当前位置:文档之家› 变分原理-第3章

变分原理-第3章

变分原理-第3章
变分原理-第3章

变分原理与变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间数域 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A ② 函数的积分: 函数空间数域

D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?=∏0 221 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({2 2122202 1===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使 系统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B ,A 高于B ,要求在两点间连接一条曲线,使 得有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

有限元变分原理

1有限元变分原理 有限元是求解偏微分方程的数值方法,在数学上属于变分法范畴,是古典的 Ritz-Galerkin方法与分片多项式插值的结合。古典的Ritz-Galerkin方法的试函 数是求解域内的连续函数,有限元法的试函数是分片多项式。作为变分法的试函 数产生了很大区别:古典的Ritz-Galerkin方法的试函数要求域内的连续或平方 可积且满足位移边界条件,试函数定义在泛函分析的Hilbert空间,或称为内积 空间。有限元法的试函数要求在单元域内连续或平方可积,且不用考虑位移边界 条件,因为有限元是以节点位移参数为未知数,可以直接代入位移边界条件,但 是单元间出现了连续性条件,即所谓的平面和三维弹性问题的C0连续,和薄板 问题的C1连续等,相对古典的Ritz-Galerkin方法的试函数是一种广义函数。有 限元试函数定义在泛函分析的Sobolev空间,或称为广义导数空间。 2 分片检验 2.1分片检验 长期以来在有限元收敛理论中的分片检验成为关注的焦点,同时也是一个疑难症。分片检验所以倍受关注,是因为它不仅可以用于检验单元的收敛性还可以用于构造收敛单元,而且十分方便。分片检验的研究大致经历了如下三个里程。第一,1965年Irons提出了不协调元的分片检验条件(Patch Test) [1,2],这是一个通过数值计算检验单元的收敛性的方法,可以通过对一小片有限元问题的数值计算检验单元的收敛性,也是有限元法中最实用的检验单元收敛性的方法,但是,作为一种数值检验的方法,在数学和力学原理上的提法都不够严密,而有限元的单元收敛性又是不能回避的问题。鉴于这个方法的有效性和实用性,人们一直对其开展系列的理论研究工作。1972年Strang首先给出分片检验的数学描述[3],后来,这个条件被解释成对一个单元的约束条件,称之为单体条件[4],这个条件使用很方便,可以做为单体的约束条件构造单元函数,但是,对这个分片检验一直缺少严格的数学证明。第二,1980年Stummel 基于严格的数学理论,建立了不协调元收敛的充分必要条件-广义分片检验[5],并且,通过举反例证明Irons的分片检验即不充分也不必要[6]。这个严格的理论是整体条件,而非单体条件,应用很困难,只限于用于少量单元的检验,而且需要有相当的泛函分析基础,对于大多数单元无法得到应用,更是无法用于指导构造不协调元,因此深入研究实用的不协调元收敛性条件是十分必要的。 此间,还推出了一些实用的充分条件,例如,F-E-M检验[7] 和IPT 检验[8]等,1995年建立了C0类非协调元收敛准则—强分片检验(SPT) [9],1997年基于加权Sobolev 空间理论,建立了轴对称非协调元收敛准则—强分片检验(ASPT) [10]。但是,数学的严格理论(例如,广义分片检验)难以在力学中应用,实用的力学准则(例如,分

变分原理及变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1 max ;21 )(11 2 2 ∑∑===n j n i ij a A

② 函数的积分: 函数空间 数域 D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B,A 高于B ,要求在两点间连接一条曲线,使得 有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

变分原理在物理学中的应用

变分原理在物理学中的应用 [摘要]从变分法出发,简述了变分原理的建立和发展;并就变分原理在各个学科的应用予以列举,为变分原理的初学者作以引导。 [关键字] 变分法;变分原理;发展历程;应用。 引言 变分原理愈来愈引起重视。固体力学变分原理的发展最为成熟,流体力学变分原理近年来也获得突破, 电磁学、传热学等领域变分原理在不断应用和发展。这是因为变分原理与有限元结合起来使古典的变分原理焕发青春[1]。本文就变分原理的发展历程和变分原理在物理学中的应用予以概括, 以形成一个了解变分原理的脉络,为更好的应用变分原理打下基础。 1.变分原理发展简史 年份历史事件 1696年约翰·伯努利提出最速曲线问题开始出现 1733年欧拉首先详尽的阐述了这个问题. 他的《变分原理》(Elementa Calculi Variationum)寄予了这门科学这个名字。 1786年拉格朗日确定了变分法, 但在对极大和极小的区别不完全令人满意。 1810~1831年Vincenzo Brunacci, Carl Friedrich Gauss, Simeon Poisson,Mikhail Ostrogradsky和Carl Jacobi对于这两者的区别都曾做出过贡献。 1842年柯西Cauchy浓缩和修改了变分法,建立了一套严格的理论。 1849~1885年Strauch, Jellett, Otto Hesse, Alfred Clebsch和Carll写了一些其他有价值的论文和研究报告。 1872年Weierstrass系统建立了实分析和复分析的基础,基本上完成了分析的算术化。他关于这个理论的著名教材是划时代的, 并且他可能是第一个将变分法置于一个稳固而不容置疑的基础上的。 1900年希尔伯特(Hilbert)发表的第20和23个数学问题促进了变分思想更深远的发展。 20世纪初David Hilbert, Emmy Noether, Leonida Tonelli, Henri Lebesgue和Jacques Hadamard 等人做出重要贡献。 20世纪30年代Marston Morse 将变分法应用在Morse理论中。

变分原理

§9 变分原理 9.1 弹性变形体的功能原理 学习要点: 本节讨论弹性体的功能原理。能量原理为弹性力学开拓了新的求解思路,使 得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。而功能关系是能量原理的基础。 首先建立静力可能的应力和几何可能的位移概念;静力可能的应力 和几何可能的位移可以是同一弹性体中的两种不同的受力状态和变形状 .................... 态,二者彼此独立而且无任何关系。 ................ 建立弹性体的功能关系。功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。 9.1.1 静力可能的应力: 假设弹性变形体的体积为V,包围此体积的表面积为S。 表面积为S 可以分为两部分所组成:一部分是表面积的位移给定,称为Su;另外一部分是表面积的面力给定,称为Sσ。 +Sσ 显然S=S u 假设有一组应力分量σij在弹性体内部满足平衡微分方程

在面力已知的边界Sσ,满足面力边界条件 这一组应力分量称为静力可能的应力。静力可能的应力未必是真实的应力, ................ 因为真实的应力还 ....................必须满足应力表达的变形协调方程 ...............,但是真实的应力分量必然 是静力可能的应力。 ......... 为了区别于真实的应力分量,我们用表示静力可能的应力分量。 9.1.2 几何可能的位移: 假设有一组位移分量u i和与其对应的应变分量εij,它们在弹性体内部满足几何方程 在位移已知的边界S u上,满足位移边界条件 这一组位移称为几何可能的位移。几何可能的位移未必是真实的位移,因 为真实的位移还必须在弹性体内部满足位移表示的平衡微分方程 .... ......;在面力已知 的边界 ..................。但是,真实的位移必然是...S.σ.上,必须满足以位移表示的面力边界条件 几何可能的。 为了区别于真实的位移,用表示几何可能的位移。 几何可能的位移产生的应变分量记作。

(完整版)弹性力学第十一章弹性力学的变分原理

第十一章弹性力学的变分原理知识点 静力可能的应力 弹性体的功能关系 功的互等定理 弹性体的总势能 虚应力 应变余能函数 应力变分方程 最小余能原理的近似解法扭转问题最小余能近似解有限元原理与变分原理有限元原理的基本概念有限元整体分析几何可能的位移 虚位移 虚功原理 最小势能原理 瑞利-里茨(Rayleigh-Ritz)法 伽辽金(Гапёркин)法 最小余能原理 平面问题最小余能近似解 基于最小势能原理的近似计算方法基于最小余能原理的近似计算方法有限元单元分析 一、内容介绍 由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。一般问题的求解是十分困难的,甚至是不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。 变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。 本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹

性力学问题。最后,将介绍有限元方法的基本概念。 本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。 二、重点 1、几何可能的位移和静力可能的应力; 2、弹性体的虚功原理; 3、 最小势能原理及其应用;4、最小余能原理及其应用;5、有限元原理 的基本概念。 §11.1 弹性变形体的功能原理 学习思路: 本节讨论弹性体的功能原理。能量原理为弹性力学开拓了新的求解思路,使得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。而功能关系是能量原理的基础。 首先建立静力可能的应力和几何可能的位移概念;静力可能的应力 和几何可能的位移可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。 建立弹性体的功能关系。功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。 学习要点: 1、静力可能的应力; 2、几何可能的位移; 3、弹性体的功能关系; 4、真实应力和位移分量表达的功能关系。 1、静力可能的应力 假设弹性变形体的体积为V,包围此体积的表面积为S。表面积为S可以分为两部分所组成:一部分是表面积的位移给定,称为S u;另外一部分是表面积的面力给定,称为Sσ 。如图所示

变分原理

变分原理 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,或称最小作用原理。 例如:实际上光的传播遵循最小能量原理: 在静力学中的稳定平衡本质上是势能最小的原理。 一、举一个例子(泛函) 变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方法),是计算泛函驻值的数学理论。 在理论上和实践上均需要放宽解的条件。因此,引入弱解以及边值问题的弱的形式即变分形式。在讨论二阶椭圆边值问题时的Lax-Milgram 定理。 Poisson 方程的Neumann 问题 设Ω是单连通域,考察Poisson 方程的Neumann 问题 (N) ??? ? ??? =??=?-Γ,g n u f u u ,在Ω内,,使得求函数 这里)(),(2/12Γ∈Ω∈-H g L f ,且满足 01 ,=+Γ Ω ? g f d x 其中的对偶积表示)()(,2/12/1Γ?Γ??-ΓH H . 问题(N )的解,虽然是不唯一的,但是,若把问题(N )局限于商空间)(V 1Ω=H 内求解,且赋予商范数 ΩΩ∈Ω=,1) (/)(1 1i n f ?v v H v R H ,V v ∈? 可以得到唯一解。实际上,由定理5.8推出R H v /)(1?Ω等价于半范Ω→,1?v v . 定义双线性泛函R V V →?: V v u v v u u v u v u B ∈∈∈???=?,?,?,?),,()?,?( 和线性泛函 V v v v u g fdx v l ∈∈?+→Γ Ω??,?,,?:. 其右端与v v ?∈无关。因此v ?中的元素仅仅相差一个任意常数,同时,可以判定'V l ∈,实际上 ,,2/1,2/1,0,0)?(ΓΓ -Ω Ω +≤v g v f v l

1变分原理及有限元法教材题目

变分原理及有限元 南京航空航天大学 航空宇航学院

前言 变分原理是数学的一个重要分支,亦是弹性力学的重要组成部分,在理论上和实用上都有重要的价值。自从上世纪初里兹提出变分问题的近似解法以后,变分原理在弹性力学中的应用有了新的发展。五十年代有限单元法的问世,变分原理为它提供了重要的理论基础,使变分原理的重要性更加突出地显示出来。同时,有限单元法的发展,又反过来推动了变分原理的研究和进一步发展。 有限单元法发展至今,已成为工程数值分析的有力工具。它的应用领域十分广泛,不论是固体力学、流体力学,还是电磁学、传热学等都可以应用。就固体力学而言,不论是静力分析、还是动力分析或稳定性分析;不论是线性分析,还是非线性分析,有限单元法的应用都取得了巨大的成功,利用它已成功地解决了大批有重大意义的问题,并已开发了很多商用的分析软件。 为了我校力学、土木、机械等专业研究生更方便、更系统地学习和掌握变分原理和有限元的基础知识,编写了此本研究生教材。本教材也可作为其他专业的研究生、高年级本科生、以及广大工程技术人员的学习参考书。 教材分两大部分内容。第一部分变分原理共五章:第一章介绍变分学的基本概念,以及多类泛函的变分问题;第二章介绍弹性理论的经典变分原理-最小位能原理和最小余能原理;第三章介绍弹性理论的广义变分原理-H-R广义变分原理和胡—鹫广义变分原理;第四章介绍弹性理论变分原理的近似解法-里兹法(Ritz)、伽辽金法(Галёркин)和康托洛维奇法;第五章介绍建立多种有限单元的变分原理。第二部分有限元共九章:第一章综合概述基于最小位能原理的有限单元法的列式过程以及基本理论和概念;第二章介绍基于最小位能原理建立弹性力学平面问题及空间问题有限元表达格式的方法和途径;第三章介绍构造单元与单元插值函数的原则和方法;第四章介绍板壳问题的有限元方法;第五章介绍基于其他变分原理的杂交应力有限元;第六章介绍热传导问题的有限元方法;第七章介绍结构动力学问题有限元方法;第八章介绍结构稳定性问题有限元方法;第九章介绍非线性问题的变分原理及几何非线性有限元方法。 本教材《变分原理及有限元》的第一版是在丁锡洪教授、顾慧芝副教授编写的研究生讲义《变分原理与有限单元法》的基础上于2003年12月编写完成的。这次再版对第一版的教材内容进行了部分修订。 由于编写者时间仓促、水平有限,书中难免存在缺点或错误,敬请批评指正。 史治宇 2008年3月于南航大结构强度研究所

变分原理与变分法

第一章 变分原理与变分法 1、1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总就是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理就是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也就是光传播最短路径(Heron); ③ 光线折射遵循时间最短的途径 CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上就是势能最小的原理。 二、变分法就是自然界变分原理的数学规划方法(求解约束方程系统极值的数学 方法),就是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间的(映 射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A

② 函数的积分: 函数空间 D ?=?n b a n f dx x f J )( Note : 泛函的自变量就是集合中的元素(定义域);值域就是实数域。 Discussion : ① 判定下列那些就是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i 、 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii 、 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii 、 外力位能: ?-=∏l l qwdx 0 iv 、 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系统 势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 与B ,A 高于B ,要求在两点间连接一条曲线,使得有 重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i 、 通过A 与B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii 、 建立泛函: x

变分原理基础_讲义

变分原理基础 罗建辉 2009年夏季

1 能量原理 能量原理是以能量形式表述的力学定律。概括地说,在所有满足一定的约束条件的可能状态中,真实状态应使其能量取极值或驻值。 本课程讨论结构力学、弹性力学、薄板的能量原理,只讨论线性平衡问题。 2 弹性系统真实平衡状态的能量特征举例 从能量角度看,弹性系统的真实平衡状态具有如下的能量特征:即与其他可能状态相比,真实状态的能量为极值或驻值。对这一能量特征举几个简例。 例0—1. 弹簧系统真实平衡状态的能量特征 图0—1 所示为一弹簧下端挂一重物。弹簧的刚度系数为k ,重物的重力为P 。用?表示位移,当弹簧系统处于平衡状态时,求得位移?的真解为 k P = ?=?0)(真解 (1) 真解的能量特征是弹簧系统的势能p ∏为极小。现检验如下: ? -?= ∏ P k p 2 2 1 (2) 式(2)右边第一项是弹簧的应变能,第二项是重力P 的势能。系统势能p ∏是位移?的二次式。由式(2)得 2 2 1()2 2p P P k k k ∏ = ?- - (3) 现考察真解的能量特征。显然,真解(1)使势能p ∏取极小值。 换一个角度,求p ∏的一阶及二阶导数,得 P k d d p -?=? ∏ (4) 2 2>=? ∏k d d p (5) 将真解(1)代入式(4),得 0=? ∏d d p ,故知势能p ∏ 为驻值。根据式(5),又知势能p ∏ 变分原理 广义变分原理 单变量形式 多变量形式

为极小值。 例0—2 超静定梁真实平衡状态的能量特征 图0—2a 所示为一超静定梁,取图0—2b 所示静定梁为其基本结构。根据平衡条件,基本结构的弯矩可表示为 P M X M M +=11 (6) 其中p M 是在荷载作用下基本结构的弯矩,1M 是在单位多余力11 =X 作用下基 本结构的弯矩,1X 是任意值。 式(6)同时也是超静定梁满足平衡条件的可能弯矩,由于1X 是任意参数,因此超静定梁的可能弯矩尚未唯一确定。为了确定1X 的真解,还必须应用变形协调条件 )(1111=?+p X 真解δ (7) 式中 ? = ?dx EI M M p p 11 (8) ? = dx EI M 2 111δ 试验证真解的能量特征是梁的余能c ∏为极小值,余能c ∏的表示式为 dx M X M EI dx EI M p c ? ? += = ∏2 112 )(212 (9) 余能c ∏是1X 的二次函数,由式(9)得 1111 11222 112 2 12 12 2 11112 2 2 11111111 1 1(2)2 1[2] 21[2] 2 1 [()] 2p c p p p p p p p p M X M M X M dx EI M dx M M dx M dx X X EI EI EI M dx X X EI M dx X EI δδδδ∏=++=++=+?+=+?-?+?? ? ? ? ? (10) 由式(10)可知变形协调条件(7)使余能c ∏取极小值。换一个角度,求c ∏的一阶及二阶导数,得 p p c X dx M M X M EI dX d 11111111 )(1?+=+= ∏? δ (11) 1121 2>=∏δdX d c (12) 由于真解满足式(7),代入式(11),得0 1 =∏dX d c ,故知余能c ∏为驻值。根据式 (12),又知余能c ∏为极小值。 3 基本能量原理

变分原理与变分法

变分原理与变分法 1.1关于变分原理与变分法(物质世界存在的基本守恒法则) 一、大自然总是以可能最好的方式安排一切, 似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律, 获称最小作用原理。 Exa mp les ① ② Summary:实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的 (映射)关系 第一章 光线最短路径传播; 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); 光线折射遵循时间最短的途径(Fermat ); AE+ EB A AC +CB ③

特征描述法:{ J: X u D T R | J ( x ) = r € R } Exa mp les ① 矩阵范数:线性算子(矩阵)空间— 数域 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个 w (x ),使 i.梁的弯曲应变能: □b =-f' EJ (雪 2 P dx 2 ii.弹性地基贮存的能量: n f 1 J 2 =一 J kw dx 2 0 iii.外力位能: 口 l l =-0 qwdx iv.系统总的势能: )2dx 11 AII 1 = max 2 a j i4 ;|A L = max 2 a ij ; I A 2 仁 )12 ②函数的积分:函数空间i 数域 b J = a f n (X )dX fn U D Note:泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussi on : ①判定下列那些是泛函: c f (x y) --- '—-3x+5y=2; J 6(x-x 0) f (x)dx = f (x 0) f i=ma 少(x )i ; ex ②试举另一泛函例子。 物理问题中的泛函举例 q(x) /■'■'I rmTrfT ① 弹性地基梁的系统势能 ■ d 丨 L l d 2 w 2 □卡E J( dxr) 2 Tkw - qW}dx; x = 0 d w = 0 dx x x = 0,固支;x =

变分原理

变分原理 泛函是指某一个量,它的值依赖于其它一个或者几个函数。因此泛函也称为函数的函数。 变分法的基本问题是求解泛函的极值。 对于弹性力学问题,根据能量关系可以使偏微分方程的边值问题转化为代数方程。弹性体的应变能是基本未知量应力或者应变分量的函数,当然应力或者应变分量是坐标的函数。因此,应变能就是泛函。 在数学分析中,讨论函数和函数的极值。变分法讨论泛函的极值,是极值问题的推广。 下面简单介绍复变函数的定义和基本性质。如果需要深入探讨复变函数问题,请查阅参考资料。 §1 泛函和泛函的极值 首先引入泛函的概念。泛函是指某一个量,它的值依赖于其它一个或者几个函数。因此泛函也称为函数的函数。 变分法的基本问题是求解泛函的极值 作为变分法的简单例题。考察x,y平面上连接两个定点的所有曲线中,求满足边界条件的任意曲线y(x)中的最短曲线。 (补充图) 设P1(x1,y1)和P2(x2,y2)为平面上给定的两点,y(x)为连接两点的任意曲线。于是,这一曲线的长度为

连接P1,P2两点的曲线有无数条,每一条曲线都有一个L值与其对应。满足边界条件的y(x)称为容许函数,问题是要从这些曲线,容许函数中找出使得曲线长度L最小的一条。 根据上式,L [y]依赖于y(x),而y(x)是x的函数,因此称y(x)为自变函数;L [y]是倚赖于自变函数的函数,称为泛函。 求解最短程线问题,即在满足边界条件 在x=x1时,y(x1)=y1,y'(x1)= y'1 在x=x2时,y(x2)=y2,y'(x1)= y'2 的函数y(x)中,求使得泛函L [y]为极值的特定函数。因此y(x)称为容许函数。 上述问题应用变分法可以概括为求解泛函 在边界条件y(x1)=y1,y(x2)=y2的极小值问题。 §2 泛函极值的必要条件-欧拉方程 假设函数y(x)是使得泛函L [y]为最小的特定函数(真实的)。变分法有兴趣研究的是邻近于y(x)的任意容许函数引起泛函L [ ]的改变。设 其中ε 为小参数,而η (x)为边界值为零的任意函数。当x固定时,容许函数 与y(x)的差 δ y称为泛函自变函数的变分,即 类似地,容许函数的斜率与y(x)斜率的差δ y',称为泛函自变函数斜率的变分,即 应该注意δ y与函数y(x)的微分d y之间的差别,d y是自变量x的改变量d x 引起的y(x)的无穷小增量。而变分δ y是y(x)的任意一个微小的改变量。设泛函增量 按泰勒级数展开,则

变分原理与变分法

第一章变分原理与变分法 1.1关于变分原理与变分法(物质世界存在的基本守恒法则) 一、大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称 /相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律, 获称最小作用原理。 Examples: ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ 光线折射遵循时间最短的途径(Fermat ); , Summary 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 、变分法是自然界变分原理的数学规划方法 (求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映 射)关系 特征描述法:{ J: X D R|J (x ) r R } Examples: ① 矩阵范数:线性算子(矩阵)空间 = 数域 ② 函数的积分:函数空间数域 n II A II 1 = max a ij j i 1 max a ij i j 1 n n A 2 ( a ij 产 j 1 i 1 AE EB AC CB

b J f n (X )dX f n D a Discussi on : ① 判定下列那些是泛函: ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个 w (x ),使 系统势能 泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B, A 高于B ,要求在两点间连接一条曲线,使 得有重物从A 沿此曲线自由下滑时,从 A 到B 所需时间最短(忽略摩擦 力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。 B 点坐标(a, b ), 设曲线为 y = y (x ),并已知:x = 0, y = 0 ; x = a, y = b ii. 建立泛函: i.梁的弯曲应变能: 1 ' d 2 w 2 b o 0 EJ( 2 ) dx 2 0 dx ii.弹性地基贮存的能量: f — kw 2 dx 2 0 iii.外力位能: l I o qwdx iv.系统总的势能: 左Ej (d 丫)2 1 2 2 kw qw}dx; x 0 w 0削0 dx x = 0,固支;x = l, 自由 Note:泛函的自变量是集合中的元素(定义域) ;值域是实数域。 max f (x); a x b f(X,y) ; 3x+5y=2; x (x x °)f(x)dx f(X o ) q(x) con sts E 、J x

变分原理与变分法

第一章 变分原理与变分法 1.1关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ①光线最短路径传播; ②光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③光线折射遵循时间最短的途径( CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A

D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ①判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(;3x+5y=2;?+∞∞-=-)()()(00x f dx x f x x δ ②试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i.梁的弯曲应变能:?=∏l b dx dx w d EJ 02 22)(21 ii.弹性地基贮存的能量:dx kw l f ?=∏0 221 iii.外力位能:?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({2 2122202 1 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ②最速降线问题 问题:已知空间两点A 和B,A 高于B ,要求在两点间连接一条曲线,使得有重 物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii.建立泛函: 设P (x , y )是曲线上的点,P 点的速度由能量守恒定律求得: x

自然变分原理

§1.3变分原理 §1.3.1 自然变分原理 §1.3.2 修正泛函的变分原理

如果微分方程具有线性、自伴随的性质,则: ?不仅可以建立它的等效积分形式, 并可利用加权余量法求其近似解; ?还可建立与之相等效的变分原理, 基于它的另一种近似求解方法——Ritz 法。 1. 线性、自伴随微分算子 §1.3. 1 自然变分原理

微分方程 ()0~~ L u b +=in Ω ~ L 为微分算子若~L 具有性质:1212()()()~~~L u u L u L u αβαβ+=+则称~ L 为线性微分算子。线性、自伴随微分方程的定义:

的导数消失,得: * ()()..(,) ~~ ~~~~~~ L u v d u L v d b t u v Ω Ω Ω=Ω+∫∫边界项 若 ()~~~ L u v d Ω Ω∫ 内积后,求积; 任意函数 为* ~ L ~L 的伴随算子。* ~~ L L =则称算子是自伴随。

2. 泛函的构造 ~ ~~~ ~ ~ ~ ~ ~ ()()0 ()0 x A u L u f x B u ?∈Ω ≡+=?∈Γ=格式 ~~~ ~ ~~ ~ (())()0 T T u L u f d u B u d δδΩ Γ +Ω+Γ=∫∫因为算子是线性、自伴随的,所以: ~~~~~~~~~11()[()()]22T T T u L u u L u u L u d δδδΩ =+Ω∫∫

~~~~~~~~~11()[()()]22T T T u L u u L u u L u d δδδΩΩ =+Ω∫∫~~~~~1()..(,) 2T u L u d b t u u δδΩ =Ω+∫~~~~~~~~11[()()]..(,) 22T T u L u u L u d b t u u δδδΩ=+Ω+∫~~~~~~~~11[()()]..(,) 22T T u L u u L u d b t u u δδδΩ=+Ω+∫简单分解

第五次作业-结构-变分原理

变分原理在结构分析中的应用 摘要:变分法是研究力学、物理学和其他各种技术科学的强有力的工具,本文从变分原理的基本理论出发,讲解变分法及其相关理论在结构分析中的应用。长期研究表明,变分原理是研究很多复杂结构的基础。 关键词:变分原理;结构分析;应用 1 引言 现代结构大多是由多个不同维数和不同性能的结构构件耦合或杂交而成的组合结构体系。例如: 框剪、框筒、筒中筒、巨型框架等高层结构; 网架、网壳、索穹顶、索承穹顶、张弦梁、索桁架等大跨度结构。这些结构由于其复杂性,不能通过常规的方法得到其精确的解[1]。现代结构的分析方法,基本上可以分为两大类: 一类是有限元法,即将所分析的结构采用离散化的数学模型[2-4];另一类是连续化法,即将所分析的结构采用连续化的数学模型[5-7]。但是这两类方法的数学理论基础都是一样的,均可归结为求泛函的极值或驻值的变分问题[8, 9]。国内外学者都十分重视变分原理的研究与应用,因为它是现代结构理论分析与简化计算的出发点[10]。 2 变分原理在结构工程中的应用 2.1 薄板弯曲问题中的变分原理 在结构分析力学中,有位移法和力法,在能量变分直接法中,与之对应的有势能原理与余能原理,前者以位移为未知数,后者以内力为未知数。故用势能原理分析时,选用位移函数,用余能原理分析时,选用内力函数。从理论上讲,欲求结构的位移可以采用势能原理,欲求结构的内力可以采用余能原理[2, 3]。 2.1.1 势能原理解法: 薄板在均布荷载q 作用下的总势能为: 222222222200002(1)2a b a b D w w w w w U dxdy qwdxdy x y x y x y μ???????????????=+--??--???? ? ?????????????????? ?????(1) 式中:w 为薄板的挠度;μ为泊松比;a 与b 为矩形薄板的边长。 选择位移函数:

相关主题
文本预览
相关文档 最新文档