前景进行详细介绍,并提出了一些未来的发展方向和挑战,以期为相关研究提供参考和借鉴。
二、微纳加工技术的基本原理微纳加工技术是一种在微米和纳米尺度范围内进行制造的技术,其基本原理是利用物理、化学和生物学等科学原理,通过对材料的加工、制备、控制、测量等步骤进行精确的控制和优化,来制造出具有特定功能和性能的微纳器件或系统。
微纳加工技术主要包括了微纳加工、微纳制造和微纳组装三个方面。
其中,微纳加工是指通过相应的加工工艺,使得原材料逐渐变成具有特定形状和尺寸的微小零部件或器件。
微纳制造是指在微纳加工的基础上,对微小的部件进行加工、组装、包装等操作,最终形成具备特定功能和性能的微纳系统。
微纳组装是指将微小的零部件或器件组装成更加复杂、功能更加完备的微纳系统。
三、微纳加工技术的应用领域微纳加工技术具有广泛的应用领域,下面就对一些重要的应用领域进行简单介绍:1. 电子领域微纳加工技术在电子设备的制造、封装和测试等方面都有着很重要的作用。
例如,在芯片制造中,采用微纳加工技术可以提高芯片的制造精度和集成度,降低功耗和故障率,同时还可以增加芯片的功能和性能。
在电子封装中,通过微纳加工技术可以实现高密度的封装和高精度的引脚排布,从而提升了封装的可靠性和性能。
在电子测试中,微纳加工技术也可以用于制造测试芯片和测试工具,提高测试的精度和效率。
2. 光学领域微纳加工技术在光学器件的制造和应用中也有着广泛的应用。
例如,在衍射光栅的制造中,采用微纳加工技术可以制造出大面积的高精度衍射光栅,从而实现高分辨率和高光谱分辨率的光学传感器。
在光波导的制造中,利用微纳加工技术可以制造出高密度、高精度和多层次的光波导,从而实现复杂的光学功能和系统集成。
飞秒激光微纳加工技术在多种材料加工领域的应用1. 引言1.1 飞秒激光微纳加工技术概述飞秒激光微纳加工技术是一种基于飞秒激光的微纳米加工技术,其特点是在极短时间内(飞秒级别)完成材料的加工过程,具有高精度、低热影响区、无需后续加工等优点。
飞秒激光微纳加工技术通过聚焦激光光束在材料表面产生极高的局部能量密度,使材料在极短时间内产生非线性吸收或光离解效应,从而实现微纳米级的加工。
飞秒激光微纳加工技术在材料加工领域具有广泛的应用前景,可以用于金属、非金属、生物、光学、半导体等材料的加工。
随着激光技术和材料科学的不断发展,飞秒激光微纳加工技术将在高精度光学器件、生物医学器件、半导体器件等领域发挥越来越重要的作用。
飞秒激光微纳加工技术的发展离不开材料科学、光学技术、激光技术等多个学科的交叉融合,其应用前景非常广阔。
随着技术的不断进步和创新,飞秒激光微纳加工技术必将在未来取得更加广泛和深入的应用。
2. 正文2.1 飞秒激光微纳加工技术在金属材料加工领域的应用飞秒激光微纳加工技术在金属材料加工领域具有很广泛的应用前景。
飞秒激光可以实现高精度的加工,对于金属材料的微细加工非常适用。
飞秒激光可以在不损伤周围材料的情况下进行加工,因此可以避免出现热影响区和变质现象,保持加工件的完整性和质量。
飞秒激光加工速度快,效率高,可以大幅提升生产效率。
在金属材料加工领域,飞秒激光微纳加工技术被广泛应用于微孔加工、微槽加工、微纳米结构加工等领域。
飞秒激光可以用于制造微型零部件、微型器件和微型模具,广泛应用于微机械、精密仪器、光电子器件等领域。
飞秒激光还可以进行表面改性、激光打标等应用,为金属材料的功能性提升带来了新的可能性。
飞秒激光微纳加工技术在金属材料加工领域的应用前景十分广阔,将会为金属材料加工领域带来更多创新和发展机遇。
随着技术的不断进步和完善,相信飞秒激光在金属材料加工领域的应用将会得到进一步拓展和深化。
2.2 飞秒激光微纳加工技术在非金属材料加工领域的应用1. 陶瓷材料加工:飞秒激光可以在陶瓷材料上进行高精度的微纳加工,例如雕刻微小的凹坑、槽道等结构,可用于制作微型元器件、传感器等应用。
微纳制造的原理和应用随着科技的不断发展和进步,微纳制造技术已经成为了现代化生产的重要工具,引领着人类进入了高效、精确、环保的新时代。
那么,什么是微纳制造?微纳制造是在微米或纳米尺度上进行制造加工、组装、测试和测量的技术体系。
它采用刻蚀、光加工、电铸、激光加工等多种方法,根据设计的点阵图案,以一步一步的方式,将具有特殊功能的微纳电子器件和微纳机械设备制造出来。
下面将会从微纳制造的原理和应用两个方面进行探讨。
微纳制造的原理微纳制造技术的基本原理是在微米或纳米的尺度上精密加工,使用特殊的工艺和设备制造出具有特定功能的微纳电子器件和微纳机械设备。
微纳制造技术主要包括三种类型:刻蚀、光加工和电子束曝光。
其中刻蚀是一种将固体材料经过腐蚀和化学反应而剥蚀的过程,在这一过程中,需要用到化学处理和高级别掩模的技术手段。
光加工则是通过光扫描来控制物质在材料表面的移动和形态。
光加工的基础是利用光在材料表面的能量损失,根据影像图案来控制光束来实现精密刻画。
最后是电子束曝光技术,它是一种通过电子束对微米或纳米级别的材料进行定向加工,采用缩微光学和数字影像处理技术,控制电子束在反应性基材上的扫描和刻写。
微纳制造的应用微纳制造技术广泛应用在半导体、微电子、医学、化学、能源、材料 science 和生物科学等领域。
微纳制造技术在半导体产业中的应用是其最重要的应用之一。
微纳制造技术可以对晶圆进行细微的加工和处理,从而制造出各种半导体器件。
随着人民生活的不断提高,医学成为应用微纳制造技术的另一个领域。
它可以用于制造医疗器械、人工组织和医疗器械等医疗产品。
此外,在化学、能源和材料 science 领域,微纳制造技术也可以应用于制造各种先进的材料科学和新型的能源器件,绝对可以一定程度上取代传统制造方法。
总的来说,微纳制造技术的原理和应用紧密相关。
随着科技的不断进步,微纳制造技术将会有着更广泛的应用。
在新的工业革命浪潮中,微纳制造规模和经济优势取代了传统的制造模式,使我们能够掌握和应用新的产业规律和技术趋势,并成为行业内的领导力量。
微纳加工技术综述微纳加工技术是一种制造微米和纳米级尺寸器件和结构的技术,它在许多领域具有广泛的应用,包括电子、光电子、生物医学、材料科学等。
本文将综述微纳加工技术的发展和应用,以及相关的制造方法和工艺。
微纳加工技术的发展微纳加工技术的发展可以追溯到上世纪70年代,当时主要应用于集成电路制造。
随着技术的发展,微纳加工技术不断演化和改进,逐渐应用于更广泛的领域。
目前,微纳加工技术已经成为实现微米和纳米级尺寸结构的主要方法之一。
微纳加工技术的分类微纳加工技术主要包括几种常见的制造方法,如光刻、离子束刻蚀、电子束微细加工和微影技术等。
这些方法可以根据工艺原理和设备类型进行分类。
光刻技术光刻技术是一种利用光敏感物质和光源进行模板制造的方法。
它通常包括光刻胶涂布、曝光、显像和腐蚀等步骤。
光刻技术广泛应用于半导体制造和微机电系统领域。
离子束刻蚀技术离子束刻蚀技术利用高能粒子束对材料进行加工,可以精确控制加工深度和形状。
它具有高分辨率、高精度和高加工速度的特点,被广泛应用于光学元件制造和纳米结构加工等领域。
电子束微细加工技术电子束微细加工技术是利用电子束对材料进行加工的方法。
它可以实现亚微米级的精度和分辨率,广泛应用于纳米结构制备和光电子器件制造等领域。
微影技术微影技术是一种利用光敏感材料进行模板制造的方法。
它包括热熔法、微球成型法和模板法等多种方法。
微影技术广泛应用于纳米结构制备和生物医学领域。
微纳加工技术的应用微纳加工技术在许多领域都有广泛的应用,下面将介绍一些主要的应用领域。
电子领域在电子器件领域,微纳加工技术用于制造半导体器件、集成电路、微电子机械系统等。
通过微纳加工技术,可以制造出更小、更快、更高性能的电子器件。
光电子领域在光电子器件领域,微纳加工技术用于制备光学元件、光纤、激光器等。
通过微纳加工技术,可以实现光学器件的微米级加工和微结构的制备。
生物医学领域在生物医学领域,微纳加工技术用于制造生物芯片、生物传感器、生物显微镜等。
微纳光学:什么是微纳光学?一、简介微纳光学是光学科学的一个重要领域,它主要研究微小尺寸下光的传输、操控和应用。
微纳光学所研究的对象可以是纳米级别的光学元件,例如纳米结构、量子点等等,也可以是微型光学器件,例如光纤、波导等等。
在微纳光学领域,人们利用微纳结构的光学性能制造出高分辨率的显微镜、高效率的光学存储器、高灵敏度的光电传感器等等,这些器件在生物医学、信息技术、光纤通信等领域都有广泛应用。
二、微纳光学的原理微纳光学的研究主要基于光的波粒二象性、光的相干性和传输特性,可以利用微纳结构改变光的传播方向、波长和极化状态,从而实现光的操控和运输。
微纳光学的基本原理包括以下几个方面:1. 纳米结构对光的精细调控纳米结构的制备与设计是实现微纳光学的重要手段,纳米结构可以精细控制光的位置、波长、方向和偏振方向等。
特别地,一些新型纳米结构,例如表面等离子体共振结构、光子晶体和金属纳米结构等,具有极强的电磁场增强效应,可以将光场增强至数千倍,实现微纳光学的超强场强效应。
2. 光的波动性微纳光学中的光学元件尺寸和光波长相当,因此光的波动性将会表现出一些奇特的现象。
例如,在金属纳米结构中,光的电磁场在纳米结构表面受到局部增强,这种电磁场效应称为表面等离子体共振(SPR)。
当入射光的波长和特定的纳米结构大小匹配时,SPR现象会被激发出来,产生局部的强电磁场,增强光与物质的相互作用,这为生物医学、光化学等领域应用提供了新思路。
3. 光的相干性和相位光的相干性和相位是微纳光学中实现光的干涉、衍射和成像的关键因素。
例如,在建立光学存储器时,需要光的干涉效应和波导中的衍射现象来控制光的传输和处理。
微纳光学器件的制造和优化需要对这些基本光学现象的深入理解。
三、微纳光学的应用微纳光学在生物医学、信息技术、光通信等领域有广泛应用,一些微纳光学应用的例子如下:1. 显微镜利用微纳结构可以制造出高分辨率的显微镜。
例如在“全息显微镜”中,利用光的干涉和衍射性质,将样品与参考光想叠加,得到类似于8字形的干涉纹,从而实现屏幕上样品的三维显微成像,可以将细小物体的结构和组织细节展现清晰。
飞秒脉冲激光双光子微纳加工技术及其应用《飞秒脉冲激光双光子微纳加工技术及其应用》1. 引言飞秒脉冲激光双光子微纳加工技术是一种近年来备受关注的前沿技术,它具有精密、高效、无污染等优点,在材料加工、生物医学、光电子学等领域有着广泛的应用前景。
本文将从其原理、技术特点到应用领域进行深入探讨,希望能为读者带来全面、深入的了解。
2. 原理飞秒脉冲激光双光子微纳加工技术是利用超短飞秒激光脉冲,通过光子倍增效应,实现对材料的高精度加工。
其原理是通过聚焦飞秒激光在材料表面产生高能量密度的离子激发区,进而发生电子云的非线性多光子吸收,最终实现微纳级的加工。
3. 技术特点飞秒脉冲激光双光子微纳加工技术具有以下几个显著的技术特点:1) 高精度:由于采用飞秒激光,其脉冲时间极短,能够实现几纳秒甚至亚纳秒级别的加工精度;2) 无热损伤:飞秒激光能够在极短的时间内将材料加工,避免了热量传导导致的热损伤,保持了材料的原始性能;3) 无污染:在加工过程中不产生有害废料,对环境友好。
4. 应用领域飞秒脉冲激光双光子微纳加工技术在各个领域都有着广泛的应用,主要包括但不限于以下几个方面:1) 材料加工:在微电子器件、光学器件、生物医学器件等方面有着重要的应用,能实现微米级别的加工精度;2) 生物医学:该技术能够实现对生物细胞的高精度加工和成像,对生物医学领域的发展有着重要的推动作用;3) 光电子学:在激光雷达、激光通信等领域有着重要的应用前景。
5. 个人观点飞秒脉冲激光双光子微纳加工技术是一项具有巨大潜力的前沿技术,它将对材料加工、生物医学等领域产生深远的影响。
我个人认为,随着技术的不断突破和发展,飞秒脉冲激光双光子微纳加工技术将会得到更广泛的应用,为人类社会的发展带来更多的可能性。
总结飞秒脉冲激光双光子微纳加工技术作为一种新型的加工技术,具有诸多优势和应用前景。
通过本文的探讨,相信读者已经对其原理、技术特点和应用领域有了更全面、深入的了解。
半导体微纳加工技术的发展及应用随着信息时代的到来,半导体技术的应用越来越广泛,而微纳加工技术作为半导体技术的一个重要分支,也得到了越来越多的关注和应用。
在本文中,我们将深入探讨半导体微纳加工技术的发展及应用。
一、概述半导体微纳加工技术是指针对微米以下尺度的微型芯片加工技术。
这种技术最早应用于半导体集成电路的制造,但现如今已广泛应用于纳米材料的制造,生物医疗、光学设备和传感器等领域。
通过微纳加工技术的应用,我们可以实现信息存储器与微小传感器的制造,以及纳米结构的制备和性能的控制,具有广泛的前景和应用。
二、主要技术半导体微纳加工技术的主要技术包括影像技术、光刻技术、离子束蚀刻技术、薄膜沉积技术以及表面湿法处理技术等等。
(一)影像技术影像技术是指将传感器捕捉到的图像信号经过变换后输出的技术。
影像技术在微纳加工技术中的应用是指通过光刻胶、金属薄膜、光学元件等对图像进行处理和纠偏,以实现微纳加工中的图案形成等目的。
(二)光刻技术光刻技术是半导体微纳加工技术的核心技术之一。
其工作原理是将特殊摄影胶涂覆在半导体基片上,然后利用光源进行光解反应,使摄影胶的化学结构发生变化,从而形成所需的微细结构。
(三)离子束蚀刻技术离子束蚀刻技术是利用高能离子束对表面进行刻蚀的一种加工技术。
通过调整离子束的剂量和能量等参数,可以实现对微米以上的结构进行加工,同时对特殊结构(如二维和三维结构)的制造更为方便。
(四)薄膜沉积技术薄膜沉积技术是指在基片表面通过化学气相沉积等方法制作具有特定功能的超薄膜。
这种技术不仅可以实现半导体材料表面的涂覆和微观制造,还可以实现化学反应研究、物理光学研究等。
(五)表面湿法处理技术表面湿法处理技术是半导体微纳加工技术中的一项重要技术。
这种技术可以用于对表面进行清洗、腐蚀、电化学处理等,并且可以实现表面的光学特性研究、表面能研究等。
三、应用前景随着半导体微纳加工技术的不断革新和完善,其在各行各业中的应用也在不断扩展。
. .. 微纳光学加工及应用 20144214004 孙奇
一、 微纳光学结构 光是一种电磁波,是由同相相互垂直的电场与磁场在空间中以波的形式移动而形成的,其传播方向垂直于电场与磁场所构成的平面,电磁波能有效的传递能量和动量[1]。从低频到高频,电磁波可以分为:无线电波、微波、红外线、可见光、紫外光、X射线和γ射线等,人眼可见波长在380nm至780nm之间,如图1所示。
图1. (a) 电磁波传播方式 (b) 电磁波按频率分段图(图片来自网络) 传统光学只研究可见光与物质的相互作用,而现代光学已扩展到对全波段电磁波的研究。随着微加工技术的日臻成熟,电磁波在微纳结构中的传播,散射和吸收等性质开始逐渐被人们研究。1987年,Yabnolovich和John首次提出了光子晶体的概念[2, 3];1998年,Ebbesen等人发现在打了周期性亚波长纳米空洞的厚金属膜上存在着超强的光投射峰,这一发现激起了对金属周期结构中表面等离激元的研究热潮[4]。从1987年至今,各领域对光学微纳结构的研究一直在迅猛发展。
1.1 光子晶体 从固体物理的概念中可以得知,当电子在周期性的势场中运动时,由于电子受到周期性势场的布拉格散射的作用形成了电子的能带结构,同时电子的能带与能带之间在一定的晶格条件下将存在带隙。在带隙能量范围内的电子其传播是被禁止的。运动的电子实际上也是一
(a) (b) .
.. 种物质波。无论何种波动形式,只要其受到相应周期性的调制,都将有类似于电子的能带结构同样也都可能出现禁止相应频率传播的带隙。 微纳光学结构技术是指通过在材料中引入微纳光学结构,实现新型光学功能器件。1987年,Yabnolovitch和 John在讨论如何抑制原子的自发辐射和光子局域的问题时,把电子的能带概念拓展到光学中,提出了光子晶体的概念。光子晶体就是规律性的三维微结构,其周期远小于波长,形成光子禁带,通过引入局部缺陷,控制光的传播与分束。同样的,固体物理晶格中的许多概念都可以类似的运用到光子晶体中,诸如倒格矢空间、布里渊区、色散关系、Bloch函数、Van Hove奇点等物理概念。由于周期性,对光子也可以定义有效质量。不过需要指出的是,光子晶体与固体晶格有相似处,也有本质的区别。如光子服从的是麦克斯韦方程,电子则服从薛定谔方程;光子是矢量波而电子是标量波;电子是自旋为1/2的费米子,而光子是自旋为1的波色子,等等。 根据空间的周期性分布的不同,光子晶体可以分为一维、二维和三维光子晶体,如图2所示。一维光子晶体的材料一般在一个方向上进行周期排列,例如传统的多层薄膜结构;二维光子晶体表现为材料在平面上进行周期性排列;三维光子晶体具有多种材料排列方式,最为经典的则为图所示的柴堆结构。
图2. 一维、二维以及三维光子晶体示意图(图片来自网络) 光在光子晶体中传播时会受到材料周期性调制而形成光子带隙,从而禁止频率落在带隙内的光在晶体中传播,因此由光子晶体做成的器件可以如愿地控制光子运动。光子晶体对光的调控作用主要体现在如下几个方面。首先,光子晶体具有光子带隙。频率落在带隙中的电磁波将禁止在晶体中传播。光子带隙有完全带隙和不完全带隙之分:完全光子带隙就是全方位光子带隙,即一定频率范围内的光波无论其偏振方向或传播方向如何都被禁止传播,如图3所示;不完全光子带隙则只能在特定方向上禁止光的传播。 . .. 图3. 三维光子晶体能带结构示意图(插图为柴堆结构的三维光子晶体扫描电镜照片[5]) 其次,光子局域是光子晶体的另一个基本特征。当向光子晶体中引入缺陷或杂质时,光子禁带中会出现缺陷态,与缺陷态频率吻合的光子会被局限在缺陷位置。Einstein在1905年提出的自发辐射对许多多物理过程和实际应用有着重要的影响。在二十世纪八十年代以前,人们一直认为自发辐射是一个随机的自然现象,是不能控制的。而今,通过引入结构缺陷,利用光子带隙中出现的态密度很高的缺陷态,就可以控制发光物质的自发辐射[6],如图4所示为三维光子晶体缺陷态增强半导体GaInAsP自发辐射的实验结果[7]。当引入点缺陷时,光将被局限在某个特定位置,还可以形成高品质的光学微腔[8],如图5为二维光子晶体中高品质因子微腔的实验结果[9];当引入缺陷时,形成光子晶体波导可以从根本上实现光转弯时的高效率传输[10],图6为二维光子晶体波导的结果[11];若把光子晶体沿某个方向切开,由于其平移对称性的破坏,将会形成表面态,通常也叫表面缺陷。具有表面缺陷的光子晶体就会把光局限在某个平面上,由此可以制作平面波导或平面谐振腔[12],如图7所示为三维光子晶体及其表面态的实验结果[13]。 .
.. 图4. 三维光子晶体缺陷态增强半导体自发射 图5. 二维光子晶体中高品质因子微腔的设计实验 .
.. 图6. 二维光子晶体波导(a)直线光子晶体波导和波导弯折的投射谱(b)曲率半径不为0的90°弯折波导的弯折效率(c)曲率半径为0的90°弯折波导的弯折效率
图7. 三维光子晶体及其表面态(a) 三维光子晶体示意图及表面布里渊区(b)三维光子晶体的投影能带(c)存在表面的三维光子晶体投影能带(d)表面态的场分布 . .. 除了上述的两种性质外,光子晶体材料还有丰富的色散特性。通过光子能带的调控,我们可以控制电磁波在光子晶体中的色散性质。当光从均匀介质如射到光子晶体或者从一种光子晶体入射到另一种光子晶体中时,我们可以通过能带结构设计和研究光在通过界面时的反射和折射的行为。超棱镜、自准直和负投射等新颖的光学现象均来自光子晶体的特殊色散性质,如图8所示为光通过光子晶体时的负折射行为。
图8. 光通过光子晶体时的负折射行为(图片来自网络) 1.2 金属结构的表面等离激元 金属微纳结构的表面等离激元是近年来的研究热点。通过利用其新颖的光学性能至今已发展出了巨大的应用前景,吸引了来自物理、化学、生物医学等学科的注意。如图9所示,当光从自由空间传播到金属表面时,由于金属中自由电子的集体震荡,在表面处能存在局域的电磁场,其场强在金属和自由空间两个方向都会强烈的衰减,从而使其只能在界面处进行传播,这种在金属表面传播的电磁场模式成为表面等离激元[14]。而表面等离激元与光子晶体表面态中的表面波概念相似,因此也可以将之看待为一种表面波。
图9. 表面等离激元模式的电场在界面分布的示意图和场分布沿Z空间变化的情况 当金属表面存在周期性结构时,我们可以类比光子晶体中的电磁波,表面等离激元(SPs)作为一种表面波,在周期性结构的调制下也能够形成独特的能带结构。当金属结构的周期与有效波长的一半可以比拟时,结构对SPs的散射有可能形成类似驻波形式的SPs模式,从而打开了一个禁带。通过设计一个金属的两维周期性结构,如图10所示,沿各个. .. 方向传播的SPs模式都将被这种结构散射,从而形成一个全带隙的SPs模式能带[15-17]。通过不同的金属周期性结构的设计,人们就可以调节SPs模式能带,从而可以针对这些性质发展处新的应用。 1998年,Ebbesen等人发现在打了周期性亚波长纳米级空洞的厚金属膜上存在着超强的可见光透射峰[18],其实验结果如图11(a)所示。2002年,他们又发现在金属纳米级孔周围制作一些周期性的波纹后,透过亚波长小孔的光波不再是沿各个方向衍射,而是沿着一个方向定向发射[19],其结果如图11(b)所示。这两个利用表面等离激元的奇特性质来突破光学衍射极限的现象引起了人们的极大兴趣。
图10 (a)平金属SPs的色散关系,其中黑色部分代表SPs模式 (b)具有周期结构的金属表面的扫描电镜照片,图中标尺为0.7μm (c)具有周期结构的金属的SPs的色散关系,具有清晰的SPs带隙存在 . .. 图11 (a)周期性亚波长小孔的光学超强透射 (b)“牛眼”结构的无衍射效应定向发射现象 1.3 光学微纳结构的研究进展 a. 超构材料 区别于结构尺度可以和相应电磁波长比拟的光子晶体和表面等离子激元结构,超构材料对应于结构尺度远小于相应电磁波长的光学微纳结构,如图12所示[20]。由于基本单元远远小于相应尺度的电磁波长,周期性对结构的光学性质没有很大的影响。所以可以将超构材料看成一个等效的均匀介质,具有等效的介电常数和磁导率。超构材料的基本组成单元的特点除了结构尺度远远小于相应电磁波长之外,还有就是这些基本单元都对电磁波具有局域的共振特性。该基本单元将对与之结构共振频率匹配的电磁波强烈共振,而远离共振频率的电磁波不予响应。通过频率选择或者结构调控这些电磁共振,就可以调控超构材料的等效介电常数和磁导率,甚至得到负的等效介电常数和磁导率[21-22]。 超构材料中最吸引人的应用就是负折射和超透镜现象。由于超构材料具有可调的负的等效介电常数和磁导率,通过折射率和介电常数的关系可知,超构材料也就有负的折射率,这意味着电磁波在穿过正常介质和潮购材料的界面时会发生负折射,这使得平板成像成为了可能。平板折射有利于收集更多的波矢,同样由于体系的介电常数和磁导率均为-1,这个平板透镜与空气的阻抗匹配,就没有反射光存在[20-23],这样即可得到一个突破了衍射极限且完美成像的超透镜,如图1所示。 .
.. 图12 (a)超构材料典型的单元开口环结构扫描电镜照片 (b)利用超构材料实现负折射现象的实验样品结构
图13. 超透镜成像示意图