当前位置:文档之家› 浅谈反证法的原理及应用

浅谈反证法的原理及应用

浅谈反证法的原理及应用
浅谈反证法的原理及应用

摘要

反证法是一种重要的证明方法,它不仅对数学科学体系自身的完善有促进作用,而且对人的思维能力的培养和提高也有极其重要的作用.如果能恰当的使用反证法,就能达到化繁为简,化难为易,化不能为可能的目的.反证法的逻辑思维强,数学语言准确性高,对培养学生严谨的逻辑思维能力,阅读能力,树立正确的数学观具有重要的意义.

本论文主要研究的内容有反证法的由来;具体阐述了反证法的定义,即反证法的概念、分类和作用;反证法具有广泛应用的科学根据;并且着重介绍了反证法的应用,包括反证法在初等数学和高等数学的应用,并提出应用反证法应注意的问题;针对各种问题提出一些具体的教学建议,从而为改进反证法教学提供参考.

关键词:反证法,否定,矛盾,应用

Principle and application of the reduction to absurdity

ABSTRACT:Reduction to absurdity is an important method, it not only to improve its own system of mathematical science have stimulative effect, but also has an extremely important role in cultivating and improving the people's thinking ability. If you use apagoge properly, can be simplified, the difficult easy, words can not be as likely to. The logical thinking of reduction to absurdity, the language of mathematics of high accuracy, to cultivate students' rigorouslogical thinking ability, reading ability, is of great significance to establish a correct conception of mathematics.

The origin of the main content of the paper is the reduction to absurdity;expounds the definition of absurdity, and concept, apagoge classification; the reduction to absurdity has wide application of scientific basis; and introducesthe application of reduction to absurdity, including the application of reduction to absurdity in elementary mathematics and higher mathematics, and proposed should note that the application of reduction to absurdity problems;to solve these problems and puts forward some specific suggestions for teaching, so as to provide reference for the improvement of the teaching of reduction to absurdity.

Keywords: reduction to absurdity, negation, contradiction, application

目录

一、引言 0

二、反证法的由来 0

三、反证法的概念及分类 0

(一)反证法的定义 0

(二)反证法的分类 0

1.归谬法 0

2.穷举法 (1)

(三)反证法的作用 (1)

四、反证法的科学依据 (2)

(一)反证法的理论依据 (2)

(二)反证法的步骤 (2)

(三)反证法的可信性 (2)

五、反证法的应用 (3)

(一)反证法在初等数学中的应用 (3)

(二)反证法在高等数学中的应用 (5)

1.在数学分析中的应用 (5)

2.在高等代数中的应用 (7)

(三)应用反证法应注意的问题 (8)

1.反设要正确 (8)

2.明确推理特点 (8)

3.善于灵活运用 (9)

4.了解矛盾种类 (9)

六、反证法的教学价值及建议 (9)

(一)反证法的教学价值 (9)

1.训练逆向思维 (9)

2.促进数学思维的形成 (9)

3.培养思维严密性 (10)

4.渗透数学史 (10)

(二)反证法的教学建议 (10)

1.多次反复,螺旋上升 (10)

2.精心研究,训练反设 (11)

3.渗透数学思想方法,训练严密 (11)

七、结束语 (11)

八、参考文献 (12)

一、引言

在现代数学中反证法成为最有用和最有效的解决问题的方法之一,但在现行的各种教材中没有对反证法给出系统的介绍,学生在运用上又不如直接证法那样顺理成章,而且在归谬过程学生对所学的定义、定理以及命题本身又要有分析、判断、联想和创造能力,对在怎样的情况下才可采用反证法,学生又不容易判断,所以对反证法的理解和在恰当地应用上都存在不少的问题,因此本文就反证法做一些介绍和探讨.

二、反证法的由来

反证法顾名思义是一种证明方法,在数学和逻辑上是统一的.早期古希腊的数学在毕达哥拉斯学派的影响下认为万物皆数,用整数和几何图形构建了一个宇宙图式.万物皆数这个思想当时在数学家的脑海里是根深蒂固的.随着2的出现,希腊人渐渐开始重新审视他们的数学,图形和直观并不是万能的,推理和逻辑走上了数学的舞台.此时西方数学成为以证明为主的证明数学,他们要的是准确的数学,或者说他们的数学推崇准确性.表现形式就是:逻辑、演绎的体系.可见它是指证明的数学与算的数学正好相反.希腊人重视逻辑和演绎的证明,反证法最早应用在欧几里得的《几何原本》中. 三、反证法的概念及分类

(一)反证法的定义

反证法有多种不同的描述,其本质都是一样的.

最早的法国数学家J·阿达玛在其所著《初等数学教程》(平面几何卷)中作了如下的描述:“反证法在于表明,若肯定定理的假设而否定其结论,就会导致矛盾”.

维基百科中这样描述“反证法,就是由否定命题结论的正确性出发,根据题设条件、定义、法则、公理、定理,进行一系列正确的逻辑推理,最后得到一个矛盾的结果.”即就是结论的反面不能成立,从而肯定命题结论的正确性,这种驳倒命题结论反面的证法叫做反证法.

(二)反证法的分类

反证法分类分为:归谬法和穷举法.

1.归谬法

若命题的反面只有一种情形,则只需把这一种情形驳倒,便可达到反证

的目的.

例1.两条直线同时平行于第三条直线,则原两条直线互相平行.

已知:,,EF CD EF AB ////

求证:.//CD AB

现用反证法予以证明.

假设AB 与CD 不平行,

则{}P CD AB =?(利用平行定义的反面意义),

EF AB // (即EF AP //)、EF CD //(即EF CP //)(题设), ∴过P 点有两条不同的直线与EF 平行,但这与平行公理矛盾(平行公

理),临时假设AB 不平行CD (矛盾律),

故CD AB //(排中律).

2.穷举法

若命题题设反面不止一种情况,则必须将其逐一驳倒,才能间接证明题

设的正面成立.这就叫穷举法.

例2.若121≥>x x ,则有n n x x 21>,

证明:若不然,则有,

()21211x x x x n n =?=,与题设矛盾,

()21212x x x x n n

因此,n n x x 21>.

(三)反证法的作用

牛顿曾经说过:“反证法是数学家最精当的武器之一”.最早在数学中

引用反证法的是古希腊毕达哥拉斯学派的希波克拉提斯(前460年左右),在欧几里得的《几何原本》中也有不少用反证法的范例.我国在五世纪时

《张邱建算经》中已有运用.反证法是数学证明中的一种重要方法,当正面

不容易或者不能证明时,我们可以从命题的反面来思考问题,若能恰当使用,往往可以收到较好的效果.特别是有些数学命题至今除了反证法还别无它

法,因此认识和掌握反证法就显得十分重要.

A C E

B D F

图1

四、反证法的科学依据

(一)反证法的理论依据

反证法所依据的是亚里士多德的形式逻辑的基本规律中的“矛盾律”和“排中律”.

其基本内容是:在同一论证过程中,对同一对象的两个相矛盾的、对立的判断,不能同时都为真,至少有一个是假的,这就是“矛盾律”.如对2这个对象,“2是有理数”和“2是无理数”的两个判断中至少有一个是假的.在同一论证过程中,对同一对象的肯定判断和否定判断,这两个相矛盾的判断必有一个是真的,这就是“排中律”.如要证明“2是无理数”,只要证明“2是有理数”不真就够了.因为“2是有理数”和“2不是有理数”,是对象2的两个相矛盾的判断,依据排中律,其中必有一个判断是真的.如能证明“2不是有理数”不真,就可以证明“2是无理数”为真.

(二)反证法的步骤

反证法的三个步骤:“反设”、“归谬”、“结论”,三者之间相辅相成,不可分割.

1、“反设”是基础.“反设”是反证法证题的第一步.反设的正确与否,直接影响反证法的后续步骤.因此,实施教学时,应指导学生做到:先弄清所证命题的条件部分和结论部分各是什么;再找出结论的相反情况,要求做到不重不漏;最后对结论加上“不”或“不是”,这样就完成了“反设”.

2、“归谬”是关键.“归谬”即利用“反设”导致矛盾.这不但是反证法的核心部分,而且也是反证法教学的难点所在.一些学生也知道需要经过逻辑推理,才能导出矛盾,但不明确怎样去寻找矛盾.因此,实施教学时,应指导学生明确:反设后条件部分是什么;逻辑推理应向哪个方向前进;矛盾将在何处产生.

3、“结论”是目的.“归谬”后,其矛盾的产生并非别的原理,只因“反设”所致,所以命题的原结论就得以成立.至此,反证法证题已经完成,目的也就达到了.

(三)反证法的可信性

反证法在其证明过程中,根据“矛盾律”,对“原结论”和“否定的原结论”来说,这两个相矛盾的判断不能同时都为真,必有一假,而已知条件、

已知公理、定理、法则或者已证明为正确的命题都是真的,所以“否定的原

结论”必为假.再根据“排中律”,“原结论”与“否定的原结论”这一对

立的互相否定的判断不能同时为假,必有一个是真,而“否定的原结论”为

假,于是我们得到“原结论”必为真.综上,我们可以看出反证法是以逻辑思

维的基本规律和理论为依据,通过逻辑推理,得出令人信服的正确结论.反证

法也是唯物辩证法中“否定之否定”原理在数学中的具体应用.

五、反证法的应用

本部分主要总结反证法在初等数学和高等数学的应用.

(一)反证法在初等数学中的应用

之前我们主要介绍了一些反证法的概念,对于反证法的定义、历史及逻

辑基础有了一定的了解,反证法这种间接证明方法理论上可以用于证明任何

题目,但是它像直接证明一样总有局限性,这部分我们主要介绍常用反证法

的几类命题.

否定性命题:结论以“没有”、“不是”、“不能”等形式出现的命

题,直接证法不容易入手,反证法可以发挥它的作用.

例1.求证:在一个三角形中,不能有两个角是钝角.

证明:已知A ∠、B ∠、C ∠是三角形ABC 的三个内角.

求证:C B A ∠∠∠、、中不能有两个钝角.

证明:假如C B A ∠∠∠、、中有两个钝角,

则有?>∠+∠+∠180C B A ,这与“三角形和为?180”产生矛盾,所以,一

个三角形不可能有两个钝角.

关于唯一性、存在性、至多至少命题:

例2.已知0≠a ,求证关于x 的方程b ax =有且只有一个根.

证明:假设方程0=+b ax (0≠a )至少存在两个根,

不妨设其中的两根分别为21x x 、,且21x x ≠,则b ax b ax ==21,,

21ax ax =∴,

021=-∴ax ax ,

()021=-∴x x a ,

0,2121≠-≠x x x x ,

0=∴a 与已知0≠a 矛盾,

故假设不成立,结论成立.

例3.当)

(21212q q p p +=时,试证方程0112=++q x p x 和0222=++q x p x 中,至少有一个方程有实数根.

证明:假设两个方程0112=++q x p x ,0222=++q x p x 都没有实根,即

04121<-q p ,0422

2<-q p . 所以1214q p <,2224q p

221q q p p +<+,

又2122212p p p p ≥+,

)(422121q q p p +<∴ 即 )(22121q q p p +<, )(22121q q p p += ,

∴假设不成立,结论成立.

所以说明0112=++q x p x 和 0222=++q x p x 中至少有一个方程有实根.

例4.试证:2不是有理数.

分析 我们知道,有理数恒可表示为既约分数b

a (

b a ,为互质的自然数)的形式.直接证明这个命题需要证2不是任何一个既约分数,这不仅涉

及既约分数的无限集,而且也难于把2与既约分数

b

a 联系起来(它们本来就没有直接联系).如果使用反证法,情况就迥然不同了. 证明:设2是有理数,则有互质的自然数

b a ,,使 b

a =2, 由此推出222a

b =,这表明a 有因数2,

设12a a =,代入上式,得

2

1242a b =,

即2122a b =,这又表示b 有因数2.

于是a ,b 有公因数2,这与b a ,互质的假设矛盾,因此,2不是有理数.

评注:本命题使用反证法的优点是只要考察某一特定的有理数

b a ,而且自然的把2与这个特定的既约分数b a 联系起来了(b

a =2),这就为利用自然数的运算性质导致矛盾的结果创造了有利条件.

(二)反证法在高等数学中的应用

反证法虽然是在平面几何教材中出现的,但对数学的其它各部分内容,

如数学分析、高等代数都可应用.那么,究竟什么样的命题可以用反证法来

证呢?当然没有绝对的标准,但证题的实践告诉我们:下面几种命题一般用反

证法来证比较方便.

1.在数学分析中的应用

要能熟练掌握一种解题方法,仅仅满足于会用这种方法解个别题目是不

够的,还要在解题的证明中注意积累经验,总结规律,解决何时可以用这种方

法来解决的问题,这有助于进一步加深对这种解题的方法实质的理解.下面

就数学分析中几类常见的运用反证法证明的命题类型,举例说明反证法的应

用.

当结论中出现“唯一”或者量词“只有一个”时,运用反证法也比较

适宜.

例1 收敛数列的极限都是唯一的.

证明:假设有某一收敛数列{}n x ,其极限不唯一,

设a x n n =∞→lim 与b x n n =∞→lim ,且b a ≠,不妨设b a <,令02

0>-=a b ε, 根据极限的定义,存在自然数21,N N ,使

1N n >时,有0ε<-a x n ,

2N n >时,有0ε<-b x n ,

因此,当{}21,m ax N N n >时,有00εε+<<-a x b n , 注意到20a b -=

ε,便得2

2b a b a +<+,但这是不可能的,故假设不成了,所以结论成立.

当结论中含有否定词“无”或者“非”时,一般用反证法.

例 2.试证明:若函数()x f 在有限区间()b a ,内可微,但无界,则其导函数

()x f '也无界.

证明:假设()x f '在()b a ,内有界,即0>?M ,()b a x ,∈?,有()M x f ≤',取定

()b a x ,0∈,()b a x ,∈?,由拉格朗日中值定理知,存在ξ在x 与0x 之间,

使

()()()()a b M x x f x f x f -≤-'=-00ξ,

()()()()()a b M x f x f x f x f -≤-≤-00,

()()()a b M x f x f -+≤0,

这与已知()x f 无界相矛盾,故结论成立.

当结论中以“至多”或者“至少”形式出现时用反证法可以收到良好

的效果.

例3.设()x f 在??????2,0π上连续,()()0cos sin 2020==??xdx x f xdx x f π

π, 试证:()x f 在??

? ??2,0π内至少有两个零点. 证明:??

? ??∈?2,0πx , 0sin >∴x ,

()0sin 20=?xdx x f π , ()??

? ??∴2,0π在x f 至少存在一个零点,否则()0sin 20≠?xdx x f π

, 假设()x f 在??? ??2,0π内只有一个零点0x , 若()x f 在0x 两侧异号,有()()0sin 020≠-?dx x x x f π

,

()()()()0cos sin sin cos sin 2

0020002

0=-=-???xdx x f x xdx x f x dx x x x f πππ 矛

盾,

若()x f 在0x 两侧同号,有()()0cos 020≠-?dx x x x f π

, ()()()()0sin sin cos cos cos 2

002

0002

0=+=-???xdx x f x xdx x f x dx x x x f π

ππ矛盾,所以假设不成立,故结论成立,

()x f ∴在??

? ??2,0π内至少有两个零点. 2.在高等代数中的应用

反证法在数学中有着广泛的应用,针对高等代数中许多结论、定理的证

明虽然可以用构造法、数学归纳法等其他方法证明,但是证明过程比较复杂,

有时用反证法证明达到了化难为易的效果.

例 1.若β 可由r ααα ,,,21?线性表示,证明:r ααα ,,,21?表示方法唯一

?r ααα ,,,21?线性无关.

证明:(必要性)已知β

由r ααα ,,,21?唯一的线性表示, 设r r k k k αααβ

+?++=2211,

假设r ααα ,,,21?线性相关,则存在r l l l ?21,不全为0,

使02211=+?++r r l l l ααα ,

于是r r r l k l k l k αααββ )()()(0222111++?++++=+=, r l l l ?21,不全为0,

∴r k k k ?21,与r r l k l k l k +?++2211,不完全相同,

这与β

可由r ααα ,,,21?表示方法唯一相矛盾,所以假设不成立,即r ααα

,,,21?线性无关.

例2.设()n n ij a A ?=为实矩阵,证:如果∑≠>j

i ij ii a a ,n i ?=,2,1,则0≠A .

证明:假设0=A ,设),,,(21n A ααα ?=,则n ααα ,,,21?线性相关,

从而存在不全为零的数n k k k ?21,,使02211=+?++n n k k k ααα , 设{}i k k max 1=,则01>k ,

n n k k k ααα -?--=∴2211,

n n a k a k a k 1122111-?--=∴,

∑≠≤+?+≤∴1

111122111j j n n a k a k a k a k

∑≠≤∴1

111j j a a ,这与已知矛盾,所以假设不成立,0≠∴A

(三)应用反证法应注意的问题

反证法是数学中一种重要的证明方法,在许多方面有着不可替代的作用.

它以其独特的证明方法和思维方式对培养学生逻辑思维能力和创造性思维

有着重大的意义.反证法不仅可以单独使用,也可以与其他方法结合使用,并

且可以在论证一道命题中多次使用.只要我们正确熟练运用,就能做到:精

巧、直接、巧解难题、说理清楚、论证严谨、提高教学解题能力.

1.反设要正确

正确否定结论是运用反证法的首要问题.

如:命题“一个三角形中,至多有一个内角是直角”.“至多有一个”是

指“只有一个”或“一个没有”,其反面是“有两个直角”或“三个内角都

是直角”,即“至少有两个是直角”.

2.明确推理特点

使用反证法证题,要明确我们的任务是否定结论导出矛盾,但何时出现

矛盾,出现什么样的矛盾是不能预测的,也没有一个机械的标准,有的甚至是

捉摸不定的.一般的总是在命题的相关领域里考虑(例如,平面几何问题往

往联系到相关的公理、定理、公式、定义等),这正是反证法推理的特点.

因此,在推理前不必要也不可能事先规定要得到什么样的矛盾.我们在运用

反证法时只需正确否定结论,严格遵守推理规则,进行步步有据的推理,一旦

出现了矛盾,证明也就结束了.

3.善于灵活运用

虽然数学证明题一般都可采用反证法,但并不是说,所有证明题都应该使用反证法来证明,就多数题目来说,用直接证法就可以证出,不能一味往反证法上面靠,要灵活运用反证法,毕竟我们平时训练的题目多是运用的直接证法.对待用反证法证题的策略思想是:首先试用直接证法,若一时不能成功,即可使用反证法.

4.了解矛盾种类

反证法推理过程中出现的矛盾种类是多种多样的,推理导出的结果可能与题设或部分题设矛盾,可能与已知真命题(定义或公理、或定理、或性质)相矛盾,可能与临时假设矛盾或推出一对相互矛盾的结果等.

六、反证法的教学价值及建议

关于反证法的教学,从早期就要向学生渗透这种思想,凡事不一定非常谨慎,只要学生能够明白、认可其中的原理即可.

(一)反证法的教学价值

1.训练逆向思维

为了解决一个面临的数学问题,通常总是先从正面入手进行思考,即根据问题中的已知条件,搜索运用已掌握的数学知识去推理运算逐步由已知导出未知.若从正面入手繁琐或难度较大,不妨考虑问题的相反方面,往往会绝处逢生,开拓解题思路.这种逆向思维,在数学解题中有4种形式:正逆运算转化、条件,结论转化、互为反函数间的转化、以反证法解题,反证法的教学能摆脱学生的思维定势、简化运算过程,明晰解题思路,提高解题速度,促进创新思维.

2.促进数学思维的形成

数学思想方法是科学思维的方法和技术,是数学的精髓,它为揭示数学本质,提供了有力的思想武器.数学思想方法是动态思辩的,重在培养创造性、开拓性人才.新一轮课程教学改革强调创造性、生成性,得以形成数学文化、数学思维,如何去做是我们关注的.中国初等数学教育明显的好于西方,但到大学阶段的学生却缺少创造性,很难有所成就 ,更不必说获诺贝尔奖,这种情况早就应引起我们反思.我们的数学教学偏重于解题训练,题海战术,而启发性思维、理解、悟得思想方法的不多.因而形成学生成绩的两极分化,

讨厌数学,甚至数学尖子生也远离数学,回想起数学来就心生畏惧.加强思想方法教学是数学的本质要求,是当下世界经济竞争的需要,也是提高全民族整体素质的重要举措,是社会发展的需要,更是提高数学质量的基本保证.而通过反证法的训练是培养数学思想方法的很好途径.欧几里得很喜欢运用的归谬法,它是数学家最有力的一件武器,比起象棋开局时牺牲一子以取得全局的让子法,它还要高明.象棋奕者不外牺牲一卒或顶多一子,数学家索性把全局拱手让给对方,这种先弃后取、欲擒故纵的策略实在是数学证明中极为有效的一种方法.

3.培养思维严密性

训练逻辑思维能力,反证法是典型的间接证法,也是通过证明原命题的等价命题从而证明原命题.在证明过程中的每一环节都要全面、不遗漏.比如否定原题结论反设后有几种情况,必须进行分类讨论一一加以否定.反证法与直接证法是密切联系的,二者相结合往往相辅相成,相得益彰.就全局而言是反证法,但从局部看,在作反设后的推理过程用的是直接证法.有时在基本直接证法的推理中,又会穿插一段反证法,以确定某些所需论据,反设时,必须注意弄清原题结论的反面,周密地列出与原题结论相悖的所有不同情况,再否定,不能有所遗漏.

4.渗透数学史

提高辩证思维的能力,反证法是一种重要的证明方法,无论在初等数学还是高等数学中,都有广泛的应用,数学中一些基本性质,重要定理甚至某些著名的数学难题,往往用反证法证得.举世闻名的费尔马大定理,这个多年前的数学难题被攻克,就是反证法的的功绩,欧几里得曾用它证明素数有无穷多个.因此反证法对训练学生辨证思维,提高哲学修养很有价值.

(二)反证法的教学建议

由于反证法的逻辑依据是逻辑学和集合论,比较复杂,所以书上没有给出其概念,从小学、初中、到高中都会用到,代数、几何都有使用,为此教学工作如下设想.

1.多次反复,螺旋上升

反证法的知识本身很难,学生多次学习都感到似懂非懂,下次见到又是生面孔,因此,不能期待一次完成,一蹴而就,要通过看书、示范例题、探索解题、回顾推敲、揭示内涵、思悟提高等慢慢地掌握 .

2.精心研究,训练反设

在反证法证明中准确了解掌握命题结构,列出其否定式是十分重要的.

3.渗透数学思想方法,训练严密

先由教师引导,将思想隐于分析过程中,再师生共同概括提炼,加以量化.然后由学生探索分析问题思想,以达到提高、升华.最后,力求使学生学会运用反证法思想武器指导思维活动,在高层次感受其威力.

七、结束语

反证法的应用是相当广泛的,在数学各个分支中都有体现,对于数学的创造发展也是极重要的工具之一.尽管其应用不如直接证法普遍,但它在数学命题的证明中能起到直接证法所起不到的作用,不少数学命题的证明当使用直接证法比较麻烦或比较困难甚至不可能时,如能恰当地使用反证法,就可以化繁为简,化难为易,化不能为可能.当然,反证法不是万能的,一般地是在否定论题结论,得到矛盾论题后,显得比原论题更具体、更简明时适用反证法.反证法作为一种重要的间接论证方法,与直接证法的着眼点和理论依据等方面都不尽相同,构成反证法的智力动作与辩证思维密切相关,尤其是按照相反论点的结论进行推理的分析思维形式和综合法的逻辑过程,对于训练学生的思维能力是非常重要的.

八、参考文献

[1] 中国人民大学哲学系逻辑教研室.逻辑学[M].北京:中国人民大学出版

社,1996,317.

[2] Thompson,D.R.1996.Leanring and teaehing indireet Proof. Mathematics

Teacher,89:474一482

[3] 邹大海.刘徽的无限思想及其解释[J].自然科学史研究,1995,14(1):12-21

[4]张禾瑞《高等代数》(第五版)[M].高等教育出版社

[5]刘玉琏《数学分析》(第五版)[M].高等教育出版社

[6] 伊夫斯H.数学史概论[M].欧阳绛译.太原:山西经济出版社,1986,285.

[7] 周春荔.数学观与方法论[M].北京:首都师范大学出版社,1996.

反证法在数学解题中的应用

反证法在数学解题中的应用 我们在解决数学问题时,一般是从正面入手,这就是所谓的正向思维,但往往也会遇到从正面入手困难,或出现一些逻辑上的困境的情形,这时就要从辩证思维的观点出发,运用逆向思维克服思维定势的消极面,从习惯思路的反方向去分析问题,运用反证法解决问题。 一、反证法的逻辑基础 证明命题“A B”时如果用这种方法:假设A∧B为真,在A且B的条件下,合乎逻辑地推出一个矛盾的结果(不论是与A矛盾还是与其他已知正确的结论矛盾或自相矛盾),从而B成立(即A B成立),这种方法就是反证法。 二、反证法的解题步骤 第一步审题,弄清命题的前提和结论; 第二步否定原命题,由假设条件及原命题构成推理的基础; 第三步由假设出发,根据公理、定义、定理、公式及命题的条件,正确逻辑推理,导出逻辑矛盾; 第四步肯定原命题的正确性。 三、什么情况下考虑应用反证法 1待证命题的结论是唯一存在性命题 例1设方程x=p sin x+a有实根(0<p<1,a是实数),求证实根唯一。 证明:假设方程存在两个不同实根x1,x2,则有 x1=p sin x1+a,x2=p sin x2+a x1-x2=p sin x1-sin x2=2p cos x1+x22sin x1-x22 由于cos x1+x22│≤1,从而有│x1-x2│≤2p│sin x1-x22│又sin x1-x22≤x1-x22,故x1-x2≤p x1-x2,但x1≠x2,于是p≥1,与0<p<1矛盾。所以方程若有实根,则根唯一。 2采取直接证法,无适宜的定理作为根据,甚至无法证明。 例2已知A、B、C、D是空间的四点,ABGN CD是导向直线,求证AC和BD、AD和BC也都是异面直线。 分析:证AC和BD是异面直线,即证明AC和BD不在同一平面内,考虑反证法。 证明:假定AC和BD不是异面直线,那么AC和BD在同一平面内,因此A、B、C、D不是异面直线,这与已知条件矛盾。所以AC和BD是异面直线。 3待证命理的结论是以“至少存在”的形式出现的,“至少存在”的反面是“必定不存在”,所以只要证明“必定不存在”不成立即可。 例3设p1p2=2(q1+q2)求证方程x2+p1x+q1=ox2+p2x+q2=0中至少有一个方程有实根。 证明:假设两方程都无实根,则 p12-4q1<0,p22-4q2<0,两式相加,有p21+p22<4(q1+q2)(1) 而p1p2=2(q1+q2)代入(1)得p21+p22<2p1p2,这与p21+p22≥2p1p2矛盾。 故假设不成立,原命题正确。 4待正命题含有涉及各种“无限形式”的结论,由于中学没有直接证明“无限”的手段。而结论的反面却是“有限”,故常常借助于反证法。 例4证明实数lg3是无理数。 证明:假设lg3是有理数。则它可以表示成lg3=mn(m,n是互质的正整数,由对数的定义,得10=3″)。但10是偶数,而3″是奇数,矛盾。因此实数lg3是无理数。

伯努利方程原理以及在实际生活中的运用

xx方程原理以及在实际生活中的运用 67陈高威在我们传输原理学习当中有很多我们实际生活中运用到的原理,其中伯努利方程是一个比较重要的方程。在我们实际生活中有着非常重要广泛的作用,下面就伯努利方程的原理以及其运用进行讨论下。 xx方程 p+ρρv 2=c式中p、ρ、v分别为流体的压强,密度和速度;h为铅垂高度;g 为重力加速度;c为常量。它实际上流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差说做的功。伯努利方程的常量,对于不同的流管,其值不一定相同。 相关应用 (1)等高流管中的流速与压强的关系 根据xx方程在水平流管中有 ρv 2=常量故流速v大的地方压强p就小,反之流速小的地方压强大。在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,所以管细处压强小,管粗处压强大,从动力学角度分析,当流体沿水平管道运动时,其从管粗处流向管细处将加速,使质元加速的作用力来源于压力差。下面就是一些实例 伯努利方程揭示流体在重力场中流动时的能量守恒。由伯努利方程可以看出,流速高处压力低,流速低处压力高。三、伯努利方程的应用: 1.飞机为什么能够飞上天?因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。 2.喷雾器是利用流速大、压强小的原理制成的。让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气流的冲击,被喷成雾状。

3.汽油发动机的汽化器,与喷雾器的原理相同。汽化器是向汽缸里供给燃料与空气的混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入汽缸。 4.球类比赛中的“旋转球”具有很大的威力。旋转球和不转球的飞行轨迹不同,是因为球的周围空气流动情况不同造成的。不转球水平向左运动时周围空气的流线。球的上方和下方流线对称,流速相同,上下不产生压强差。现在考虑球的旋转,转动轴通过球心且垂直于纸面,球逆时针旋转。球旋转时会带动周围得空气跟着它一起旋转,至使球的下方空气的流速增大,上方的流速减小,球下方的流速大,压强小,上方的流速小,压强大。跟不转球相比,旋转球因为旋转而受到向下的力,飞行轨迹要向下弯曲。

反证法在数学中的应用

论文 反证法在数学中的应用 开封县八里湾镇第一初级中学 杨继敏

反证法在数学中的应用 摘要反证法是数学教学中所涉及的基本论证方法,它为一些从正面入手,无法使已知条件和结论找出联系的问题,提供了一条解题途径,它通过给出合理的反设,来增加演绎推理的前提,从而使那种只依靠所给前提而变的山穷水尽的局面,有了柳暗花明又一村的境地,使学生看到增加演绎推理前提的方便功效。在过去的数学学习中,许多人拘泥于传统的推理方法,常常使问题复杂化,尽管最后能达到目的,但往往费时费力,因为数学的研究往往体现一种思维转换,我们可以用一种“换位”思想来处理我们日常遇到的数学问题。 【关键词: 逆向思维;假设;归谬;数学逻辑推理;矛盾;结论。】 1.引言 反证法是数学中一种重要的解题方法,对数学解题有着重要作用。其基本思想是通过求证对立面的不成立从而推出正面的正确。因为这种方法推理严密,说服性强,所以除了在数学中应用反证法,在实际生活中的应用也比较广泛。 在不同的数学情境下,反证法的前提假设不同。因此,在数学中应用反证法,一定要具体问题提出相应具体正确的假设。这就需要熟练掌握反证法的反设词,除此,还应熟记反证法的证题步骤——假设,归谬,结论。有关这个课题的研究,以及涉及到各种文章说明其步骤,适用范围,并附以大量例题。但对反证法在数学中的应用,文字讲解与反证法适宜的数学题型的归纳总结还欠缺。本文就基于这方面的考虑,根据反证法在数学中适宜的命题应用进行了详细的文字讲解及归纳总结。 2. 反证法初探 2.1 反证法的含义及逻辑依据 含义:所谓反证法就是从反面证明命题的正确性,即欲证明“p则q”,则从反面推导出“若p非q”不能成立,从而证明“若p则q”成立。它从否定结论出发,经过正确的严格推理,得到与已知(假设)或已成立的数学命题相矛盾的结果,从而验证产生矛盾的原因,推出原命题的结论不容否定的正确结论。

反证法练习题

1、用反证法证明一个命题时,下列说法正确的是 A.将结论与条件同时否定,推出矛盾 B.肯定条件,否定结论,推出矛盾 C.将被否定的结论当条件,经过推理得出的结论只与原题条件矛盾,才是反证法的正确运用 D.将被否定的结论当条件,原题的条件不能当条件 2、否定“自然数a 、b 、c 中恰有一个偶数”时的正确反正假设为 A .a 、b 、c 都是奇数 B .a 、b 、c 或都是奇数或至少有两个偶数 C .a 、b 、c 都是偶数 D .a 、b 、c 中至少有两个偶数 3、用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反证假设正确的是 A .假设三内角都不大于60° B .假设三内角都大于60° C .假设三内角至多有一个大于60° D .假设三内角至多有两个大于60° 4、设a ,b ,c ∈(-∞,0),则三数a +1b ,c +1a ,b +1c 中 A .都不大于-2 B .都不小于-2 C .至少有一个不大于-2 D .至少有一个不小于-2 5、若P 是两条异面直线l 、m 外的任意一点,则 A .过点P 有且仅有一条直线与l 、m 都平行 B .过点P 有且仅有一条直线与l 、m 都垂直 C .过点P 有且仅有一条直线与l 、m 都相交 D .过点P 有且仅有一条直线与l 、m 都异面 6、已知x 1>0,x 1≠1且x n +1=x n (x 2 n +3)3x 2n +1 (n =1,2…),试证“数列{x n }或者对任意正整数n 都满足x n x n +1”,当此题用反证法否定结论时,应为 A .对任意的正整数n ,都有x n =x n +1 B .存在正整数n ,使x n =x n +1 C .存在正整数n ,使x n ≥x n +1且x n ≤x n -1 D .存在正整数n ,使(x n -x n -1)(x n -x n +1)≥0 7、设a ,b ,c ,d 均为正数,求证:下列三个不等式①a +b <c +d ,② ()()a b c da b c d ++<+,③()() a b c d a b c d +<+中至少有一个不正确

伯努利方程的原理及其应用

伯努利方程的原理及其应用 摘要:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,是流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。伯努利方程对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。 关键词:伯努利方程发展和原理应用 1.伯努利方程的发展及其原理: 伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。伯努利方程的原理,要用到无黏性流体的运动微分方程。 无黏性流体的运动微分方程: 无黏性元流的伯努利方程: 实际恒定总流的伯努利方程: z1++=z2+++h w

总流伯努利方程的物理意义和几何意义: Z----总流过流断面上某点(所取计算点)单位重量流体的位能,位置高度或高度水头; ----总流过流断面上某点(所取计算点)单位重量流体的压能,测压管高度或压强水头; ----总流过流断面上单位重量流体的平均动能,平均流速高度或速度水头; hw----总流两端面间单位重量流体平均的机械能损失。 总流伯努利方程的应用条件:(1)恒定流;(2)不可压缩流体;(3)质量力只有重力;(4)所选取的两过水断面必须是渐变流断面,但两过水断面间可以是急变流。(5)总流的流量沿程不变。(6)两过水断面间除了水头损失以外,总流没有能量的输入或输出。(7)式中各项均为单位重流体的平均能(比能),对流体总重的能量方程应各项乘以ρgQ。 2.伯努利方程的应用: 伯努利方程在工程中的应用极其广泛,下面介绍几个典型的例子:

高中数学方法解之反证法

反证法 从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明的证明方法叫反证法。它是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。 反证法的证题模式可以简要的概括我为“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证

明的主要三步是:否定结论 → 推导出矛盾 → 结论成立。实施的具体步骤是: 第一步,反设:作出与求证结论相反的假设; 第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾; 第三步,结论:说明反设不成立,从而肯定原命题成立。 在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。 在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。 例1.[05.北京]设()f x 是定义在[0,1]上的函数,若存在'(0,1),x ∈使得()f x 在[0,']x 上单调递增,在[',1]x 上单调递减,则称()f x 为[0,1]上的单峰函数,'x 为峰点,包含峰点的区间为含峰区间。 对任意的[0,1]上单峰函数()f x ,下面研究缩短其含峰区间长度的方法。求证:对任意的1212,(0,1),,x x x x ∈<若12()()f x f x ≥,则2(0,)x 为含

反证法与数学归纳法

(三)、反证法 反证法证明的主要步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。 【典型例题】 例1、已知a + b + c > 0,ab + bc + ca > 0,abc > 0,求证:a, b, c > 0 例2、设0 < a, b, c < 1,求证:(1 - a)b, (1 - b)c, (1 - c)a,不可能同时大于41 例3、.已知a 、b 、c 是互不相等的非零实数.求证:三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0至少有一个方程有两个相异实根. 【巩固练习】 1.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( ) A .a ,b ,c 中至少有两个偶数 B .a ,b ,c 中至少有两个偶数或都是奇数 C .a ,b ,c 都是奇数 D .a ,b ,c 都是偶数 2.设a ,b ,c 是不全相等的正数,给出下列判断:①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b ,a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立, 其中正确判断的个数为( )A .0 B .1 C .2 D .3 3.若x 、y 、z 均为实数,且a =x 2-2y + 2π,b =y 2-2z +3π,c =z 2-2x +6 π,求证a 、b 、c 中至少有一个大于零. 4.若下列方程:x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0, x 2+2ax -2a =0至少有一个方程有实根。试求实数a 的取值范围。

反证法在证明题中的应用-高考数学解题模板

【高考地位】 反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,在高考题中也经常出现。它是数学学习中一种很重要的证题方法. 反证法证题的步骤大致分为三步:(1)反设:作出与求证的结论相反的假设;(2)归谬:由反设出发,导出矛盾结果;(3)作出结论:证明了反设不能成立,从而证明了所求证的结论成立.其中,导出矛盾是关键,通常有以下几种途径:与已知矛盾,与公理、定理矛盾,与假设矛盾,自相矛盾等. 【方法点评】 类型一 证明“至多”或“至少”问题 使用情景:证明“至多”或“至少”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论. 例1. 若,x y ∈{正整数},且2x y +>。求证:12x y +<或12y x +<中至少有一个成立。 【变式演练1】若下列方程:x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0, x 2 +2ax -2a =0至少有一个方程有实根。则实数a 的取值范围为________。 类型二 证明“不可能”问题 使用情景:证明“不可能”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论.

例2.给定实数0a a ≠,,且1a ≠,设函数11()1x y x x ax a -= ∈≠-R ,且,求证:经过这个函数图象上任意两个不同的点的直线不平行于x 轴. 【变式演练2】如图,设SA 、SB 是圆锥SO 的两条母线,O 是底面圆心,C 是SB 上一点。求证:AC 与平面SOB 不垂直。 类型三 证明“存在性”或“唯一性”问题 使用情景:证明“存在性”或“唯一性”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论. 例3.求证:方程512x =的解是唯一的. 【变式演练3】用反证法证明数学命题时,首先应该做出与命题结论相反的假设.否定“自然数c b a ,,中恰有一个偶数”时正确的假设为() A .自然数c b a ,,都是奇数 B .自然数c b a ,,都是偶数 C .自然数c b a ,,中至少有两个偶数 D .自然数c b a ,,中至少有两个偶数或都是奇数

反证法练习题

2.2.2反证法 双基达标(限时20分钟) 1.实数a,b,c不全为0等价于 ().A.a,b,c均不为0 B.a,b,c中至多有一个为0 C.a,b,c中至少有一个为0 D.a,b,c中至少有一个不为0 解析不全为0即至少有一个不为0,故选D. 答案 D 2.下列命题错误的是 ().A.三角形中至少有一个内角不小于60° B.四面体的三组对棱都是异面直线 C.闭区间[a,b]上的单调函数f(x)至多有一个零点 D.设a、b∈Z,若a、b中至少有一个为奇数,则a+b是奇数 解析a+b为奇数?a、b中有一个为奇数,另一个为偶数,故D错误.答案 D 3.设x,y,z都是正实数,a=x+1 y,b=y+ 1 z,c=z+ 1 x,则a,b,c三个数 (). A.至少有一个不大于2 B.都小于2 C.至少有一个不小于2 D.都大于2 解析若a,b,c都小于2,则a+b+c<6①, 而a+b+c=x+1 x+y+ 1 y+z+ 1 z≥6②, 显然①,②矛盾,所以C正确. 答案 C 4.命题“△ABC中,若A>B,则a>b”的结论的否定应该是________.答案a≤b

5.命题“三角形中最多只有一个内角是直角”的结论的否定是________.答案至少有两个内角是直角 6.设SA、SB是圆锥SO的两条母线,O是底面圆心,C是SB上一点,求证:AC与平面SOB不垂直. 证明假设AC⊥平面SOB,如图, ∵直线SO在平面SOB内, ∴SO⊥AC. ∵SO⊥底面圆O,∴SO⊥AB. ∴SO⊥平面SAB. ∴平面SAB∥底面圆O. 这显然出现矛盾,所以假设不成立,即AC与平面SOB不垂直. 综合提高(限时25分钟) 7.已知α∩β=l,a?α,b?β,若a,b为异面直线,则 ().A.a,b都与l相交 B.a,b中至少有一条与l相交 C.a,b中至多有一条与l相交 D.a,b都不与l相交 解析逐一从假设选项成立入手分析,易得B是正确选项,故选B. 答案 B 8.以下各数不能构成等差数列的是 ().A.3,4,5 B.2,3, 5 C.3,6,9 D.2,2, 2 解析假设2,3,5成等差数列,则23=2+5,即12=7+210,此等式不成立,故2,3,5不成等差数列. 答案 B 9.“任何三角形的外角都至少有两个钝角”的否定应是________.解析“任何三角形”的否定是“存在一个三角形”,“至少有两个”的否

反证法的有关题型

1.用反证法证明“至多有两个解”的说法中,正确的第一步是假设() A.有一个解B.有两个解 C.至少有三个解D.至少有两个解 2.否定“自然数a、b、c中恰有一个偶数”时的正确假设为()A.a、b、c都是奇数 B.a、b、c或都是奇数或至少有两个偶数 C.a、b、c都是偶数 D.a、b、c中至少有两个偶数 3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,假设正确的是() A.假设三内角都不大于60° B.假设三内角都大于60° C.假设三内角至多有一个大于60° D.假设三内角至多有两个大于60° 4.用反证法证明命题:正整数X、Y、Z的和为偶数,那么X、Y、Z中至少有一个是偶数”时,下列假设正确的是()A.假设a,b,c都是偶数B.假设a、b,c都不是偶数 C.假设a,b,c至多有一个偶数 D.假设a,b,c至多有两个偶数 5.命题“△ABC中,若∠A>∠B,则a>b”的结论的否定应该是() A.a180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立; ②所以一个三角形中不能有两个直角; ③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.正确顺序的序号排列为____________,故只有a+b≥0.逆命题得证.7.用反证法证明命题“ab C.a=b D.a=b或a>b 8.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于c C.a⊥b D.a与b相交 9.用反证法证明命题“在一个三角形中,如果两条边不相等,那么它们所对的角也不相等”时,应假设___________. 10.用反证法证明“若│a│<2,则a<2”时,应假设. 11.如下左图,直线AB,CD相交,求证:AB,CD 只有一个交点. 证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有_____条直线,这与“过两点”矛盾,所以假设不成立,则. 12.完成下列证明:如上右图,在△ABC中,若∠ C是直角,那么∠B一定是锐角. 证明:假设结论不成立,则∠B是 ______或______. 当∠B是____时,则_________,这 与________矛盾; 当∠B是____时,则_________,这 与________矛盾. 综上所述,假设不成立. ∴∠B一定是锐角. 13.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45?°”时,应假设_______________. 14.下列语句中,属于命题的是().A.直线AB 和CD垂直吗 B.过线段AB的中点C画AB的垂线C.同旁内角不互补,两直线不平行 D.连结A,B 两点 15.下列命题中,属于假命题的是() A.若a⊥c,b⊥c,则a⊥b B.若a∥b,b∥c,则a∥c C.若a⊥c,b⊥c,则a∥b D.若a⊥c,b∥a,则b⊥c 16.下列四个命题中,属于真命题的是().A.互补的两角必有一条公共边 B.同旁内角互补C.同位角不相等,两直线不平行 D.一个角的补角大于这个角 17.命题“垂直于同一条直线的两条直线互相平行”的题设是().A.垂直 B.两条直线 C.同一条直线 D.两条直线垂直于同一条直线18.“两直线平行,同位角互补”是______命题(填“真”或“假”). 19.?把命题“等角的补有相等”改写成“如果…… 那么……”的形式是结果_________,那么 __________. 20.命题“直角都相等”的题设是________,结论是____________. 21.判断下列命题的真假,若是假命题,举出反例.(1)若两个角不是对顶角,则这两个角不相等;(2)若a+b=0,则ab=0; (3)若ab=0,则a+b=0.

例谈反证法在数学证明中的应用

例谈反证法在数学证明中的应用 【摘要】反证法是解决数学问题时常用的数学方法之一,它在数学解题中广泛使用,特别是有些问题,用反证法更简捷明了。文章阐明反证法的定义、逻辑依据、证明的一般步骤,重点论述了反证法在中学数学证明中的应用。 【关键词】反证法证明假设矛盾结论 有个很著名的“道旁苦李”的故事:从前有个名叫王戎的小孩,一天,他和小朋友发现路边的一棵树上结满了李子,小朋友一哄而上,去摘,尝了之后才知是苦的,独有王戎没动,王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的。”这个故事中王戎用了一种特殊的方法,从反面论述了李子为什么不甜,不好吃。这种间接的证法就是我们下面所要讨论的反证法。 一、对“反证法”的概述 (一)反证法的概念及其逻辑依据 1.反证法的概念 假设命题判断的反面成立,在已知条件和“否定命题判断”这个新条件下,通过逻辑推理,得出与公理﹑定理、题设、临时假定相矛盾的结论或自相矛盾,从而断定命题判断的反面不成立,即证明了命题的结论一定是正确的,当命题由已知不易直接证明时,改证它的逆命题的证明方法叫反证法。 2.反证法的逻辑依据 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。

矛盾律: 在同一论证过程中, 对同一对象的两个互相矛盾(对立)的判断, 其中至少 有一个是伪的。 排中律: 在同一论证过程中, 对同一对象的两个互相矛盾的判断, 不能为伪, 其中 必有一个是真的。 (二)反证法的证明步骤 设待证的命题为“若A 则B ”,其中A 是题设,B 是结论,A 、B 本身也都是数学判断,那 么用反证法证明命题一般有三个步骤: 1. 反设:假设所要证明的结论不成立,而设结论的反面成立; 2. 归谬:由“反设”出发,以通过正确的推理,导出矛盾——与已知条件﹑已知的公理 定理﹑定义﹑反设及明显的事实矛盾或自相矛盾; 3. 结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立, 从而肯定了结论成立。 二、反证法在数学证明中的应用 反证法在数学证明中的应用非常广泛,反证法虽然是在平面几何教材中出现的,但对数 学的其它各部分内容,如代数、三角、立体几何、解析几何中都可应用。那么,究竟什么样 的命题可以用反证法来证呢?当然没有绝对的标准,但证题的实践告诉我们:下面几种命题 一般用反证法来证比较方便。 1.否定性命题 结论以“没有……”“不是……”“不能……”等形式出现的命题,直接证法一般不易入 手,而用反证法就容易多了。 例1 求证:当 n 为自然数时 ,2(2 n + 1) 形式的数不能表示为两个整数的平方差。 证明:假设有整数 a , b ,使)(1n 22b a 22+=-, 即 (a + b)(a - b)=2(2n + 1) ① 当 a ,b 同奇、 同偶时 , a + b 、 a - b 皆为偶数 , (a + b)(a - b) 应是4的倍数 ,但2(2n+ 1) 除以4余2 ,矛盾。 ② 当a ,b 一奇一偶时 ,a + b 、a - b 皆为奇数 , (a + b)(a - b) 应是奇数 ,但2(2n + 1)为偶数 ,矛盾。 所以假设错误 ,即2(2n + 1) 形式的数不能表示为两个整数的平方差。

伯努利原理

“伯努利原理”的误解 伯努利是一位数学家和物理学家,他在1738年发现,当流体的流速提高,表面的静压力会降低。这个现象称为“伯努利原理”,而几乎所有的物理学教材和科普文章,都使用这个原理,讨论机翼升力的产生。为了解释这个原理,通常,他们首先会让你拿出两片纸,并用力在纸的中间吹气,瞧,两张纸像粘在一起了! 记忆的上表面是拱起的,而下表面是平坦甚至凹进去。当气流通过机翼表面,机翼上方空气流速较快,而下面空气流速较慢。根据“伯努利原理”,下面气流造成的静压力大于上方气流的压力,于是,机翼受到一个向上的作用力,飞机就飞了起来。 遗憾的是,这是完全错误的。而使用“伯努利原理”解释飞机的升空也是“白努力”。 伯努利效应可以解释一部分升力的来源,但这是非常小的一部分。如果飞机仅仅根据“伯努利原理”飞行,机翼形状必须非常“拱起”,或者,必须要飞得非常快才行。 飞机的升力主要由另外两个效应提供。一个是康达效应;另一个是气流冲击效应。 康达效应指的是,气流流经机翼曲面时,气流会紧贴机翼表面(这当然也有一点伯努利效应的含义)。这样,机翼的形状有效地改变了气流的方向,使离开机翼的气流相对飞机作向下的高速运动。机翼推开气流,但这个运动受力的反作用力作用于机翼上,相当于气流也在推开机翼,这个力使得机翼向上举起。 另一个重要的效应是气流冲击效应。当一块平板的方向不是与气流运动方向严格垂直,那么,平板会受到气流的冲击。飞机的机翼与其自身有一定倾角4°左右,特别是,当飞机起飞时,要把机头高高抬起,形成更大的倾角,这样在低速时,也可以获得较大的气流冲击效应,以便使几十吨的飞机起飞。但是,机翼的倾角并不是完全用于提供升力,更多的是为了维持飞机本身的气动布局,以保证飞机在飞行时候的气动平衡。 飞机是一个非常复杂的气动力学系统,设计师必须保证飞机载x,y,z几个方向上受力平衡。这就是飞机为什么需要机翼、尾翼、垂直尾翼的原因(那种像飞碟一样的无尾翼飞机设计起来是非常麻烦的);此外,为了操控飞机,机翼上都开有活动襟翼,因此要仔细分析飞机的受力很不容易。这也是飞机设计原型为什么要进行风洞试验的原因。 1、根据谐音的方法,写出几组谐音而意思不同的词语 例如:伯努利——白努力 ()——()()——()()——()()——()2、根据上文所讲述的内容看,“伯努利原理”会造成()。

浅谈反证法在数学中的应用

浅谈反证法在数学中的应用 摘要 反证法在数学中是一种极其重要的证明方法,被称为“数学家最精良的武器之一”。它与一般证明方法不同,反证法可分为归谬反证法和穷举反证法两种。只要抓住要领,反证法就能使一些不易直接证明的问题变得简单,易证,它在数学证题中确有独到之处。本文主要介绍了反证法的基本概念、步骤、依据及分类。对于反证法的应用需注意事项和解题步骤做一些论述。 关键词:反证法;归谬;矛盾;假设;结论 Abstract Contradiction in mathematics is an extremely important method of proof, known as "mathematician one of the most sophisticated weapons." It is different with the general method of proof, proof by contradiction can be classified into two kinds of absurd contradiction and exhaustive reductio ad absurdum. Simply grab the essentials, reductio ad absurdum can make a number of difficult problems becomes simple direct proof, easy to prove, it is proof in mathematics problem in that there are unique. This paper describes the concept of reductio ad absurdum, steps, basis and classifications.The reductio ad absurdum of the application notes and problem-solving steps required to do some exposition.

伯努利原理讲解

伯努利原理讲解 对我们搞流体机械的很重要,此文好懂又有趣!
光德流控
伯努利(Daniel Bernouli,1700~1782) 伯努利,瑞士物理学家、数学家、医学家。 他是伯努利这个数学家族(4 代 10 人)中最杰出的代表, 16 岁时就在巴塞尔大学攻读哲学与逻辑,后获得哲学硕士学位, 17~20 岁又学习医学,于 1721 年获医学硕士学位,成为外科名 医并担任过解剖学教授。但在父兄熏陶下最后仍转到数理科学。
1 / 17

伯努利成功的领域很广,除流体动力学这一主要领域外,还 有天文测量、引力、行星的不规则轨道、磁学、海洋、潮汐等。
实例篇——伯努利原理 丹尼尔·伯努利在 1726 年首先提出:“在水流或气流里, 如 果 速 度 小 ,压 强 就 大 ;如 果 速 度 大 ,压 强 就 小 ” 。我 们 称 之 为 “伯努利原理”。 我们拿着两张纸,往两张纸中间吹气,会发现纸不但不会向 外飘去,反而会被一种力挤压在了一起。因为两张纸中间的空气 被我们吹得流动的速度快,压力就小,而两张纸外面的空气没有 流动,压力就大,所以外面力量大的空气就把两张纸“压”在了 一起。 这就是“伯努利原理”原理的简单示范。
1 列车(地铁)站台的安全线 在列车(地铁)站台上都划有黄色安全线。
2 / 17

这是因为列车高速驶来时,靠近列车车厢的空气被带动而快 速运动起来,压强就减小,站台上的旅客若离列车过近,旅客身 体前后会出现明显的压强差,身体后面较大的压力将把旅客推向 列车而受到伤害。
所以,在火车(或者是大货车、大巴士)飞速而来时,你绝 对不可以站在离路轨(道路)很近的地方,因为疾驶而过的火车 (汽车)对站在它旁边的人有一股很大的吸引力。
有人测定过,在火车以每小时 50 公里的速度前进时,竟有 8 公斤左右的力从身后把人推向火车。
看懂“伯努利”原理后,等地铁再也不敢跨过那条黄线了吧 (分享给身边的人哦~~)
2 船吸现象
3 / 17

论反证法在中学数学中的应用

昆明学院2016届毕业论文(设计) 设计(论文)题目论反证法在中学数学中的应用 子课题题目 姓名郑粒红 学号 201215010158 所属系数学系 专业年级数学与应用数学2012级数学1班 指导教师雷晓强 2016 年 3 月

摘要 本文主要从五大板块对反证法在中学数学中的应用进行论述,第一板块通过对反证法的由来、定义、逻辑依据、种类、模式的说明对反证法进行概解。第二板块例举反证法的适用范围,并通过大量实例阐明在各个命题中反证法的证明的步骤。第三板块分析应用反证法应注意的问题。第四板块浅析反证法的教学价值及建议。最后第五板块进行分析总结。 关键词:反证法;证明;矛盾

Abstract This article mainly from the five plate on the reduction to absurdity in the middle school mathematics application is discussed, and the first plate by means of reduction to absurdity and types of the origin, definition and logical basis, the model of generalized solution of reduction to absurdity. Second plate presented the applicable scope of reduction to absurdity, and through a lot of examples to elucidate the reduction to absurdity in the proposition proof steps. Some problems that should be paid attention to the third sector analysis application of reduction to absurdity. The fourth section teaching value of reduction to absurdity is analysed and the suggestion. Finally the fifth plate were analyzed. Keywords:Reduction to absurdity; prove ;contradiction

反证法练习题

2.2.2 反证法 双基达标限时20分钟 1.实数a, b, c不全为0等价于 () A. a, b, c均不为0 B. a, b, c中至多有一个为0 C. a, b, c中至少有一个为0 D. a, b, c中至少有一个不为0 解析不全为0即至少有一个不为0,故选D. 答案 D 2.下列命题错误的是 () A.三角形中至少有一个内角不小于60° B.四面体的三组对棱都是异面直线 C.闭区间[a, b]上的单调函数f(x)至多有一个零点 D.设a、b€ Z,若a、b中至少有一个为奇数,则a+ b是奇数 解析a+ b为奇数? a、b中有一个为奇数,另一个为偶数,故D错误. 答案 D 1 1 1 3.设x, y, z都是正实数,a = x+ —, b=y+一,c= z+ 一,则a, b, c三个数y z x (). A.至少有一个不大于2 B .都小于2 C.至少有一个不小于2 D .都大于2 解析若a, b, c都小于2,则a+ b+ c<6①, 1 1 1 而a+ b+c=x+_+y+_+z+-》6②, x J y z 显然①,②矛盾,所以C正确. 答案 C 4 .命题“△ ABC中,若A>B,则a>b”的结论的否定应该是____________ . 答案a< b

5?命题“三角形中最多只有一个内角是直角”的结论的否定是 答案 至少有两个内角是直角 6 ?设SA 、SB 是圆锥SO 的两条母线, AC 与平面SOB 不垂直. 证明假设AC 丄平面SOB,如图, ???直线SO 在平面SOB 内, ??? SO 丄 AC. v SO 丄底面圆O ,: SO 丄AB. ??? SO 丄平面SAB. ???平面SAB//底面圆O. 这显然出现矛盾,所以假设不成立,即 综合提咼 7. 已知an l ,a? a b? B,若a ,b 为异面直线,则 (). A. a ,b 都与I 相交 B. a ,b 中至少有一条与I 相交 C. a ,b 中至多有一条与I 相交 D. a ,b 都不与I 相交 解析 逐一从假设选项成立入手分析,易得 B 是正确选项,故选B. 答案 B 8. 以下各数不能构成等差数列的是 (). A . 3,4,5 B. .'2, . 3, 5 C . 3,6,9 D. ‘2, 2 2 解析 假设.'2, 3 :5成等差数列,则2 :3= '2 + 5 即12= 7 + 2 10, 此等式不成立,故.;2, '3, :5不成等差数列. 答案 B 9. “任何三角形的外角都至少有两个钝角”的否定应是 解析 “任何三角形”的否 定是“存在一个三角形 AC 与平面SOB 不垂直. 限时25分钟 “至少有两个”的否

伯努利方程原理以及在实际生活中的运用

伯努利方程原理以及在实际生活中的运用 67陈高威在我们传输原理学习当中有很多我们实际生活中运用到的原理,其中伯努利方程是一个比较重要的方程。在我们实际生活中有着非常重要广泛的作用,下面就伯努利方程的原理以及其运用进行讨论下。 伯努利方程 p+ρgh+(1/2)*ρv2=c式中p、ρ、v分别为流体的压强,密度和速度;h为铅垂高度;g为重力加速度;c为常量。它实际上流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差说做的功。伯努利方程的常量,对于不同的流管,其值不一定相同。 相关应用 (1)等高流管中的流速与压强的关系 根据伯努利方程在水平流管中有 p+(1/2)*ρv2=常量故流速v大的地方压强p就小,反之流速小的地方压强大。在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,所以管细处压强小,管粗处压强大,从动力学角度分析,当流体沿水平管道运动时,其从管粗处流向管细处将加速,使质元加速的作用力来源于压力差。下面就是一些实例 伯努利方程揭示流体在重力场中流动时的能量守恒。由伯努利方程可以看出,流速高处压力低,流速低处压力高。三、伯努利方程的应用: 1.飞机为什么能够飞上天?因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。 2.喷雾器是利用流速大、压强小的原理制成的。让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气流的冲击,被喷成雾状。

反证法在数学中的应用

论文编码:O1-0 摘要 反证法是数学证明方法中很重要的一部分,本文主要介绍了反证法再出等数学中的应用。首先阐述反证法的概念、逻辑根据和一般步骤。然后讨论了反正法的适用范围,这也是本文的重点内容,任何一种方法都要以应用为首要任务,我们学习它、了解它、掌握它,学会用反证法解决更多的实际问题才是我们的目的。其次研究了反证法的教学,反证法的这种数学思想在课堂教学中的渗透是很有必要的。最后讨论了应用反证法应注意的问题,真正用好反证法并非一件易事,所以我们的研究学习是很有必要的。 关键词:反证法逻辑基础教学方法适用范围;

Abstract Apagoge is an important part of math demonstration.This article introduces the application of Apagoge in elementary math.First,expounds the Apagoge's concept,logic ground and the general steps.Next,discusses the range of application,which is highlighted.Whatever methods we use,we should base on application.So we must study the method and use it to help us solve many practical problem.Then,studies how to teach the Apagoge's thinking into people's minds in the https://www.doczj.com/doc/f12422577.html,st,talks about the problem which should pay attention to in Apagoge's application.It is difficult to make a good use of the Apagoge,so we are supposed to study continuously. Keywords:Apagoge ;Logical basis;Teaching methods; Scope;

相关主题
文本预览
相关文档 最新文档