微纳光子学
- 格式:doc
- 大小:20.50 KB
- 文档页数:3
微纳光电子学一、课程说明课程编号:140510Z10课程名称:微纳光电子学/ Micro- and Nano- Optoelectronics课程类别:专业核心课程学时/学分:48/3先修课程:固体物理、信息光学、光电子技术适用专业:光电信息科学与工程教材、教学参考书:1.原荣,邱琪编著.光子学与光电子学.北京: 机械工业出版社.2014年;2. 傅竹西编著.固体光电子学.合肥: 中国科学技术大学出版社(第2版).2012年;3. 周治平著.硅基光电子学.北京: 北京大学出版社.2012年;4. 刘旭等编著.光电子学.杭州: 浙江大学出版社.2014年。
二、课程设置的目的意义光子学、光电子学、和光电子技术是目前信息时代不可或缺的关键技术,产生了大量的光与电相结合的新型器件如手机、电脑、激光雷达、导航设备、光电探测器、太阳能电池等等,不一而足,为人们的生活和工作提供了极大的便利。
光子与电子的结合与相互调制是今后信息技术发展的一个重要方向,特别是由于半导体技术和微纳制作技术的兴起,光电子器件朝功能更强、尺寸更小的方向发展。
本课程重点讲述特征尺寸在微米或纳米级别的光与电相结合的新型光电子器件及其原理,结构、和应用等,使光电信息科学与工程等专业的学生能够了解和掌握有关微纳光电子学方面的最新进展和知识,为更好地适应以后相关的学习深造和研发工作打下坚实的专业基础。
三、课程的基本要求知识:本课程从光学原理如光的传播、干涉、衍射、偏振、双折射、光电效应、电光效应、非线性效应等出发,重点讲述所涉及到的当前微纳光电子学领域基本的、主要的、常用的器件,如波导、半导体激光器、滤波器、调制器、探测器、CCD、探测器等的原理、结构、及应用等。
能力:要求学生学习这些器件的基本结构、工作原理、主要特性及应用等知识时,不仅需了解微纳光电子器件的基本知识,还要能够举一反三、触类旁通、和具备进一步深入学习、研究及设计微纳光电子器件的能力,并能将器件知识与实际应用相结合。
微纳光子学技术的新进展近年来,微纳光子学技术在各个领域得到了迅速发展。
微纳光子学是一种综合性的学科,主要涉及到微型和纳米级别下的光学现象,通过对微型和纳米级别的结构进行设计和制备来实现对光学性能的调控。
该技术已经在通信、能源、生物医学、环境监测等领域广泛应用,成为当今科技发展的热点之一。
一、微纳光子学技术的现状微纳光子学技术是一个较为年轻的学科,相对于传统的微电子技术和光学技术来说,仍然处于探索和发展阶段。
目前,微纳光子学技术的研究主要集中在分析光在微纳级别下的行为,以及通过设计和制备微型和纳米结构来对光进行调控。
近年来,该领域取得的许多成果得到了广泛关注。
比如,在信息通信领域,微纳结构的制备和集成可以在光纤通信中实现高速传输和稳定传输。
在能源领域,利用微纳结构的光吸收性能和光催化性能,可以提高太阳能电池和光电催化器的效率。
在生物医学领域,微纳结构的光学成像和光治疗应用也受到了越来越多的关注。
当前,微纳光子学技术的一个主要挑战是如何制备出可控性高、复杂度大、成本低的微纳结构。
同时,微纳结构的设计和制备也需要继续改进和创新,以实现更精准、高效的光学性能调控。
这些挑战需要科研人员和工程师共同努力解决。
二、微纳光子学技术的新进展1. 基于拓扑纳米光学的研究拓扑纳米光学是近年来微纳光子学领域的一个热点。
通过设计和制备具有拓扑性的微纳结构,可以实现光学模式的跨越、传输的无损耗、以及光学信息的高度保护等功能。
近期,该领域取得了不少进展。
比如,研究人员利用微球状腔共振器和空间光调制技术,成功实现了拓扑梯度折射率微系统的实现。
该系统能够实现奇异拓扑现象和非线性光学效应的控制,为拓扑纳米光学的应用提供了新的思路。
此外,利用频率差值合成的拓扑干涉,实现了具有约定模式的高精度应变传感器,可以在生物医学和制造业等领域中得到应用。
2. 基于超表面的研究超表面是另一个近期快速发展的领域。
超表面的基本结构是由大量微型元器件构成的,它能够实现光学极化、偏振反射、透射等调控,并且具有可重构性和可扩展性等优势。
光学专业(070207)培养方案(学术型硕士研究生)Optics一、培养目标和要求1.努力学习马列主义、毛泽东思想和邓小平理论,坚持党的基本路线,热爱祖国,遵纪守法,品德良好,学风严谨,具有较强的事业心和献身精神,积极为社会主义现代化建设服务。
2. 培养掌握坚实宽广的理论基础和系统深入的专门知识,能将物理理论与实际问题关联起来的、具有理论与实践相结合能力的研究与应用性专业人才。
3. 积极参加体育锻炼,身体健康。
4. 硕士研究生应达到的要求:(1)掌握本学科的基础理论和相关学科的基础知识,有较强的自学能力,及时跟踪学科发展动态;能广泛获取各类相关知识,对科技发展具有敏感性。
(2)具有项目组织综合能力和团队工作精神,具有强烈的责任心和敬业精神。
(3)有扎实的英语基础知识,能流利阅读专业文献,有较好的听说写译综合技能。
(4)获得具有创新价值的研究结果。
5. 本专业的主要学习内容有:光学原理,高等量子力学,激光物理,量子光学,光子晶体学,非线性光学,信息光学,专业英语等课程,另外还要参加教学实习,全国性学术交流会议,撰写毕业论文等实践环节。
硕士生毕业可以继续深造攻读博士学位,或在相关企事业任职。
二、学习年限1. 培养方式采用课堂教授、讨论、专题发言与课后自学、写读书笔记;社会调研与教学实习;参与科研与学术活动相结合的培养模式。
在学习年限内,要求学生保证规定的在校学习时间。
2. 学习年限硕士研究生:学制3年,培养年限总长不超过5年。
在完成培养要求的前提下,对少数学业优秀的研究生,可申请提前毕业。
三、研究方向与导师(一)研究方向1.强光光学,导师主要有沈百飞研究员、张敬涛研究员等。
2.量子光学,导师主要有冯勋立研究员、闫爱民副教授、胡志娟副教授等。
3.微纳光子学,导师主要有刘锋教授、赵振宇副教授、何晓勇副教授等。
(二)导师简介(每位导师介绍不得超过400字)沈百飞,男,理学博士,博士导师,研究员。
主要从事超短超强激光和等离子体相互作用的研究,特别是其中的相对论效应、量子电动力学效应和相对论涡旋激光角动量效应等。
1引言微纳光学主要指微纳米尺度的光学效应,以及利用微纳米尺度的光学效应开发出的光学器件、系统及装置。
微纳光学不仅是光电子产业的重要发展方向之一,也是目前光学领域的前沿研究方向。
微纳光学的发展是由大规模集成电路工艺水平的进步所推动的。
早在20世纪50年代,德国著名教授A.W.Lohmann [1]就考虑到利用光栅的整体相移技术对光场相位编码,以实现对光波的人工控制。
1964年夏季,A.W.Lohmann 教授指导大学生Byron ,利用IBM 当时先进的制版设备演示了世界上第一张计算机全息图。
随后的衍射光学进展都可以看作是人为地控制或改变光的波前,从这个意义上说,这个工作具有革命性的意义。
随着半导体工艺技术的进步,微米尺度的任意线宽都可以加工出来。
由此,达曼提出一种新型的微光学分束器件,后人叫做达曼光栅[2]。
达曼光栅通过任意线宽的二值相位调制,将一束激光分成多束等强度的激光。
其制作充分利用了微电子工艺技术,是一个典型的微光学器件[3]。
达曼光栅一般能产生一维或者二维矩阵的光强分布。
周常河等[4]提出了圆环达曼光栅,也就是不同半径的圆孔相位调制,实现多级等光强的圆环分布。
我们知道,圆孔的傅里叶变换是贝塞尔函数,而矩形的傅里叶变换是SINC 函数,因此,虽然达曼光栅和圆环达曼光栅的物理本质一样,但是其数学处理却不相同[5]。
随着制造技术水平的进步,出现了一些纳米光学领域的新概念:光子晶体(Photonic Crystal )[6]、表面微纳光学结构及应用Micro-&Nano-Optical Structures and Applications摘要简短回顾微纳光学的几个重要研究方向,包括光子晶体、表面等离子体光学、奇异材料、负折射、隐身以及亚波长光栅等。
微纳光学不仅成为当前科学的热点研究领域,更重要的是,微纳光学是新型光电子产业的发展方向,在光通信、光存储、激光核聚变工程、激光武器、太阳能利用、半导体激光、光学防伪技术等诸多领域,起到了不可替代的作用。
一、简答题:1. 套准精度的定义,套准容差的定义。
大约关键尺寸的多少是套准容差.套准精度是测量对准系统把版图套准到硅片上图形的能力。
套准容差描述要形成图形层和前层的最大相对位移。
一般,套准容差大约是关键尺寸的三分之一。
2. 亚波长结构的光学特性。
亚波长结构的光学特性:-- 光波通过亚波长结构时,光的衍射消失,仅产生零级反射和透射,等效为薄膜,可用于抗反射元件和双折射元件;-- 采用空间连续变化的亚波长结构可获得偏振面的衍射,形成新型偏振器件;-- 表面等离子波亚波长光学利用表面等离子体波共振(SPR)原理:波导,小孔增强,局域增强等4. 微电子的发展的摩尔定律是什么?何谓后摩尔定律?集成电路芯片的集成度每三年提高4倍,而加工特征尺寸缩小倍,这就是摩尔定律5. 单晶、多晶和非晶的特点各是什么?单晶:几乎所有的原子都占据着安排良好的规则的位置,即晶格位置;——有源器件的衬底非晶:如SiO2, 原子不具有长程有序,其中的化学键,键长和方向在一定的范围内变化;多晶:是彼此间随机取向的小单晶的聚集体,在工艺过程中,小单晶的晶胞大小和取向会时常发生变化,有时在电路工作期间也发生变化。
6. 半导体是导电能力介于___导体_____和___绝缘体_____之间的物质;当受外界光和热作用时,半导体的导电能力___明显变化______; _______往纯净的半导体中掺入某些杂质_______可以使半导体的导电能力发生数量级的变化。
7. 在光滑的金属和空气界面,为什么不能激发表面等离子体波?对于光滑的金属表面,因为表面等离子体波的波矢大于光波的波矢,所以不能激发表面等离子体波。
8. 磁控溅射镀膜工艺中,加磁场的主要目的是什么?将电子约束在靶材料表面附近,延长其在等离子体中运动的轨迹,提高与气体分子碰撞和电离的几率9. 谐衍射光学元件的优点是什么?高衍射效率、优良的色散功能、减小微细加工的难度、独特的光学功能10.描述曝光波长与图像分辨率的关系,提高图像分辨率,有哪些方法?K1 is the system constant 工艺因子:0.6~0.8NA = 2 ro/D, 数值孔径改进分辨率的方法增加NA 减小波长减小K111. 什么是等离子体去胶,去胶机的目的是什么?氧气在强电场作用下电离产生的活性氧,使光刻胶氧化而成为可挥发的CO2、H2O及其他气体而被带走;目的是去除光刻后残留的聚合物12. 硅槽干法刻蚀过程中侧壁是如何被保护而不被横向刻蚀的?通过控制F/C的比例,形成聚合物,在侧壁上生成抗腐蚀膜13. 折衍混合光学的特点是什么?折衍混杂的光学系统能突破传统光学系统的许多局限,在改善系统成像质量减小系统体积和质量等诸多方面表现出传统光学不可比拟的优势14. 刻蚀工艺有哪两种类型?简单描述各类刻蚀工艺。
微纳光学元件微纳光学元件是指在微纳米尺度下制备的光学元件,其物理尺寸与波长相当或小于波长。
由于微纳米尺度下的光学元件具有精细的结构和独特的光学性能,因此它们在纳米光学、纳米电子学、生物医学、光子学和量子信息等领域都有着广泛的应用。
本文将介绍微纳光学元件的种类、制备方法和应用领域。
1.微型透镜微型透镜是一种具有微观尺度的透镜。
在微型透镜中,光线沿着一个由两个球形凸面镜构成的小光学系统进行聚焦。
微型透镜可以用于大规模的太阳能电池板、荧光探针和微小的成像器件中。
2.表面等离子体共振元件表面等离子体共振元件(SPR)是由金属和介电质组成的结构,在金属表面激发出介电质与金属相互作用而形成的等离子体振荡。
SPR可以用于生物传感和化学传感器,便携式光谱仪和科学研究中。
3.纳米图案化二维材料纳米图案化二维材料是通过纳米图案化技术在二维材料表面形成的纳米图案阵列。
这些阵列可以用于各种应用,如有机太阳能电池、晶体管和量子点发光二极管等。
4.纳米光阀门纳米光阀门可以在纳米尺度下控制光的传输。
这种阀门利用有机材料在受激电荷转移时的光响应和半导体的光学和电学特性制成。
纳米光阀门可以用于光开关和光电子学器件中。
5.量子点量子点是一种极小的材料,其长度为纳米级别。
由于量子点的尺寸非常小,因此它们的行为在经典物理学和量子力学之间。
量子点已被证明在计算机处理、太阳能电池板、生物传感和医学成像等领域中具有应用潜力。
1.电子束光刻电子束光刻是一种制备微纳米结构的先进技术,利用电子束在光刻胶层和光学材料表面刻蚀微纳米结构。
该技术相对于其他光刻技术具有更高的分辨率和更好的控制能力。
2.激光直写3.纳米压印纳米压印技术是一种将微纳米尺度的结构转移至各种材料表面的方法。
该技术利用硅基底上制作的微纳米结构进行压印,从而制造出具有高分辨率和复杂形状的微纳米结构。
4.分子束外延分子束外延是一种利用分子束在晶体表面上生长高质量微纳米结构的方法。
通过控制分子束的数量和速度,可以精确地控制微纳米结构的形成和生长过程。
微纳光子学主要研究在微纳尺度下光与物质相互作用的规律及其光的产生、传输、调控、探测和传感等方面的应用。
微纳光子学亚波长器件能有效提高光子集成度,有望像电子芯片一样把光子器件集成到尺寸很小的单一光芯片上。
纳米表面等离子体学是一新兴微纳光子学领域,主要研究金属纳米结构中光与物质的相互作用。
它具有尺寸小,速度快和克服传统衍射极限等特点,有望实现电子学和光子学在纳米尺度上的完美联姻,将为新一代的光电技术开创新的平台。
金属-介质-金属F-P腔是最基本的纳米等离子体波导结构,具有良好的局域场增强和共振滤波特性,是制作纳米滤波器、波分复用器、光开关、激光器等微纳光器件的基础。
但由于纳米等离子体结构中金属腔的固有损耗和能量反射,F-P腔在波分复用器应用中透射效率往往较低,这给实际应用带来不利。
最近,科研人员提出了一种提高表面等离子体F-P腔波分复用器透射效率的双腔逆向干涉相消法。
该方法能有效避免腔的能量反射,使入射光能完全从通道端口出射,极大增强了透射效率。
此设计方法还能有效的抑制噪声光的反馈。
同时,科研人员利用耦合模方法验证了这种设计方法的可行性。
这种波分复用器相比目前报道的基于F-P单腔共振滤波的波分复用器的透射效率提高了50%以上。
相关的成果于2011年6月20日发表在Optics Express上,论文题目为:Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities。
“新兴光器件及集成技术专题报告会”上发布《纳米光子学对光子技术更新换代的重要作用》精彩演讲。
报告摘要;从上世纪70年代开始,光子学进入微光子学阶段,经过40年的研究,现在已经比较成熟。
以半导体激光器为重点的研究已经逐渐转向对激光控制问题的研究和激光应用的研究。
同时,光子技术已经进入光电子技术阶段,其特点是研究开发以电控光、光电混合的器件和系统。
光电子技术已经逐步占领了电子技术原有的阵地。
它的应用领域已经扩大到人类社会生活的各方面,如光通信与光网,平板显示、半导体照明、光盘存储、数码相机等。
光电子产业迅速发展壮大起来。
在经济发达国家,光电子产业的总产值已经可以与电子产业相比,甚至超过电子产业。
近十年来,国际学术界开始大力发展纳光子学及其技术,使光电子技术与纳米技术相结合,对现有光电子技术进行升级改造。
与国际上科技发达的国家相比,目前我国微纳光子学的研究还不算落后,这从我国在微纳光子学领域发表的论文数量和投稿的杂志级别就可看出。
但是我国的光子学研究论文大部分是理论方面的,大多数是跟踪国外的。
由于国内缺乏先进的科学实验平台,特别是缺乏制备微纳光子学材料和器件的工艺条件,实验方面的论文比较少(除了少数与国外合作研究的论文),创新的思想无法得到实验验证。
微光子学方面的情况尚且如此,在纳光子学方面,由于对仪器、设备、工艺和技术的要求更高,与国外的差距正在加大。
在光电子技术方面,由于国际经济的全球化和我国的改革开放形势,吸引跨国公司将制造、加工基地向我国转移。
21世纪初光电子企业的大公司纷纷落户我国。
而且大量资金投向我国沿海经济发达地区(如广东、上海和京津地区),建立起一大批中外合资或独资企业。
但是这些外国企业或技术人员,控制着产业的高端技术,对我国实行技术垄断,使我国的光电子技术至今还处于“下游”,成为外向加工企业。
大多数光电子企业采用这样的生产模式:购买国外的芯片进行器件封装,或者购买国外的器件进行系统组装。
目前我国光电子企业严重缺乏核心技术和自主知识产权,无法抵御国际经济危机,面临着很大的风险。
为了加快我国的微纳光子学与相关光子技术的发展,我国应该集中投入一部分资金,凝聚一批高水平研究人才,在某些光电子企业集中的地区,依托光子学研究有实力的单位,采用先进的管理模式,建设我国的先进的微米、纳米加工制造中心和微米、纳米光子学实验研究平台,开放为广大高校、研究所和企业的研究人员服务。
只有这样才有可能在最短的时间内,使我国的光子学、光子技术以及光电子产业实现飞越式的发展,赶超国际先进水平,为我国的经济建设做出重大贡献。
【摘要】:现代社会已进入光信息化时代,人们对信息的需求也在急剧增加。
在目前使用的光纤通信系统中,由于在信号转换方面存在着较多的光—电、电—光转换器件,大大影响了信息的快速传输,造成了通信系统中的“信息瓶颈”。
为了解决这个问题,采用具有超快响应速度的全光开关构建全光网络成为必然。
全光开关通常都基于非线性光学原理工作,其中非线性折射型全光开关,主要利用了材料的三阶非线性折射特性,即通过一束控制光引起材料折射率的变化,使得信号光在其中通过时产生相位的变化,从而实现光开关的开关动作。
评定材料是否适用于全光开关有两个品质因子:W=n_2I/α_0λ和T=βλ/n_2,其中n_2为非线性光学折射率,I 为测试光强,α_0为线性吸收系数,λ为测试波长,β为非线性吸收系数,材料必须满足|W|1且|T|1才能用于全光开关。
因此这类全光开关对材料性能的基本要求是:1、在工作波段有大的三阶非线性折射率,从而可使用光功率密度较低的控制光,降低对器件造成的损伤;2、在工作波段具有小的线性和非线性吸收,进而降低信息传输损耗,减小热效应的影响,提高开关速度,增强系统可靠性和稳定性;3、具有超快的非线性光学响应速度,实现与全光网络的匹配;4、具有稳定的物理化学性质,易于与基质材料复合并可进行波导器件的制备。
国际上关于全光开关器件的研究,既包括技术和结构方面的创新与改进,也包括新的作用机理和材料方面的寻找和探索。
由于目前还没有找到性能全面优异理想的适用于全光开关器件研制的非线性光学材料,因而,全光开关仍未进入实用化,探索新型的具有优良三阶非线性光学性能、高品质因子的非线性光学材料还是目前国际上最主要的任务。
本课题组一直致力于寻找适用于全光开关的三阶非线性光学材料,通过对大量材料设计与实验研究发现,过渡金属的DMIT类材料具有大的平面共轭结构,易发生极化和电荷转移,金属和有机体系之间的电荷转移可以进一步增强材料的三阶非线性光学性质。
同时还注意到该类材料分子中的阴离子是富含硫的离子基团,硫原子通过S…S相互作用,可在分子间形成有效的轨道重叠,使得材料的介电常数小,电子迁移率高,响应速度快,在全光开关的应用上有潜在价值。
由于全光开关要求材料具有大的非线性折射和小的非线性吸收,如何从影响材料非线性光学性质的众多因素中寻找规律,进一步提高材料的三阶非线性折射率,降低线性及非线性吸收就显得尤为重要。
本论文在前期工作基础上,集中选择了具有较小非线性吸收的Cu(dmit)_2和Au(dmit)_2系列材料为研究对象,采用Z 扫描方法分别对材料在溶液和薄膜中的三阶非线性光学性质进行了较系统的性能研究,从内部机理探讨了影响材料非线性折射和非线性吸收的各项因素,其目的是为了寻找到提高材料的三阶非线性折射率,降低非线性吸收的方法,为材料的器件化提供理论依据。
本论文研究工作主要体现在如下几个方面: 第一,研究了Cu和Au的一系列DMIT类配合物材料中,中心金属离子及外部阳离子对材料非线性折射率和非线性吸收的影响,发现其三阶非线性光学性质与中心金属离子及结构密切相关。
我们发现Cu(dmit)_2和Au(dmit)_2在全光通信波段(1.3~1.6μm)具有较小的线性及非线性吸收,因此,本论文选择了Cu(dmit)_2及Au(dmit)_2作为全光开关研究的候选对象,其中,TPPPADTA、TPEPADT、TPPPADT等为国际上首次报道的新型光学材料。
采用Z扫描方法分别对Cu和Au的DMIT类材料的三阶非线性光学特性进行系统的研究,得到了材料的三阶非线性极化率、非线性折射率、非线性吸收系数、双光子吸收截面和激发态吸收截面等性能参数,并结合测试样品的浓度计算得到了材料的分子二阶超极化率。
通过对材料性质的深入研究发现,获得了一些重要的研究结果: A.DMIT配合物材料的非线性折射性质,与中心金属离子有密切关系。
具有相同金属离子的材料表现出相同的非线性折射性质,在1064 nm处,浓度为1×10~(-3)mol/L的Cu(dmit)_2/乙腈材料均表现出自散焦效应。
B.中心金属离子对材料的非线性吸收也有很大影响。
具有相同外部阳离子和浓度的TMACDT与TMAADT材料,在1064 nm处,TMACDT表现出双光子吸收,而TMAADT的非线性吸收很弱,基本没有测到。
C.在同一中心离子形成的配合物中,体积较小的阳离子对材料的三阶非线性折射或非线性吸收有增强的趋势。
在Cu(dmit)_2和Au(dmit)_2材料中,均是具有最小阳离子的材料TMACDT和TMAADT的非线性折射率最大。
这些结果说明金属形成的配位阴离子是导致材料具有非线性光学性质的主要原因,选择具有较小阳离子的非线性光学材料有可能获得更好的三阶非线性光学性质。
第二,研究了各项外部因素(激光的脉宽、波长、样品浓度等)对DMIT配合物的三阶非线性折射和非线性吸收的影响,发现在材料共振及近共振区测得的非线性吸收较大;使用较长脉宽光源测得的材料的非线性光学系数更大;材料的非线性光学效应随溶液浓度的增大而增强。
采用Z扫描方法分别在1064 nm和532 nm的脉冲照射条件下对Cu和Au的DMIT类材料的三阶非线性光学特性进行比较,我们发现: A.同种材料在测试波长位于材料共振及近共振区时,测得的非线性吸收比较强,其三阶非线性光学效应也更强。
在532 nm处,1×10~(-3)mol/L的Cu(dmit)_2/乙腈溶液的非线性吸收系数为10~(-12) m/W,而在1064 nm处,相同材料的非线性吸收系数为10~(-13) m/W,比532 nm 处小一个数量级,这是由于532 nm位于Cu(dmit)_2材料的共振区,其线性吸收较大,也更易于发生非线性吸收。
B.同种材料在不同脉宽条件下测得的非线性光学性质也不尽相同,TMACDT在皮秒脉宽激光作用下是双光子吸收,而在纳秒脉宽激光作用下则表现为反饱和吸收,运用五能级模型对出现这种差异的原因进行了分析,表明材料在皮秒脉冲作用下的非线性产生机制归因于单重态激发态的态态跃迁,而在纳秒条件下则主要是由于三重态激发态的态态跃迁导致的。
由于材料非线性光学效应的产生机制不同,导致采用脉宽较长的光源时,得到的计算结果要相对大一些。
C.通过对1064 nm,20 ps条件下,1×10~(-3)mol/L的Cu(dmit)_2/乙腈溶液及同浓度的Au(dmit)_2/乙腈溶液的三阶非线性光学性质研究,发现Cu(dmit)_2/乙腈溶液的三阶非线性折射率一般为10_(-13)~10~(-12)esu,但是其非线性吸收比较大,而相同浓度的Au(dmit)_2配合物表现出了高的非共振三阶非线性光学效应,其中TMAADT的非线性折射率为-4.11×10~(-12)esu,未测到非线性吸收,进一步计算得到TMAADT的品质因子|W|值为 2.87,|T|值约为0,基本满足全光开关对材料品质因子W=n_2I/α_0λ,和T=βλ/n_2(且|W|1,|T|1)的要求。