当前位置:文档之家› 第四章 中值定理与导数的应用 习题及答案

第四章 中值定理与导数的应用 习题及答案

第四章    中值定理与导数的应用  习题及答案
第四章    中值定理与导数的应用  习题及答案

第四章 中值定理与导数的应用

一、填空

1、若()x x x f -=3在[0,3]上满足罗尔定理的ξ值为 。

2、若2

1

cos 1sin lim

20=-→kx x x ,则k = 。 3、=a ,=b 时,点(1,3)为2

3bx ax y +=的拐点。

4、3+=x e x 在),(+∞-∞内的实根的个数为 。

5、函数)1ln(2

x x y +-=的单调递增区间 ,在[-1,1]中最大值为 ,最小

值为 。

6、函数23

)5()(-=x x x f 的驻点为 ,其极大值为 ,极小值为 。

7、若5)(cos sin lim 0=--→b x a e x

x x ,则=a ,=b 。

8、x

x x y )1

1(-+=的水平渐近线为 。

二、选择

1、设R x x x x f ∈+-='),12)(1()(,则在)4

1

,21(-

内)(x f 是( ) A 、单调增加,图形上凹 B 、单调减少,图形上凹 C 、单调增加,图形下凹 D 、单调减少,图形下凹

2、设函数)(x f 在[0,1]上可导,0)(>'x f 并且0)1(,0)0(>

A 、至少有两个零点

B 、有且仅有一个零点

C 、没有零点

D 、零点个数不能确定 3、函数)(x f y =在0x x =处取得极大值,则必有( ) A 、0)(0='x f B 、0)(0<''x f

C 、0)(0='x f 且0)(0<''x f

D 、0)(0='x f 或不存在

4、1

ln )(2

-=

x x

x f 的垂直渐近线为( ) A 、1=x B 、1±=x C 、1±=x ,0=x D 、0=x

5、函数)(x f 有连续二阶导数,且0)0(=f ,1)0(='f ,2)0(-=''f , 则=-→2

)(lim

x

x

x f x ( ) A 、-1 B 、0 C、不存在 D、-2

6、已知)(x f 在0=x 的某个邻域内连续,且0)0(=f ,2cos 1)

(lim

0=-→x

x f x ,

则在0=x 处)(x f ( )

A、不可导 B、可导且0)0(≠'f C、取得极大值 D、取得极小值 7、设在[0,1]上,0)(>''x f ,则)(x f 满足( )

A、)0()1()0()1(f f f f ->'>' B、)0()0()1()1(f f f f '>->' C、)0()1(')0()1(f f f f '>>- D、)0()1()0()1(f f f f '>->'

8、设)()(x f x f --=对一切x 恒成立,且当),0(+∞∈x 时,有0)(>'x f ,

0)(>''x f ,则)(x f 在)0,(-∞内一定有( )

A、0)(<'x f ,0)(<''x f B、0)(<'x f ,0)(>''x f C、0)(>'x f ,0)(<''x f D、0)(>'x f ,

0)(>''x f

9、设函数)(x f 在上有定义,在开区间),(b a 内可导,则( ) A、当时,存在),(b a ∈ξ,使0)(=ξf B 、对任何),(b a ∈ξ,有0)]()([lim =-→ξξ

f x f x

C 、当)()(b f a f =时,存在),(b a ∈ξ,使0)('

=ξf D 、存在),(b a ∈ξ,使=-)()(a f b f ))(('

a b f -ξ 10、设)1()(x x x f -=,则( ) A 、0=x 是)(x f 的极值点,但(0,0)不是曲线)(x f y =的拐点 B 、0=x 不是)(x f 的极值点,但(0,0)是曲线)(x f y =的拐点 C 、0=x 是)(x f 的极值点,且(0,0)是曲线)(x f y =的拐点 D 、0=x

不是)(x f 的极值点,(0,0)也不是曲线)(x f y =的拐点

三、计算 1、0

lim

→x x x 3sin )21ln(+ 2、0lim →x )21ln(arctan 3x x x +- 3、0lim →x )tan 1

1(2x

x x - 4、-∞→x lim )arctan 2(x x +π

5、0lim →x x

x

e

x 11

)

1(????

????

?

?

+ 6、0lim →x x x 12)1(+ 四、应用题

1、已知函数)(x f y =,在),(+∞-∞上具有二阶连续的导数,且其一阶导函数)('

x f 的

图形如图所示,且8)1(=-f ,7)0(=f ,6)1(=f ,5)2(=f ,4)3(=f 则(1)函数)(x f 的驻点是 。

(2)函数)(x f 的递增区间为 。 (3)函数)(x f 的递减区间为 。 (4)函数)(x f 的极大值为 。 (5)函数

)(x f 的极小值为 。

(6)曲线)(x f y =的上凹区间

为 。 (7)曲线)(x f y =的下凹区间

为 。 (8))(x f y =的拐点

为 。

(注:只写结果即可)

2、一商家销售某商品,其销售量Q(单位:吨)与销售价格P(单

位:万元/吨)有关系:Q=35-5P,商品的成本函数为C=3Q+1(万元),若销售一吨商品,政府要征税a 万元

(1)求商家获得最大利润(指交税后)时的销售量Q

(2)每吨税收a 定为何值时,商家既获得最大利润,且政府税收总额最大? 3、已知c bx ax x x f +++=2

3

)(在0=x 处有极大值,且有一拐点(1,-1),求

c b a ,,之值,且求)(x f 的单调区间,凹向与极小值。

五、证明

1、证明:当π<

x

x >2sin

2、设)(x f 在[0,1]上连续,在(0,1)内可导,且0)1()0(==f f ,1)2

1(=f 试证明:至少存在一个点)1,0(∈ξ,使得1)(='ξf

答案

一、 填空

1、2 ;

2、±2 ;

3、2

9

,23=-=b a

; 4、2; 5、),(+∞-∞;1-ln2 ; -1-ln2;

6、01

=x ,32=x ,;53=x 108;0; 7、4,1-==b a ; 8、2e y =

二、选择

1、D 、

2、B

3、D

4、D

5、A

6、D

7、B

8、C

9、B 10、C 三、计算

1、解:原式=0lim →x 3

2

3cos 3212

=+x x

2、解:原式=0lim →x =-32arctan x x x 0lim →x =

-+2

26111

x x 0lim →x 61)1(6222-=+-x x x 3、解:原式=0lim →x x x x x tan tan 2-=0lim →x 3tan x

x

x -=0lim →x 2231sec x x - =0lim →x x x x 222

cos 3cos 1-=0lim →x 6

132122

=x x

4、原式=

-∞

→x lim x

x 1

arctan 2

=-∞→x lim 2

2

1

11x

x -+=-∞→x lim 112

2

-=+-

x x 5、解:原式=0lim →x =+x

x

e

x 11])

1([

x

x x z e 1)1ln(1

lim 0-+→=2

)1ln(lim

x

x

x x e

-+→=x

x x e

21

11

lim 0-+→=1)

1(21lim 0

-=+-

→x x e

6、解:原式=

)1ln(1

lim

2x x x e

+-∞→=x x x e

)1ln(lim

2+-∞→

-∞→x lim x x )

1ln(2

+=-∞→x lim 01

122=+x x

∴ 原式=10=e

四、应用 1、解:(1)3,1,1==-=x x x

;(2))1,(--∞和),3(+∞;(3)[-1,3];(4)8;(5)4;(6)(0,

1)和),2(+∞;(7))0,(-∞和(1,2);(8)(0,7),(1,6),(2,5) 2、解:(1)税后利润为:aQ Q QP Q L ---=13)

(

又由p Q 535-=得Q P 2.07-=

∴ ()()aQ Q Q Q Q L

----=132.07

2.0=

1)4(2--+Q a Q

a Q Q L -+-='44.0)( 令0)(='Q L 得驻点 04.0)(<-=''Q Q L

∴a Q

5.210-=(吨)时,获利润最大。

(2)征税总额为:aQ T =,而Q 是厂家获利最大时的销售量,因此,此处a Q 5.210-=

25.210a a T

-= a T 510-=' 令0='T 得驻点2=a

05<-=''T ∴ 当2=a 万元时,征收税额最大。

3、解:

1)0(=f ? 1=c

b ax x x f ++='23)(2 0)0(='f ? 0=b

a x x f 26)(+='' 0)1(=''f ? 3-=a

令0)2(363)(2=-=-='x x x x x f ? 2,0==x x 令0)1(666)(=-=-=''x x x f ? 1=x

()1323+-=x x x f

∴ ()32min -=f

五、证明

1、证明:设

π

x x x f -=2sin

)( 则

π

12cos 21)(-=

'x x f

)0(,02

sin 41)(π<<<-=''x x

x f

∴ 函数)(x f 对应曲线在),0(π内向上凸

又由于0)()0(==πf f

∴ 当π<<

x 0时,

)(x f >0

即:π

x x >2sin

2、证明:作辅助函数x x f x F -=)()(

显然)(x F 在[

21,1]上连续,在(21,1)内可得,且02

1

)21(,01)1(>=

<-=F F ,由零值定理,存在点)1,2

1

(

∈η,使得0)(=ηF ,又由于0)0(=F ,对)(x F 在],0[η上应用罗尔定理,存在点)1,0(),0(?∈ηξ使得0)(='ξF ,即1)(='ξf

中值定理与导数习题

习题3 一、填空题 1.设,则有_________个根,它们分别位于_ _______ 区间; 2.函数在上满足拉格朗日定理条件的; 3.函数与在区间上满足柯西定理条件的 ; 4.函数在上满足拉格朗日中值定理条件的; 5.; 6.; 7.; 8.函数的单调减区间是; 9.设在可导,则是在点处取得极值的条件; 10.函数在及取得极值,则;

11. 函数的极小值是; 12.函数的单调增区间为; 13. 函数的极小值点是; 14. 函数在上的最大值为,最小值为; 14. 函数在的最小值为; 15. 设点是曲线的拐点,则; 16. 曲线的下凹区间为,曲线的拐点为; 17. 曲线的上凹区间为; 18. 曲线的拐点为; 19. 若是的四次多项式函数,它有两个拐点,并且在点 处的切线平行于轴,那么函数的表达式是; 20. 曲线的拐点为; 21. 曲线的水平渐近线的方程是,垂直渐近线的方程是;

22. 的垂直渐近线为; 水平渐近线为; 23. 曲线在的曲率; 24. 曲线的曲率计算公式为; 25. 抛物线在顶点处的曲率为; 二. 单项选择题 1. 罗尔定理中的三个条件;在上连续,在内可导,且 是在内至少存在一点,使得成立的( ). 必要条件充分条件充要条件既非充分也非必要 2. 函数,则(). 在任意闭区间上罗尔定理一定成立;在上罗尔定理不成立; 在上罗尔定理成立;在任意闭区间上,罗尔定理都不成立; 3. 设函数在区间上连续,在开区间上可导,且, ,则必有( ). ; ; 4. 下列函数在上满足拉格朗日中值定理条件的是( ).

; ; ; 5. 函数,它在内( ). 不满足拉格朗日中值定理的条件; 满足拉格朗日中值定理的条件,且; 满足中值定理的条件,但无法求出的表达式; 不满足中值定理条件,但有满足中值定理的结论. 6. 若在开区间内可导,且是内任意两点,则至少存在一点使得下式成立( ). ; 7. 设是内的可导函数,是内的任意两点,则( ) .

(完整word版)第一章导数及其应用测试题(含答案)

第一章导数及其应用测试题 一、 选择题 1.设x x y sin 12-=,则='y ( ). A .x x x x x 22sin cos )1(sin 2--- B .x x x x x 2 2sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .x x x x sin ) 1(sin 22--- 2.设1ln )(2+=x x f ,则=)2('f ( ) . A . 54 B .52 C .51 D .5 3 3.已知2)3(',2)3(-==f f ,则3 ) (32lim 3--→x x f x x 的值为( ). A .4- B .0 C .8 D .不存在 4.曲线3 x y =在点)8,2(处的切线方程为( ). A .126-=x y B .1612-=x y C .108+=x y D .322-=x y 5.已知函数d cx bx ax x f +++=2 3)(的图象与x 轴有三个不同交点)0,(),0,0(1x , )0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ?的值为( ) A .4 B .5 C .6 D .不确定 6.在R 上的可导函数c bx ax x x f +++=22 131)(2 3, 当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则 1 2 --a b 的取值范围是( ). A .)1,4 1( B .)1,2 1( C .)4 1,21(- D .)2 1,21(- 7.函数)cos (sin 21)(x x e x f x += 在区间]2 ,0[π 的值域为( ). A .]21,21[2π e B .)2 1 ,21(2πe C .],1[2πe D .),1(2π e 8.积分 =-? -a a dx x a 22( ).

高考数学 导数及其应用的典型例题

第二部分 导数、微分及其导数的应用 知识汇总 一、求导数方法 1.利用定义求导数 2.导数的四则运算法则 3.复合函数的求导法则 若)(u f y =与)(x u φ=均可导,则[])(x f y φ=也可导,且dx du du dy dx dy ? = 即 [])()(x x f y φφ'?'=' 4.反函数的求导法则 若)(x f y =与)(y x φ=互为反函数,且)(y φ单调、可导,则 )(1)(y x f φ'= ',即dy dx dx dy 1 = 5.隐函数求导法 求由方程0),(=y x F 确定的隐函数 )(x f y =的导数dx dy 。只需将方程0),(=y x F 两边同时对x 求导(注意其中变量y 是x 的函数),然后解出 dx dy 即可。 6.对数求导法 对数求导法是先取对数,然后按隐函数求导数的方法来求导数。对数求导法主要解决两类函数的求导数问题: (1)幂指数函数y=)()(x v x u ;(2)由若干个因子的乘积或商的显函数,如 y= 3 4 )3(52)2)(1(---++x x x x x ,3 ) 2)(53() 32)(1(--+-=x x x x y ,5 5 2 2 5 +-=x x y 等等。 7.由参数方程所确定函数的求导法则 设由参数方程 ? ? ?==)() (t y t x ?φ ),(βα∈t 确定的函数为y=f(x),其中)(),(t t ?φ

可导,且)(t φ'≠0,则y=f(x)可导,且 dt dx dt dy t t dx dy =''=)()(φ? 8.求高阶导数的方法 二、求导数公式 1.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 2.常见函数的高阶导数 (1) n n x n x -+-?-?-?=αα αααα)1()2()1()() ( (2) x n x e e =) () ( (3) ()()ln x n x n a a a = (4) () (sin ) sin 2n x x n π? ?=+? ??? (5) ??? ? ??+=2cos )(cos )(πn x x n (6) () 1 (1)!ln()(1) ()n n n n a x a x --+=-+ (7) 1 )() (!)1()1(++-=+n n n n b ax a n b ax

高中数学第三章导数及其应用习题课导数的应用学案苏教版选修1_417

习题课导数的应用 学习目标 1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函数的单调性、极值与最值的综合应用. 知识点一函数的单调性与其导数的关系 定义在区间(a,b)内的函数y=f(x) f′(x)的正负f(x)的单调性 f′(x)>0单调递________ f′(x)<0单调递________ 知识点二求函数y=f(x)的极值的方法 解方程f′(x)=0,当f′(x0)=0时, (1)如果在x0附近的左侧________,右侧________,那么f(x0)是极大值. (2)如果在x0附近的左侧________,右侧________,那么f(x0)是极小值. 知识点三函数y=f(x)在[a,b]上最大值与最小值的求法 1.求函数y=f(x)在(a,b)内的极值. 2.将函数y=f(x)的________与端点处的函数值________比较,其中________的一个是最大值,________的一个是最小值. 类型一数形结合思想的应用 例 1 已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是________. 反思与感悟解决函数极值与函数、导函数图象的关系时,应注意:

(1)对于导函数的图象,重点考查导函数的值在哪个区间上为正,在哪个区间上为负,在哪个点处与x 轴相交,在交点附近导函数值是怎样变化的. (2)对于函数的图象,函数重点考查递增区间和递减区间,进而确定极值点. 跟踪训练1 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是________. 类型二 构造函数求解 命题角度1 比较函数值的大小 例2 已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x ≠0时,f ′(x )+ f x x <0,若a =12f (12),b =-2f (-2),c =(ln 12)f (ln 1 2),则a ,b ,c 的大小关系是________. 反思与感悟 本例中根据条件构造函数g (x )=xf (x ),通过g ′(x )确定g (x )的单调性,进而确定函数值的大小,此类题目的关键是构造出恰当的函数. 跟踪训练2 设a =ln 33,b =ln 44,c =ln 5 5,则a ,b ,c 的大小关系是________. 命题角度2 求解不等式 例3 定义域为R 的可导函数y =f (x )的导函数f ′(x ),满足f (x )2e x 的解集为________. 反思与感悟 根据所求结论与已知条件,构造函数g (x )=f x e x ,通过导函数判断g (x )的单 调性,利用单调性得到x 的取值范围. 跟踪训练3 设函数f (x )是定义在R 上的偶函数,f ′(x )为其导函数.当x >0时,f (x )+ x ·f ′(x )>0,且f (1)=0,则不等式x ·f (x )>0的解集为________. 命题角度3 利用导数证明不等式 例4 已知x >1,证明不等式x -1>ln x .

微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得 '()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,

高二数学导数及其应用练习题及答案

(数学选修1-1)第一章 导数及其应用 [提高训练C 组]及答案 一、选择题 1.若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 2.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( ) 3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(- 4.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C. (0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +> 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数)(x f 在开区间),(b a 内有极小值点( A .1个 B .2个 C .3个 D .4个 二、填空题 1.若函数()()2 f x x x c =-在2x =处有极大值,则常数c 的值为_________;

2.函数x x y sin 2+=的单调增区间为 。 3.设函数())(0)f x ??π=+<<,若()()f x f x '+为奇函数,则?=__________ 4.设3 2 1()252 f x x x x =- -+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。 5.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则 数列1n a n ?? ? ?+?? 的前n 项和的公式是 三、解答题 1.求函数3(1cos 2)y x =+的导数。 2.求函数y = 3.已知函数3 2 ()f x x ax bx c =+++在2 3 x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间 (2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围。 4.已知23()log x ax b f x x ++=,(0,)x ∈+∞,是否存在实数a b 、,使)(x f 同时满足下列 两个条件:(1))(x f 在(0,1)上是减函数,在[)1,+∞上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由. (数学选修1-1)第一章 导数及其应用 [提高训练C 组] 一、选择题 1.A ' ' ()sin ,()sin f x x f αα==

微分中值定理与导数的应用习题

第四章 微分中值定理与导数的应用习题 § 微分中值定理 1. 填空题 (1)函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是 π π -4. (2)设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 3 个实根,分别位于区间)5,3(),3,2(),2,1(中. 2. 选择题 (1)罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且 )()(b f a f =,是)(x f 在),(b a 内至少存在一点ξ,使0)(='ξf 成立的( B ). A . 必要条件 B .充分条件 C . 充要条件 D . 既非充分 也非必要条件 (2)下列函数在]1 ,1[-上满足罗尔定理条件的是( C ). A. x e x f =)( B. ||)(x x f = C. 21)(x x f -= D. ????? =≠=0 ,00 ,1sin )(x x x x x f (3)若)(x f 在),(b a 内可导,且21x x 、是),(b a 内任意两点,则至少存在一点ξ,使下式成立( B ). A . ),()()()()(2112b a f x x x f x f ∈'-=-ξξ B . ξξ)()()()(2121f x x x f x f '-=-在12,x x 之间

C . 211221)()()()(x x f x x x f x f <<'-=-ξξ D . 211212)()()()(x x f x x x f x f <<'-=-ξξ 3.证明恒等式:)(2 cot arctan ∞<<-∞= +x x arc x π . 证明: 令x arc x x f cot arctan )(+=,则011 11)(2 2=+-+='x x x f ,所以)(x f 为一常数. 设c x f =)(,又因为(1)2 f π =, 故 )(2 cot arctan ∞<<-∞= +x x arc x π . 4.若函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中 12a x x << 3x b <<,证明:在),(31x x 内至少有一点ξ,使得0)(=''ξf . 证明:由于)(x f 在],[21x x 上连续,在),(21x x 可导,且)()(21x f x f =,根据罗尔定理知,存在),(211x x ∈ξ, 使0)(1='ξf . 同理存在),(322x x ∈ξ,使0)(2='ξf . 又)(x f '在],[21ξξ上 符合罗尔定理的条件,故有),(31x x ∈ξ,使得0)(=''ξf . 5. 证明方程06 213 2=+++x x x 有且仅有一个实根. 证明:设621)(32x x x x f +++=, 则03 1 )2(,01)0(<-=->=f f ,根据零点 存在定理至少存在一个)0,2(-∈ξ, 使得0)(=ξf .另一方面,假设有),(,21+∞-∞∈x x ,且21x x <,使0)()(21==x f x f ,根据罗尔定理,存在) ,(21x x ∈η使0)(='ηf ,即02112=++ηη,这与02 112>++ηη矛盾.故方程0 62132=+++x x x 只有一个实根.

【高中数学选修2-2:第一章-导数及其应用-单元测试题

数学选修2-2第一章 单元测试题 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )的图像如图所示,则函数f (x )在开区间(a ,b )有极小值点( ) A .1个 B .2个 C .3个 D .4个 2.在区间[12,2]上,函数f (x )=x 2+px +q 与g (x )=2x +1 x 2在 同一点处取得相同的最小值,那么f (x )在[1 2 ,2]上的最大值是( ) A.13 4 B.54 C .8 D .4 3.点P 在曲线y =x 3-x +2 3 上移动,设点P 处的切线的倾斜角为 α,则α的取值围是( )

A .[0,π 2] B .[0,π2]∪[3 4π,π) C .[3 4 π,π) D .[π2,3 4 π] 4.已知函数f (x )=1 2x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立, 则实数m 的取值围是( ) A .m ≥32 B .m >32 C .m ≤32 D .m <32 5.函数f (x )=cos 2 x -2cos 2 x 2 的一个单调增区间是( ) A.? ????π3,2π3 B.? ???? π6 ,π2 C.? ???? 0,π3 D.? ???? -π6 ,π6 6.设f (x )在x =x 0处可导,且lim Δx →0 f x 0+3Δx -f x 0 Δx =1, 则f ′(x 0)等于( ) A .1 B .0 C .3 D.13 7.经过原点且与曲线y =x +9 x +5 相切的切线方程为( ) A .x +y =0 B .x +25y =0 C .x +y =0或x +25y =0

导数的应用(习题课)优秀教学设计

§1.3 导数的应用(习题课)教学设计 【教材分析】 本节课是人教A版选修2-2第一章第三节内容,前面已经学习了利用导数求解函数的单调性、极值、最值、零点等问题,本节课是在前节内容的基础上,进一步学习如何利用导数研究不等式恒成立问题。这个问题属于高考压轴题的范畴,本节主要从“套路”和“模型”的角度出发,体现导数的工具性特征。 【学情分析】 学生已经学习了导数的基础知识,知道了一些解题的基本思路,但如何利用导数来解决一些较难的问题,完成对压轴题的“破冰”,学生还是无能为力,这是本节课的困难,需要进行不断的引导与强化。 【教学目标】 1、知识与技能: (1)能利用导数研究函数的单调性、极值、最值、零点等问题及不等式恒成立问题; (2)能够利用导数作图,反之可以利用图像来研究函数的性质; 2、过程与方法: 导数作为一种工具,是高中数学诸多知识的一个交汇点。通过教师思路上的引导,小组合作探究,能让学生从诸多条件中抽丝剥茧,发现解决方法,从而提高学生发现问题、解决问题的能力,深化对问题的认识,在过程中获得思维能力的提高。 3、情感与价值观: 培养学生主动学习,合作交流的意识,互相启发,相互促进,充分发挥各自的主观能动性,激发学生的学习兴趣,完善学习成果。 【教学重点】 利用“套路”和“模型”来研究导数研究不等式恒成立问题。 【教学难点】 (1)基本模型的熟悉与应用;(2)问题如何转化成“模型”来处理。 【课时设计】 两个课时,其中一个0.5个课时完成课堂练习,1.5个课时完成后面内容。 【教学策略】 采用练、评、讲的教学方法,利用几何画板、多媒体投影仪辅助教学。

【教学过程】 一、课堂练习(提前印发给学生) 问题 设计意图师生活动1、解决导数在函数中的应用问题的一般步骤:构造函数 求 求导 求 →→→ 求极值、最值 求问题的解 →→回顾定义,明确方法。 学生自主完成。 2、曲线在处的切线方程为 .x x y ln 2=e x =3、函数的单调递减区间为 . 1ln -=x x y 4、函数的极小值点为( ) x x e y x 2-=A. 1 B. C. D.2-e )2,1(-e ) ,1(e 5、函数的零点个数为( )x xe y =A. 0 B. 1 C. 2 D. 3 6、若不等式恒成立,则实数的取值范围为0ln >-x ax a ( ) A. B. C. D.??????+∞,1e [)+∞,e ??? ??+∞,1e ??? ? ? ∞-e 1,左边5个题均是导数应用中的基础题型, 练习的目的如下:1、巩固求解切线、单调区间、极值点、 零点的一般步骤;2、熟练掌握简单复合函数的求导,并能根据导函数画出原函数图像,深化对导数的理解。 学生自主完成,并 总结求解步骤,注意事项。 二、列表比较常考函数的图像与性质:(课堂完成) 教师:通过以上5个题目我们发现,含对数指数的复合函数出现的频率很高,事实上在高考中考查的也很频繁,下面我们对这几类函数进行单独研究,后期就会有意想不到收获。 学生:独立完成下表,小组内部讨论结论是否正确。 设计意图:针对高考的热点问题进行练习,先追根溯源,找到构成问题的“基本元素”,再由简到繁,引导学生体会解题思路,有意识去提炼总结,提高学生解题能力的同时增强自信心。原函数 x xe y =x e y x = x e x y = x x y ln =x x y ln = x x y ln = 定义域

第四章----中值定理与导数的应用--习题及答案(1)

第四章 中值定理与导数的应用 一、填空 1、若()x x x f -=3在[0,3]上满足罗尔定理的ξ值为 。 2、若2 1 cos 1sin lim 20=-→kx x x ,则k = 。 3、=a ,=b 时,点(1,3)为2 3bx ax y +=的拐点。 4、3+=x e x 在),(+∞-∞内的实根的个数为 。 5、函数)1ln(2 x x y +-=的单调递增区间 ,在[-1,1]中最大值为 ,最小值为 。 6、函数23 )5()(-=x x x f 的驻点为 ,其极大值为 ,极小值为 。 7、若5)(cos sin lim 0=--→b x a e x x x ,则=a ,=b 。 8、x x x y )1 1(-+=的水平渐近线为 。 二、选择 1、设R x x x x f ∈+-='),12)(1()(,则在)4 1 ,21(- 内)(x f 是( ) A 、单调增加,图形上凹 B 、单调减少,图形上凹 C 、单调增加,图形下凹 D 、单调减少,图形下凹 2、设函数)(x f 在[0,1]上可导,0)(>'x f 并且0)1(,0)0(>

导数及其应用单元测试(带答案)

第三章导数及其应用单元测试 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后 的括号内(本大题共12个小题,每小题5分,共60分)。 1.函数y=x+2cosx在[0,]上取得最大值时,x的值为()A.0 B.C.D. 2.函数的单调递减区间是() A.B.C.D. 3.若函数的图象的顶点在第四象限,则函数的图象是 () 4.点P在曲线 上移动,设 点P处切线倾斜角为α, 则α的取值范围是 ()A.[0,] B.0,∪[,π C.[,πD.(, 5.已知(m为常数)在上有最大值3,那么此函数在 上的最小值为() A.B.C.D. 6.函数的单调递增区间是()A. B.(0,3) C.(1,4) D. 7.已知函数时,则()

A.B. C.D. 8.设函数的导函数,则数列的前n项和是 ()A.B.C.D. 9.设f(x)=x3+ax2+5x+6在区间[1,3]上为单调函数,则实数a的取值范围为()A.[-,+∞] B.(-∞,-3) C.(-∞,-3)∪[-,+∞] D.[-,] 10.函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)<0,设a=f(0),b= f(),c= f(3),则() A .a<b<c B.c<a<b C.c<b<a D.b<c<a 11.曲线在点处的切线与坐标轴围成的三角形面积为() A.B.C.D. 12.如图所示的是函数的大致图象,则等于()A.B. C.D.

第Ⅱ卷 二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)。 13.设是偶函数,若曲线在点处的切线的斜率为1,则该曲线在处的切线的斜率为_________. 14.已知曲线交于点P,过P点的两条切线与x轴分别交于A,B两点,则△ABP的面积为; 15.函数在定义域内可导,其图象如图,记的导函数为, 则不等式的解集为_____________ 16.若函数f(x)=(a>0)在[1,+∞)上的最大值为,则a的值为 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。 17.(12分)已知函数f(x)=x3-2ax2+3x(x∈R). (1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程; (2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.

中值定理与导数的应用(包括题)

第三章 中值定理与导数的应用 一、 基本内容 (一) 中值定理 1.罗尔定理 如果函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,且)()(b f a f =,那么在),(b a 内存在一点ξ,使得0)(='ξf . For personal use only in study and research; not for commercial use 2.拉格朗日中值定理 如果函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,那么在),(b a 内至少有一点ξ,使得 a b a f b f f --= ') ()()(ξ 其微分形式为 x f x f x x f ??'=-?+)()()(ξ 这里10,<

(2)在点a 的某去心邻域内,)(x f '及)(x g '都存在且0)(≠'x g ; (3)) () (l i m x g x f a x ''→存在(或为无穷大),那么 ) () (lim )()(lim x g x f x g x f a x a x ''=→→ 2.法则2 如果函数)(x f 及)(x g 满足条件: (1)0)(lim =∞ →x f x , 0)(lim =∞ →x g x ; (2)当N x >时,)(x f '及)(x g '都存在且0)(≠'x g ; (3) ) () (lim x g x f x ''∞ →存在(或为无穷大); 那么 ) ()(lim )()(lim x g x f x g x f x x ''=∞→∞ → 以上两个法则是针对00型未定式. 对∞ ∞ 型未定式,也有相应的两个法则. 对∞?0、∞-∞、00、∞1、0∞型未定式,可以通过变形将其转化成00或∞ ∞ 型来求. (三) 泰勒公式 1.带拉格朗日余项的泰勒公式 设函数)(x f y =在0x 的某邻域),(0δx U 内有1+n 阶导数,那么在此邻域内有 +-''+ -'+=200000)(2) ())(()()(x x x f x x x f x f x f ! )()(!) (00)(x R x x n x f n n n +-+ 10)1()()! 1() ()(++-+=n n n x x n f x R ξ 其中ξ在0x 和x 之间,)(x R n 是拉格朗日余项. (四) 函数的单调性 函数单调性的判别法 设函数)(x f y =在],[b a 上连续,在),(b a 内可导. (1)如果在),(b a 内0)(>'x f ,那么函数)(x f y =在],[b a 上单调增加;

《导数及其应用》测试卷

导数及其应用测试卷 一、单项选择题(本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是最符合题目要求的。) 1.函数()2 sin f x x =的导数是() A.2sin x B.2 2sin x C.2cos x D.sin2x 2.已知()2 1 cos 4 f x x x =+,() ' f x为() f x的导函数,则() ' f x的图像是() 3.若2 x=-是函数21 ()(1)x f x x ax e- =+-的极值点,则() f x的极小值为() A.1 - B.3 2e- - C.3 5e- D.1 4.若曲线() ln y x a =+的一条切线为y ex b =+,其中,a b为正实数,则 2 e a b + + 的取值范围是() A. 2 , 2 e e ?? ++∞ ? ?? B.[) ,e+∞ C.[) 2,+∞ D.[) 2,e 5.已知函数2x y=的图象在点) , (2 x x处的切线为l,若l也与函数x y ln =,)1,0( ∈ x的 图象相切,则 x必满足() A. 2 1 < ′对x R ∈恒成立,则下列函数在实数集内一定是增函数的为() A.() f x B.() xf x C.() x e f x D.() x xe f x 7.已知函数 211 ()2() x x f x x x a e e --+ =-++ 有唯一零点,则a=() A. 1 2 - B. 1 3C. 1 2D.1

导数及其应用 复习课 教案

导数及其应用复习课教案 【教材分析】 导数及其应用内容分为三部分:一是导数的概念;二是导数的运算;三是导数的应用. 先让学生通过大量实例,经历有平均变化率到瞬时变化率刻画现实问题的过程,理解导数的概念及其几何意义,然后通过定义求几个简单函数的导数,从而得出导数公式及四则运算法则,最后利用导数的知识解决实际问题. 该部分共分三节,第三节则是“导数的应用”,内容包括利用导数求切线方程;判断函数的单调性;利用导数研究函数的最值、极值;导数的实际应用. 在“利用导数求切线方程”中介绍了利用导函数的几何意义求切线的斜率,进而求解切线方程;在“利用导数判断函数的单调性”中介绍了利用求导的方法来判断函数的单调性;在“利用导数研究函数的极值”中介绍了利用函数的导数求极值和最值的方法;在“导数的实际应用”中主要介绍了利用导数知识解决实际生活中的最优化问题. 【考纲解读】 导数的概念及其运算是导数应用的基础,这是高考重点考查的内容.考查方式以客观题为主,主要考查: 1.导数的几何意义,导数的四则运算及利用导数研究函数的单调性,求函数的极值、最值等. 2.与直线、圆锥曲线、分式、含参数的一元二次不等式等结合在一起考查,题型多样,属中高档题目. 【教学目标】 1.能熟练应用导数的几何意义求解切线方程 2.掌握利用导数知识研究函数的单调性及解决一些恒成立问题 【教学重点】 理解并掌握利用导数知识研究函数的单调性及解决一些恒成立问题 【教学难点】 原函数和导函数的图像“互译”,解决一些恒成立问题 【学法】 本节课是在学习了导数的概念、运算、导数的应用的基础上来进行小结复习,学生已经了解了一些解题的基本思想和方法,应用导数的基本知识来解决实际问题对学生来说应该不会很陌生,所以对本节的学习应让学生能够多参与、多思考,培养他们的分析解决问题和解决问题的能力,提高应用所学知识的能力。 在课堂教学中,应该把以教师为中心转向以学生为中心,把学生自身的发展置于教育的中心位置,为学生创设宽容的课堂气氛,帮助学生确定适当的学习目标和达到目标的最佳途径,指导学生形成良好的学习习惯、掌握学习策略和发展原认知能力,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习。【教法】 数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是导数的应用的复习课,所以应让学生多参与,让其自主探究分析问题、解决问题,尝试归纳总结,然后由老

中值定理与导数习题

习题3 一、填空题 i 设孑心 好 m ,则yw=o 有 _________________________ 根,它们分别位于 区间; 2. 函数「'在〔?-上满足 拉格朗日定理条件的-■ ---------- 3 .函数了(兀2*与削+ *在区间卩总]上满足柯西定理条件的 4. 函数y = 在皿]上满足拉格朗日中值定理条件的 貝 In sin 3z hi ll ---- --- = ____________ 5. In sin 5x / W = -y 8.函数 的单调减区间是 ----------- 9.设」八在"可导,则「是在点心处取得极值的 ------------------------ 条 件; 2 10?函数■…亠:—二在工「及"=-取得极值,贝F ——? jf (尤)—工—2冒 6. hm (1 — x) tan ——= y ' 2 7. lim r-j-0 i (cos 1

11.函数」一二的极小值是 __________ ; /⑴二邑壬 12?函数'?1的单调增区间为_____________ 13. 函数的极小值点是" ----------------------- ; 14. 函数,二」——'?在一「一上的最大值为 ---------- ,最小值为------ 14. 函数他"-"+5在[-H]的最小值为------------------- ; 15. 设点」■是曲线2心:的拐点,则”-…八; 16. 曲线- J的下凹区间为------------- ,曲线的拐点为--------- ; 17. 曲线」一一‘-的上凹区间为 --------- ; 18. 曲线」一一?-的拐点为-------------- ; 19. 若/八是工的四次多项式函数,它有两个拐点' '':■ ■,并且在点 :二处的切线平行于艺轴,那么函数」八‘的表达式是----------------- ; 《2 20. 曲线“二玄+户任卩叔)的拐点为 -------------- ; y —----- 21. 曲线:「的水平渐近线的方程是 ------------------ ,垂直渐近线的方程是------------ ;

最新《导数及其应用》单元测试题(理科)

《导数及其应用》单元测试题(理科) (满分150分 时间:120分钟 ) 一、选择题(本大题共8小题,共40分,只有一个答案正确) 1.函数()2 2)(x x f π=的导数是( ) (A) x x f π4)(=' (B) x x f 24)(π=' (C) x x f 2 8)(π=' (D) x x f π16)(=' 2.函数x e x x f -?=)(的一个单调递增区间是( ) (A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,0 3.已知对任意实数x ,有()() ()(f x f x g x g x -=--=,,且0x >时,()0()f x g x ''>>,,则0x <时( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 4. =-+? dx x x x )1 11(322 1 ( ) (A)8 7 2ln + (B)872ln - (C)452ln + (D)812ln + 5.曲线1 2 e x y =在点2 (4e ),处的切线与坐标轴所围三角形的面积为( ) A. 2 9e 2 B.24e C.2 2e D.2 e 6.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( ) 7.已知二次函数2 ()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有

高中数学第三章导数及其应用习题课导数的应用学案苏教版选修1_1

高中数学第三章导数及其应用习题课导数的应用学案苏教版 选修1_1 学习目标 1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函数的单调性、极值与最值的综合应用. 知识点一函数的单调性与其导数的关系 定义在区间(a,b)内的函数y=f(x) 知识点二 解方程f′(x)=0,当f′(x0)=0时, (1)如果在x0附近的左侧________,右侧________,那么f(x0)是极大值. (2)如果在x0附近的左侧________,右侧________,那么f(x0)是极小值. 知识点三函数y=f(x)在[a,b]上最大值与最小值的求法 1.求函数y=f(x)在(a,b)内的极值. 2.将函数y=f(x)的________与端点处的函数值________比较,其中________的一个是最大值,________的一个是最小值. 类型一数形结合思想的应用 例1 已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是________. 反思与感悟解决函数极值与函数、导函数图象的关系时,应注意:(1)对于导函数的图象,重点考查导函数的值在哪个区间上为正,在哪

个区间上为负,在哪个点处与x轴相交,在交点附近导函数值是怎样变化的. (2)对于函数的图象,函数重点考查递增区间和递减区间,进而确定极值点. 跟踪训练1 设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是________.类型二构造函数求解 命题角度1 比较函数值的大小 例2 已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,f′(x)+<0,若a=f(),b=-f(-),c=(ln )f(ln ),则a,b,c的大小关系是________. 反思与感悟本例中根据条件构造函数g(x)=xf(x),通过g′(x)确定g(x)的单调性,进而确定函数值的大小,此类题目的关键是构造出恰当的函数. 跟踪训练2 设a=,b=,c=,则a,b,c的大小关系是________.命题角度2 求解不等式 例 3 定义域为R的可导函数y=f(x)的导函数f′(x),满足f(x)2ex的解集为________.反思与感悟根据所求结论与已知条件,构造函数g(x)=,通过导函数判断g(x)的单调性,利用单调性得到x的取值范围. 跟踪训练3 设函数f(x)是定义在R上的偶函数,f′(x)为其导函数.当x>0时,f(x)+x·f′(x)>0,且f(1)=0,则不等式x·f(x)>0的解集为________. 命题角度3 利用导数证明不等式 例4 已知x>1,证明不等式x-1>ln x.

相关主题
文本预览
相关文档 最新文档