影响静电纺丝制备纳米纤维的因素有哪些
- 格式:docx
- 大小:13.06 KB
- 文档页数:1
PVA 浓度对电纺制备ZnO 纳米纤维吸波性能的影响陈 丹*, 周影影, 王 璠, 王泽华, 杨纪龙(西安航空学院 材料工程学院, 西安 710077)摘要:采用静电纺丝法制备ZnO 纳米纤维,研究聚乙烯醇(PVA )浓度对ZnO 纳米纤维微观形貌、介电性能和吸波性能的影响规律。
结果表明:随着PVA 浓度从6%增至10%,ZnO 纳米纤维直径变细,但珠结增加,粗细不均。
当PVA 浓度为8%时,ZnO 纳米纤维直径较细、粗细均匀、表面光滑、珠结较少,形貌最好。
此时,其介电常数达到最高值,实部为15.4~20.8,虚部为3.6~4.7,并在较薄的厚度下具有最优的吸波性能。
当70%(质量分数/%,下同)ZnO 纳米纤维/石蜡样品的厚度为1.3 mm 时,反射率低于–5 dB 的吸收带宽达到5.4 GHz (12.6~18 GHz ),最小反射率为–16.6 dB 。
此外,石蜡含量也对样品的介电性能和吸波性能具有重要影响,随着石蜡含量的增加,样品的介电常数降低,当石蜡含量为30%和20%时,样品具有较好的吸波性能。
关键词:静电纺丝;ZnO 纳米纤维;介电性能;吸波性能doi :10.11868/j.issn.1005-5053.2021.000103中图分类号:TB34 文献标识码:A 文章编号:1005-5053(2022)01-0092-08随着电子技术的蓬勃发展,各种通讯设备使用频繁,产生的电磁辐射对自然环境和人类身体均造成了损害。
此外,在军事领域,隐身技术的不断发展也促使了吸波材料必须向“宽、强、轻、薄”方面发展。
因此,研究新型吸波材料对于解决电磁污染问题和提高武器隐身性能至关重要。
纳米材料由于其独特的形貌结构以及特异的物理化学性能,已成为当代科学领域最具价值、最前沿的一类材料[1]。
同时,ZnO 作为一种典型的n 型宽带隙(E g =3.37 eV )六方纤锌矿结构半导体[2],具有质量轻、密度低、介电常数大、介电损耗高和易于大规模制备的特性[3-5]。
综述与专论合成纤维工业,2009,32(4):48CH I N A SY NTHETI C F I B ER I N DUSTRY 收稿日期:2008209217;修改稿收到日期:2009205227。
作者简介:董晓英(1956—),教授。
从事纳米材料的教学和科研工作。
静电纺丝纳米纤维的制备工艺及其应用董晓英1 董 鑫2(1.江苏技术师范学院,江苏常州 213001;2.慕尼黑大学,德国慕尼黑 80539)摘 要:简述了静电纺丝制备纳米纤维的原理;探讨了静电纺丝电压、流速、接收距离、溶剂浓度等工艺条件;介绍了同轴静电纺丝制备皮芯结构的超细纤维及中空纤维技术以及静电纺丝纳米纤维毡在生物医药方面的应用。
指出静电纺丝纳米纤维材料在生物医用方面具有广阔的应用前景,进一步实现低压纺丝、开发无毒溶剂,控制同轴静电纺丝纳米纤维的释放性能是今后静电纺丝的研发方向。
关键词:静电纺丝 纳米纤维 工艺 生物 医药 应用中图分类号:T Q340.64 文献识别码:A 文章编号:100120041(2009)0420048204 静电纺丝法是一种高速制备纳米纤维的有效方法,其装置简单,成本低廉,供选择的基体材料和所载药物种类众多,可通过改变电压、流速、接收距离、溶液浓度配比等纺丝工艺控制纤维形貌,从而控制药物的释放。
静电纺丝纳米纤维在生物、医药方面有着广泛的应用。
1 静电纺丝及其工艺条件静电纺丝技术最早报道于1934年的美国专利[1],发明人For mhals 用静电斥力的推动成功纺出醋酸纤维素纤维,溶剂为丙酮和乙醇。
后来,For mhals 改进了静电纺丝设备,通过多个针头纺丝或复合纺丝[2]。
1969年,英国Tayl or [3]研究了强电场作用下水/油界面的形成。
首先,从理论计算上考虑电场、重力和溶液粘度的影响,建立了锥状物模型,即在高压电场下溶液喷出前的形状称为Tayl or 锥。
Tayl or 还根据其模型计算了喷出时的临界锥角为98.6°。
静电纺丝技术制备聚合物纳米纤维膜的研究聚合物纳米纤维膜是一种新型的材料,由于其具有优异的物理和化学性质而受到越来越多的关注。
目前,研究人员开展了大量的工作,以开发制备这种材料的新方法。
静电纺丝技术是一种被广泛应用于聚合物纳米纤维膜制备的方法。
该方法以高压静电场为驱动力,通过将聚合物分子从液态转变为固态,从而制备具有纳米级尺度的聚合物纤维。
本文将介绍静电纺丝技术制备聚合物纳米纤维膜的原理、优点以及应用。
一、静电纺丝技术的原理静电纺丝技术是指将含有聚合物溶液的“滴”,通过高压静电场的作用,使溶液从液态转变为纳米级尺度的聚合物纤维的过程。
该技术涉及两个相反的过程:传输和荷电。
在传输过程中,溶液从喷嘴中被喷出,形成溶液“滴”,然后通过高压静电场的作用,这些滴获得了荷电,移动到地面或由电极吸附。
在荷电过程中,因为这些荷电粒子被静电力所吸引,所以它们沿着高压电极向下运动。
当这些荷电粒子接近到一定距离,它们之间的静电引力就足以克服表面张力,形成纳米级尺度的聚合物纤维。
二、静电纺丝技术的优点制备聚合物纳米纤维膜的传统方法包括溶液浸渍、熔融拉伸等技术,但这些方法都存在着一些局限性,如工艺复杂、成本高等。
相比之下,静电纺丝技术具有如下优点:1.高效性:该技术可在较短时间内制备大量的纳米级聚合物纤维,并可实现连续性生产。
2.灵活性:静电纺丝技术可以制备出不同形态、大小和形状的聚合物纳米纤维。
3.高质量:该技术制备的聚合物纳米纤维具有高度纯度、尺寸一致性好和结构紧密等特点,使其应用广泛。
三、聚合物纳米纤维膜的应用聚合物纳米纤维膜由于其纳米级尺度的尺寸和优良的物理化学性质,在多个领域中都有着广泛的应用。
下面简要介绍其主要应用领域。
1.过滤和分离领域:聚合物纳米纤维膜由于其纤维间距非常小,同样尺寸的纳米级颗粒、蛋白质等大分子物质可以被过滤掉,这使其在液体过滤和气体过滤领域有广泛的应用。
2.生物医学领域:在不同细胞之间建造三维聚合物纳米纤维膜支架,使得细胞能够依附并形成新的组织,有利于修复受损的组织和器官。
静电纺丝制备多级结构微纳米纤维及其应用研究赵勇,北京航空航天大学化学与环境学院摘要:静电纺丝技术是一种简单、通用、灵活的制备具有复杂结构与组成的微纳米纤维材料的有效的方法。
本文首先介绍了静电纺丝领域近年来的发展和存在的一些问题,然后介绍了本课题组近年来的一些相关工作。
主要包括利用静电纺丝技术可控制备一维多级结构微纳米纤维材料,并利用材料本身的化学性质和结构特性开发其在特殊浸润性、吸附分离、储能、催化等方面的应用。
最后,对该领域进行了展望。
1.前言自然界众多生物纤维材料都具有复杂的多级微纳米结构,这些微纳结构不仅呈现了丰富多彩的几何构型,更重要的是它们所表现出的许多独特的生物功能。
例如,蜘蛛丝为何高强黏弹?北极熊等耐寒动物的毛发为何保暖性能优异?随着科学技术的发展,这些谜底已经被渐渐解开:材料的微观结构与其宏观性质存在着至关重要的关系。
道法自然,从自然界中获得灵感,是科研工作者制备新型功能材料的最有效途径之一[1]。
静电纺丝法是一种自上而下的微纳米纤维材料加工方法,与传统超细纤维制备方法相比,静电纺丝技术具有明显的简易性、易操作性和普适性,它适用于广泛的高分子材料体系,可以制备出各种形貌结构的纤维。
经过近二十年的深入研究,静电纺丝技术已经从最初的几种简单聚合物溶液和熔体纺丝扩展到不同的高分子体系至聚合物/无机材料复合体系,在结构上也从最初的简单的柱状实心结构发展到复杂的表面或内部多级结构[2-4]。
目前,许多聚合物都可以通过电纺得到超长的微米至纳米级的纤维,而有机小分子或无机材料也可以通过与适当聚合物的掺杂从而得到杂化材料的复合纳米纤维。
这种方法简单快速,一步既可得到大面积的纳米纤维,是一种十分经济有效的一维纳米材料制备的新方法。
电纺法与溶胶-凝胶法或煅烧、原位反应等后处理技术结合,还可以用于制备无机氧化物纤维、金属纤维等等。
国内科研工作者在该领域作出了大量工作,吉林大学王策小组在制备无机/聚合物功能纤维材料方面做了许多杰出的工作[5-7]。
静电纺丝纳米纤维制备技术及其应用研究随着科学技术的快速发展和产业的不断创新,纳米材料的制备和应用逐渐成为了研究的焦点。
静电纺丝纳米纤维制备技术就是一种常见的制备纳米材料的技术。
本文将对静电纺丝纳米纤维制备技术及其应用研究进行探讨。
一、静电纺丝纳米纤维制备技术静电纺丝技术是利用电场将高分子液体喷出微米甚至纳米级别纤维的一种制备技术。
静电纺丝技术制备纳米纤维在多个领域得到了广泛应用,例如纺织、生物医学、环保等领域。
静电纺丝技术的原理是将高分子液体通过一个细小的孔洞喷射出来,这个过程中,高分子液体受到外界电场的作用,会形成纤维状的微米级别的细丝。
这些细丝经过后续的处理,就能够得到纳米级别的细丝。
静电纺丝技术制备的纳米纤维具有较大比表面积、高比强度、优异的力学性能、良好的电学性质及生物相容性等优点。
静电纺丝技术制备的纳米纤维可以根据不同的材料和应用领域调整其尺寸和形貌,液态中除了高分子溶液,还可以纯化的金属溶液、无机盐溶液、碳纳米管等物质。
二、静电纺丝纳米纤维的应用研究1、生物医学领域由于纳米纤维具有高比表面积等特性,因此在生物组织工程、体内药物释放、生物传感等领域得到广泛应用。
静电纺丝纳米纤维制备的支架具有具有高比表面积、良好的生物相容性、高度的空隙率和良好的可控性等特点。
这些特点使纳米纤维支架成为了生物组织工程领域的研究热点。
纳米纤维支架通过结构的调节、复合材料制备、表面修饰等方法,可以在生物组织中实现不同的生物学功能,如增强细胞的定向生长、促进纤维组织的生长等。
静电纺丝纳米纤维制备的载药纳米材料具有良好的生物相容性和药物的缓释性能。
这种材料可作为药物释放的载体,以实现更加精准的药物治疗。
纳米纤维在其表面修饰上引入不同的生物分子,如细胞识别和粘附分子,不仅能提高纳米纤维植入后的细胞组织相容性,还可以促进细胞的黏附和增殖等。
2、纺织领域静电纺丝技术制备的纳米纤维具有高比表面积、孔隙结构和微结构控制性能等特点,因此在纺织领域应用也得到了快速发展。
静电纺丝的原理及应用静电纺丝就是高分子流体静电雾化的特殊形式,此时雾化分裂出的物质不是微小液滴,而是聚合物微小射流,可以运行相当长的距离,最终固化成纤维。
静电纺丝是一种特殊的纤维制造工艺,聚合物溶液或熔体在强电场中进行喷射纺丝。
在电场作用下,针头处的液滴会由球形变为圆锥形(即“泰勒锥”),并从圆锥尖端延展得到纤维细丝。
这种方式可以生产出纳米级直径的聚合物细丝。
原理将聚合物溶液或熔体带上几千至上万伏高压静电,带电的聚合物液滴在电场力的作用下在毛细管的Taylor锥顶点被加速。
当电场力足够大时,聚合物液滴克服表面张力形成喷射细流。
在细流喷射过程中溶剂蒸发或固化,最终落在接收装置上,形成类似非织造布状的纤维毡。
装置静电纺丝的装置主要由推进泵、注射器、高压电源以及接收装置组成。
其中,高压电源的正极与负极分别与注射器针头和接收装置相连,而接收装置的形式也是多样化的,可以是静止的平面、高速转动的滚筒或者圆盘。
纺丝的参数设置、环境条件等对纺丝过程的影响至关重要。
影响因素静电纺丝法制备纳米纤维的影响因素很多,这些因素可分为溶液性质,如黏度、弹性、电导率和表面张力;控制变量,如毛细管中的静电压、毛细管口的电势和毛细管口与收集器之间的距离;环境参数,如溶液温度、纺丝环境中的空气湿度和温度、气流速度等。
溶液黏度对纤维性能的影响同轴静电纺丝同轴静电纺是在静电纺的基础上改造而来,其基本原理是在两个内径不同但同轴的毛细管中分别注入芯质和壳质溶液,二者在喷头末端汇合,在电场力的作用下固化成为复合纳米纤维。
同轴静电纺丝解决了纺丝时纺丝液必须是均一体系的缺陷,所制备的同轴纤维在均匀性、连续性上都优于其它方法得到的纤维。
采用同轴静电纺丝的方法可以制得中空纤维和纳米复合纤维等。
应用静电纺丝技术制备的纳米纤维,具有比表面积大、孔隙率高、尺寸容易控制、表面易功能化(如表面涂覆、表面改性)等特点,在许多领域都有重要的应用价值。
静电纺丝技术在构筑一维纳米结构材料领域已发挥了非常重要的作用,应用静电纺丝技术已经成功的制备出了结构多样的纳米纤维材料。
静电纺丝技术的应用及其发展前景材料成型09-3 陈桂宏 14095543“静电纺丝”一词来源于“electrospinning”或更早一些的“electrostaticspinning”,国内一般简称为“静电纺”、“电纺”等等。
早在上世纪30年代就有人在电纺技术上申请了一系列的专利,是人们早已知晓的一项技术。
1934年,Formalas发明了用静电力制备聚合物纤维的实验装置并申请了专利,其专利公布了聚合物溶液如何在电极间形成射流,这是首次详细描述利用高压静电来制备纤维装置的专利,被公认为是静电纺丝技术制备纤维的开端。
但是,由于静电纺丝的可生产性较低,并没有引起人们的注意,直到近十年,由纳米技术的迅速发展,静电纺丝才再次引起世界各国研究学者的关注,并逐渐成为世界上用得到的最普遍生产纳米纤维的方法。
通过静电纺丝技术制备纳米纤维材料是近十几年来世界材料科学技术领域的最重要的学术与技术活动之一。
静电纺丝以其制造装置简单、纺丝成本低廉、可纺物质种类繁多、工艺可控等优点,已成为有效制备纳米纤维材料的主要途径之一。
图 1 静电纺丝装置图1 静电纺丝技术原理及影响因素静电纺丝的基本原理是:聚合物溶液或熔体在高压静电的作用下,会在喷丝口处形成 Taylor锥,当电场强度达到一个临界值时,电场力就能克服液体的表面张力, 在喷丝口处形成一股带电的喷射流。
喷射过程中, 由于喷射流的表面积急速增大, 溶剂挥发, 纤维固化并无序状排列于收集装置上 ,从而得到我们需要的纳米纤维, 其装置图如图 1 所示。
电纺技术制备的纤维直径可以在数十纳米到数百纳米之间。
到目前为止, 已经报道有大约 100种聚合物利用静电纺丝技术制备出超细纳米纤维。
静电纺丝法的许多工艺参数相互密切联系,决定了纤维的直径大小和纤维的均匀性等性质。
影响静电纺丝过程的因素主要有两个方面, 一是溶液的性质,包括溶液粘度, 表面张力等; 二是电纺设备参数, 如外加电压, 收集装置之间的距离等。
第1篇一、实验目的1. 熟悉静电纺丝法的原理和操作步骤。
2. 掌握利用静电纺丝法制备纳米纤维的方法。
3. 分析不同参数对纳米纤维形态和性能的影响。
二、实验原理静电纺丝法是一种常用的制备纳米纤维的技术,利用高压电场使高分子溶液或熔体在喷丝头处形成细小的液滴,液滴在电场力、表面张力以及惯性力的共同作用下,拉伸形成纳米纤维。
通过控制实验参数,可以制备出具有不同直径、形态和性能的纳米纤维。
三、实验材料与设备材料:1. 聚乙烯醇(PVA)粉末2. 乙醇3. 纳米氧化锌(ZnO)设备:1. 静电纺丝机2. 电子天平3. 真空干燥箱4. 扫描电子显微镜(SEM)5. 透射电子显微镜(TEM)6. X射线衍射仪(XRD)四、实验步骤1. 配制PVA溶液:称取一定量的PVA粉末,加入适量乙醇溶解,搅拌均匀。
2. 配制纳米氧化锌溶液:称取一定量的纳米氧化锌,加入适量乙醇溶解,搅拌均匀。
3. 混合溶液:将PVA溶液和纳米氧化锌溶液按照一定比例混合均匀。
4. 静电纺丝:将混合溶液注入静电纺丝机,设置合适的电压、喷头与收集器距离等参数,进行静电纺丝。
5. 收集纳米纤维:将静电纺丝制备的纳米纤维收集在铝箔上,干燥。
6. 纳米纤维表征:利用SEM、TEM、XRD等手段对纳米纤维进行表征。
五、实验结果与分析1. SEM分析:从SEM图像可以看出,纳米纤维呈细长条状,直径在100-200nm之间,表面光滑。
2. TEM分析:从TEM图像可以看出,纳米纤维具有明显的纳米级特征,直径在30-50nm之间。
3. XRD分析:从XRD图谱可以看出,纳米纤维具有较好的结晶度,表明纳米氧化锌在纳米纤维中均匀分散。
六、讨论1. 实验结果表明,通过静电纺丝法制备的纳米纤维具有较好的结晶度和均匀的分散性,表明纳米氧化锌在纳米纤维中均匀分散。
2. 实验过程中,电压、喷头与收集器距离等参数对纳米纤维的直径和形态有较大影响。
适当提高电压和缩短喷头与收集器距离,可以制备出更细、更均匀的纳米纤维。
静电纺丝制备纳米纤维的研究进展鲍桂磊;张军平;赵雯;朱娟娟;王改娥【摘要】Due to tiny diameter, big specific surface area, and the ability to achieve surface functionalization easily, nanofibers are attracting great attention, and electrospinning technology is considered to be the most simplest and effective way to prepare polymer nanofibers, many researchers at home and abroad have studied the electrospinning technology in detail. In this paper, the working principle of electrospinning was introduced briefly, and influential factors on the electrospinning process were analyzed, such as solvent, consistency and viscosity, conductance, applied voltage, flow rate and distence between the gaps. In addition, application of electrospun nanofibers in the fields of filter media material, sensors and biomedical engineering was described, and some problems of this technique were pointed out as well as countermeasures.%纳米纤维具有直径小、比表面积大和易于实现表面功能化等优点,受到了广泛的关注,而静电纺丝技术被认为是制备聚合物纳米纤维最简单有效的方法,因此国内外学者对静电纺丝技术进行了详细的研究。
LOGO
1 2 3 4
年研究发现,阐述了一种利用静电力生产聚合物细丝的装置,其主要原理是利用高压静电场激发聚合物的带电射流,使射流固化得到聚合
v纳米纤维nanofiber
纳米纤维指的是直径从几十纳米到1μm的纤维。
在学术上界定<100nm为纳米级,但是由于商业上的灵活性,纤维直径为300nm甚至是>500nm这个在学术界一般归为次微米级的尺度范围,也将其称为纳米纤维。
A B
静电纺丝装置主要由毛
(器)、聚
和高压电
Taylor锥
力等
应用
用,是医用支架、结构稳
长药效、细纤维具有直径小、
溶解和提
物的快释、
避免药物初
对于提高着很好的力。
纳米器和生物
高的过滤精
过滤材料
过滤介质使用纳米尺寸的纤维。
静电
在环境污染网的性能优法不用去除
LOGO。
静电纺丝技术及纳米材料制备静电纺丝技术是一种制备纤维材料的方法,通过利用静电力将聚合物溶液或熔融聚合物纺丝,形成纤维结构。
这种技术具有简单、高效、低成本等优点,被广泛应用于纺织、医疗、能源存储等领域的纤维材料制备中。
一、静电纺丝技术原理静电纺丝技术基于静电力的作用原理。
当电荷分布不均匀时,电荷会在物体表面产生电场,电荷越多,电场越强。
在静电纺丝中,聚合物溶液或熔融聚合物通过电极以高压喷射出来,并受到地板或收集器等静电场的作用,使聚合物形成纤维状结构。
当喷射的溶液或熔融物靠近地面或收集器时,由于电场的作用,产生电荷的重新分布,使得纤维形成。
整个过程可以分为充电、喷射、伸长和固化等阶段。
在静电纺丝过程中,有几个关键参数需要控制,包括喷丝液体的浓度、电压和喷丝距离。
喷丝液体的浓度决定了溶液或熔融物的黏度和流动性,如果浓度过高,会导致喷液团块的形成,影响纤维的质量,如果浓度过低,则纤维容易断裂。
电压的选取与纤维直径有关,通常较高的电压可获得较小直径的纤维。
喷丝距离也会影响纤维的形成,过大的距离会导致纤维断裂,过小的距离则可能引起纤维交织。
静电纺丝技术依赖于材料的流动性和电荷传输能力。
通常使用具有高分子链段的聚合物作为溶液或熔融物,这些高分子具有良好的流动性和很强的电荷传导性,有利于纤维的形成。
二、纳米材料制备纳米材料是具有粒径在1-100纳米之间的材料,具有许多特殊的物理、化学和力学特性,在纳米科技领域具有广泛的应用前景。
纳米材料的制备方法多种多样,其中静电纺丝技术是一种高效、简单且可量产的制备方法。
使用静电纺丝技术制备纳米材料可以通过多种途径实现。
一种方法是在聚合物溶液中加入纳米粒子,使得纳米粒子在静电场作用下与聚合物一起喷射形成纳米复合纤维。
这种方法可以制备纳米复合材料,具有纳米尺度的颗粒分布和增强的力学性能。
另一种方法是利用静电纺丝技术直接制备纳米纤维。
通过调整聚合物溶液中的高分子链段长度和浓度,可以获得直径在几十纳米以下的纳米纤维。
静电纺丝技术的工艺原理及应用静电纺丝技术是目前制备纳米纤维最重要的基本方法。
这一技术的核心是使带电荷流体在静电场中流动与变形,最终得到纤维状物质,从而为高分子成为纳米功能材料提供了一种新的加工方法。
由于纳米纤维具有许多特性,例如纤维纤度细、比表面积大、孔隙率高,因而具有广泛的应用。
1、静电纺技术静电纺是一项简单方便、廉价而且对环境无污染的纺丝技术。
早在20世纪30年代,Formals A就已经在其专利中报道了利用高压静电纺丝,但是直到近些年,由于对纳米科技研究的迅速升温,激起了人们对这种可制备纳米尺寸纤维的纺丝技术进行深入研究的浓厚兴趣。
1.1 静电纺技术的基本原理静电纺丝技术(Electrospinning fiber technique)是使带电的高分子溶液(或熔体)在静电场中流动变形,经溶剂蒸发或熔体冷却而固化,从而得到纤维状物质的一种方法。
对聚合物纤维电纺过程的图式说明见图1。
静电纺丝机的基本组成主要有3个部分:静电高压电源、液体供给装置、纤维收集装置。
静电高压电源根据电流变换方式可以分成DC/DC和AC/DC两种类型,实验中多用IX;/DC电源。
液体供给装置是一端带有毛细管的容器(如注射器),其中盛有高分子溶液或熔体,将一金属线的一端伸进容器中,使液体与高压电发生器的正极相连。
纤维收集装置是在毛细管相对端设置的技术收集板,可以是金属类平面(如锡纸)或者是旋转的滚轮等。
收集板用导线接地,作为负极,并与高压电源负极相连。
另外随着对实验要求的提高,液体流量控制系统也被渐渐的采用,这样可以将液体的流速控制得更准确。
电场的大小与毛细管口聚合物溶液的表面张力有关。
由于电场的作用,聚合物溶液表面会产生电荷。
电荷相互排斥和相反电荷电极对表面电荷的压缩,均会直接产生一种与表面张力相反的力。
当电场强度增加时,毛细管口的流体半球表面会被拉成锥形,称为Taylor锥。
进一步增加电场强度,是用来克服表面张力的静电排斥力到达一个临界值,此时带电射流从Taylor锥尖喷射出来。
基于静电纺丝技术的纳米纤维制备及其应用的开题报告一、研究背景随着纳米科技的迅速发展,人们对纳米材料的研究越来越深入。
纳米材料因其在尺寸、表面积和量子效应等方面表现出与宏观材料不同的特性,广泛应用于生物医学、电子器件、环境保护、能源等领域。
纳米纤维作为一种新型纳米材料,具有非常广泛的应用前景,如细胞支架材料、口罩过滤材料、能量存储材料、传感器等。
静电纺丝技术是一种简单、高效的制备纳米纤维材料的方法,其通过将高电压电场作用于聚合物溶液,将溶液中的聚合物拉伸成纳米级细丝,并在收集器上形成纳米纤维膜。
静电纺丝技术具有简单、快速、低成本等优点,而且可以控制纳米纤维的直径、形态和组成,因此广泛用于生物医学、能源、环境保护等领域。
二、研究内容和目标本文的研究内容是基于静电纺丝技术制备纳米纤维材料,并探讨其在生物医学和环境保护领域的应用。
具体包括以下几个方面:1. 研究不同溶液配方对静电纺丝纳米纤维的直径、形态和组成的影响,并探讨优化制备条件的方法。
2. 将静电纺丝纳米纤维材料用于生物医学领域,作为细胞支架材料,研究其生物相容性、细胞黏附和增殖性能。
3. 将静电纺丝纳米纤维材料用于环境保护领域,作为过滤材料,研究其对水污染物的去除效果和重金属离子的吸附能力。
本文的研究目标是制备出直径均一、形态规则、组成稳定的静电纺丝纳米纤维材料,并在生物医学和环境保护领域探讨其应用前景,为纳米纤维材料的研究提供新思路和方法。
三、研究方法和步骤1. 选取不同聚合物和溶剂,配制不同的聚合物溶液,通过静电纺丝技术制备出直径均一、形态规则、组成稳定的纳米纤维材料。
探究不同溶剂、浓度等条件对静电纺丝纳米纤维的影响。
2. 通过细胞实验,探究静电纺丝纳米纤维材料的生物相容性、细胞黏附和增殖性能。
观察其对细胞形态和分化的影响。
3. 在对纳米纤维材料的性能分析后,将其用作过滤材料研究其对水污染物的去除效果,并探究其对重金属离子的吸附能力。
四、研究意义本文的研究意义在于:1. 探讨了一种简单、快速、低成本的制备纳米纤维材料的方法,为纳米纤维材料的研究提供了新思路和方法。
影响静电纺丝制备纳米纤维的因素有哪些?
静电纺丝技术是制备纳米纤维的有效方法之一,影响因素较多,工艺较难控制。
那么影响静电纺丝制备纳米纤维的因素有哪些呢?
纺丝温度对静电纺丝的影响是多方面的,升高温度有利于溶剂的挥发,使射流在电场中快速固化,使纳米纤维直径增大另一方面,纺丝温度变化还会直接影响纺丝液的粘度、表面张力及导电性,比如升高纺丝温度,纺丝液的粘度和表面张力均减小,导电率提高,加快射流分子链的运动速度,在电场力的作用下,射流不稳定性增强,容易形成珠结。
湿度对静电纺丝的影响主要表现在湿度会改变溶剂的挥发性,湿度升高会降低溶剂的挥发速率,湿度降低会增加溶剂的挥发速率,因此,可以通过调节环境湿度对纺丝所得的纳米纤维形貌进行调控。
当所施加的电压不同时,为打破表面张力与电场力的平衡,毛细管顶端的液滴将会产生不同的表面形状,影响然后所产生的喷射液滴及细流尺寸的分布情况、纤维形态和其所传导的电流大小。
纺丝液性质——包括纺丝液的分子质量、浓度、粘度、电导率、表面张力、比热、相变热等。
生产条件——包括施加的电场强度电压纺丝速度、喷丝头与收集板之间的收集距离、纺丝温度、毛细孔直径等。
环境参数——包括室温、湿度、环境气流速度等。
纺丝液粘度直接影响静电纺丝所得的纳米纤维的形貌和性质。
纺丝液粘度越大,聚合物分子链越易缠结,射流越不稳定,纺丝难度较大,不易制得直径分布均匀的纳米纤维但是粘度小无法形成射流,只能形成微滴。
静电纺丝过程中,纺丝液由于表面电荷的静电斥力产生射流,在电场力作用下拉伸、固化成膜,因此纺丝液的导电性对纺丝效果有直接影响。
选择导电性高的溶剂是最简单直接的方法,或者可以通过向纺丝液中加入无机盐、有机盐、离子液体及导电金属粒子来提高纺丝液的导电性。
静电纺丝过程中,当静电斥力大于溶液的表面张力时纺丝液才会形成射流。
纺丝液的表面张力不仅影响泰勒锥的形成,而且还影响射流在高压场中的运动及分裂,对纤维的形貌有决定性作用。
表面张力有减小液体表面积的作用,使纺丝液射流变成球形,而高压电场中的电场力以及纺丝液的黏弹力会抑制射流形状的快速变化,从而有利于形成光滑且均一的纤维。
接收距离直接影响电场强度和射流在电场中的飞行和拉伸时间。
接收距离小,电场强度会增大,电场力对射流的拉伸作用随之增强,有利于形成直径较小的纳米纤维但是同时也会减小射流拉伸时间,导致溶剂未完全挥发,难以制备直径均匀的纳米纤维。
若纺丝液的喷射速度非常小,无法在喷丝口形成泰勒锥,也即无法进行静电纺丝。
随着纺丝液喷射速度增大至某一最佳值时,泰勒锥形成后会不断旋转直至接收板上,喷射过程的间隔时间能充分的将溶剂挥发掉,制备直径较小且分布均匀的纳米纤维;当纺丝液喷射速度过大,射流内部的溶剂含量增大以致无法完全挥发,残余的溶剂使纤维粘结,纤维出现很多珠结。