桩基础课程设计计算书
- 格式:docx
- 大小:3.69 KB
- 文档页数:3
《基础工程》课程设计任务书(一)设计题目某宾馆,采用钢筋混凝土框架结构,基础采用柱下桩基础,首层柱网布置如附件所示,试按要求设计该基础。
(二)设计资料1. 场地工程地质条件场地岩土层按成因类型自上而下划分:1、人工填土层(Q m1);2、第四系冲积层(◎); 3、残积层(Q1);4、白垩系上统沉积岩层(K)。
各土(岩)层特征如下:1)人工填土层(c m1)杂填土:主要成分为粘性土,含较多建筑垃圾(碎砖、碎石、余泥等)。
本层重度为16kN/nt松散为主,局部稍密,很湿。
层厚 1.50m。
2)第四系冲积层(c a1)②-1淤泥质粉质粘土:灰黑,可塑,含细砂及少量碎石。
该层层厚 3.50m。
其主要物理力学性质指标值为:3 =44.36%; p = 1.65 g/cm3; e= 1.30 ; I L= 1.27 ; Es= 2.49MPa;C= 5.07kPa,© = 6.07 °。
承载力特征值取f ak=55kP&②-2粉质粘土:灰、灰黑色,软塑状为主,局部呈可塑状。
层厚 2.45m。
其主要物理力学性质指标值为:3 = 33.45%; p = 1.86 g/cm3; e= 0.918;l L=0.78;Es=3.00Mpa C=5.50kPa,①=6.55 °。
②-3粉质粘土:褐色,硬塑。
该层层厚 3.4m。
其主要物理力学性质指标值3为:3 = 38.00% ; p = 1.98 g/cm ; e= 0.60;I L=0.20; Es=10.2MPa。
3)第四系残积层(Qf)③-1粉土:褐红色、褐红色间白色斑点;密实,稍湿-湿。
该层层厚2.09m。
其主要物理力学性质指标值为: 3 = 17.50%; p = 1.99 g/cm3; e= 0.604 ; I L=0〜0.24 ; Es=16.5MPa;C= 41.24kPa;①=22.63 °。
4)基岩一白垩系上统沉积岩层(K)本场地揭露岩层为白垩系上统沉积岩层,岩性以粉砂岩为主。
TC6013塔吊桩基础计算书本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机混凝土基础技术规程》(JGJ187-2009)、《建筑桩基技术规范》(JGJ94-2008)、《混凝土结构设计规范》(GB50010-2010)、《钢结构设计规范》(GB50017-2003)、《建筑地基基础设计规范》(GB 50007-2011)、《建筑结构荷载规范》(GB 50009-2012)等编制。
一、参数信息塔吊型号:QTZ100-TC6013, 自重(包括压重)F1=744.8kN,最大起重荷载F=80.0kN,塔吊倾覆力距M=1000.0kN.m,塔吊起重高度H=120.0m,塔身宽度B=1.6m,承台长度Lc或宽度Bc=5.00m,承台厚度Hc=1.40m,桩直径或方桩边长 d=0.40m,桩间距a=4.20m,基础埋深D=0.00m,保护层厚度:50.00mm,承台混凝土强度等级:C35,承台钢筋级别:HRB335,桩混凝土强度等级:C35,桩钢筋级别:HRB335,承台箍筋间距S=400.00mm。
二、荷载的计算1.自重荷载及起重荷载(1)塔机自重标准值:F kl=744.80kN(2)基础及附加构造自重标准值:G k = 25.0×Bc×Bc×Hc+0.00= 25.0×5.00×5.00×1.40+0.00 = 875.00kN;(3)起重荷载标准值:F qk=80.00kN1.风荷载计算(1)非工作状态下塔机塔身截面对角线方向所受风荷载标准值:塔机所受风线荷载标准值q sk'=0.8aβzμsμz W0a0BH/H=0.8×1.2×1.85×1.60×0.99×0.50×0.35×1.60=0.79kN/m塔机所受风荷载水平合力标准值F vk'=q sk'×H = 0.79×120.00 = 94.52kN标准组合的倾翻力矩标准值M k = 1000.00kN.m三、桩基承载力验算1.桩基竖向承载力验算取最不利的非工作状态荷载进行验算。
工程桩基础设计计算书 YUKI was compiled on the morning of December 16, 2020基础工程课程设计计算书系别:土木工程系姓名:盛懋目录1 .设计资料 (3)1.1 建筑物场地资料 (3)2 .选择桩型、桩端持力层、承台埋深 (3)2.1 选择桩型 (3)2.2 选择桩的几何尺寸以及承台埋深 (3)3 .确定单桩极限承载力标准值 (4)3.1 确定单桩极限承载力标准值 (4)4 .确定桩数和承台底面尺寸 (4)5 .确定复合基桩竖向承载力设计值及群桩承载力和 (5)5.1 四桩承台承载力计算 (5)6 .桩顶作用验算 (6)6.1 四桩承台验算 (6)7 .桩基础沉降验算 (6)7.1 桩基沉降验算 (6)8 .桩身结构设计计算 (9)8.1 桩身结构设计计算 (9)9 .承台设计 (10)9.1 承台弯矩计算及配筋计算 (10)9.2 承台冲切计算 (11)9.3承台抗剪验算 (12)9.4 承台局部受压验算 (12)1. 工程地质资料及设计资料1) 地质资料某建筑物的地质剖面及土性指标表1-1所示。
场地地层条件:粉质粘土土层取q sk=60kpa,q ck=430kpa;饱和软粘土层q sk=26kpa;硬塑粘土层q sk=80kpa,q pk=2500kpa;设上部结构传至桩基顶面的最大荷载设计值为:V=2050kn,M=300knm,H=60kn。
选择钢筋混凝土打入桩基础。
柱的截面尺寸为400mm600mm。
已确定基础顶面高程为地表以下0.8m,承台底面埋深1.8m。
桩长8.0m。
土层的主要物理力学指标表1-1编号名称HmW%?kn/m3?°S r e I p I L G sE smpaf akkpaa1-2mpa-11 杂填土 1.8 16.02 粉质粘土 2.0 26.519.020 0.90.8 12 0.6 2.7 8.51903 饱和软粘土4.4 42 18.316.51.01.1 18.5 0.982.711100.964 硬塑粘土>10 17.621.828 0.980.5120.1 0.252.78132572)设计内容及要求需提交的报告:计算说明书和桩基础施工图:(1)单桩竖向承载力计算(2)确定桩数和桩的平面布置(3)群桩中基桩受力验算(4)群桩承载力和(5)基础中心点沉降验算(桩基沉降计算经验系数为1.5)(6)承台结构设计及验算2 .选择桩型、桩端持力层、承台埋深1)、根据地质勘察资料,确定第4层硬塑粘土为桩端持力层。
塔吊四桩基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。
一. 参数信息二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值F k1=1229.46kN2) 基础以及覆土自重标准值G k=7.45×7.45×1.70×25=2358.85625kN3) 起重荷载标准值F qk=45.9kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2)W k=0.8×1.59×1.95×1.3565×0.2=0.67kN/m2q sk=1.2×0.67×0.35×2.1=0.59kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.59×46.65=27.69kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×27.69×46.65=645.82kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.80kN/m2)W k=0.8×1.7×1.95×1.3565×0.80=2.88kN/m2q sk=1.2×2.88×0.35×2.10=2.54kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=2.54×46.65=118.41kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×118.41×46.65=2762.01kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k=-2633.6+0.9×(3150+645.82)=782.64kN.m非工作状态下,标准组合的倾覆力矩标准值M k=-2633.6+2762.01=128.41kN.m三. 桩竖向力计算非工作状态下:Q k=(F k+G k)/n=(1229.46+2358.86)/4=897.08kNQ kmax=(F k+G k)/n+(M k+F vk×h)/L=(1229.46+2358.85625)/4+Abs(128.41+118.41×1.70)/8.70=934.99kNQ kmin=(F k+G k-F lk)/n-(M k+F vk×h)/L=(1229.46+2358.85625-0)/4-Abs(128.41+118.41×1.70)/8.70=859.16kN工作状态下:Q k=(F k+G k+F qk)/n=(1229.46+2358.86+45.9)/4=908.55kNQ kmax=(F k+G k+F qk)/n+(M k+F vk×h)/L=(1229.46+2358.85625+45.9)/4+Abs(782.64+27.69×1.70)/8.70=1003.97kN Q kmin=(F k+G k+F qk-F lk)/n-(M k+F vk×h)/L=(1229.46+2358.85625+45.9-0)/4-Abs(782.64+27.69×1.70)/8.70=813.14kN四. 承台受弯计算1. 荷载计算不计承台自重及其上土重,第i桩的竖向力反力设计值:工作状态下:最大压力 N i=1.35×(F k+F qk)/n+1.35×(M k+F vk×h)/L=1.35×(1229.46+45.9)/4+1.35×(782.64+27.69×1.70)/8.70=559.24kN非工作状态下:最大压力 N i=1.35×F k/n+1.35×(M k+F vk×h)/L=1.35×1229.46/4+1.35×(128.41+118.41×1.70)/8.70=466.13kN2. 弯矩的计算依据《塔式起重机混凝土基础工程技术规程》第6.4.2条其中 M x,M y1──计算截面处XY方向的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i──不计承台自重及其上土重,第i桩的竖向反力设计值(kN)。
桥梁桩基础课程设计桥梁桩基础课程设计一、恒载计算(每根桩反力计算)1、上部结构横载反力N1 N1=12⨯2350=1175kN 2、盖梁自重反力N2 N2=12⨯350=175kN 3、系梁自重反力N312⨯25 ⨯3.5 ⨯0.8 ⨯1=35kN 4、一根墩柱自重反力N4KN N 94.222)1025(5.01.5255.0)1.54.13(224=-⨯⨯⨯+⨯⨯⨯-=ππ(低水位)KN N 47.195255.08.4155.06.8224=⨯⨯⨯+⨯⨯⨯=ππ (常水位)5、桩每延米重N5(考虑浮力) m KN N /96.16152.1425=⨯⨯=π二、活载反力计算1、活载纵向布置时支座最大反力⑴、公路二级:7.875/k q kN m = 193.2k P kN =Ⅰ、单孔布载 55.57822.1932875.74.24=⨯+⨯=)(R Ⅲ、双孔布载 24.427.875(193.2)2766.3082R kN ⨯⨯=+⨯=(2)、人群荷载Ⅰ、单孔布载 113.524.442.72R kN =⨯⨯=1、计算墩柱顶最大垂直反力R 组合Ⅰ:R= 恒载 +(1+u )汽ϕ∑iiyP +人ϕql= 1175+175+(1+0.2)⨯1.245⨯766.308+1.33⨯85.4 =2608.45kN (汽车、人群双孔布载)2、计算桩顶最大弯矩⑴、计算桩顶最大弯矩时柱顶竖向力 R= 1N +2N +(1+u )汽ϕ∑i i y P + 人ϕql 21 = 1175+175+1.2⨯1.245⨯578.55+1.33⨯42.7= 2271.14kN (汽车、人群单孔布载)⑵、计算桩顶(最大冲刷线处)的竖向力0N 、水平力0Q 和弯矩0M0N = max R +3N + 4N (常水位)= 2608.45+35+195.47=2838.92 kN0Q = 1H + 1W + 2W= 22.5+8+10=40.5 kN0M = 14.71H + 14.051W + 11.252W + 0.3活max R= 14.7⨯22.5+14.05⨯8+11.25⨯10+0.3⨯(2608.45-1175-175) = 933.185kN.m活max R ——组合Ⅰ中活载产生的竖向力。
(TC7020)塔吊四桩基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。
二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值F k1=1260kN2) 基础以及覆土自重标准值G k=4.5×4.5×1.60×25=810kN3) 起重荷载标准值F qk=160kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m 2)W k=0.8×1.59×1.95×1.2×0.2=0.60kN/m2q sk=1.2×0.60×0.35×2=0.50kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.50×46.50=23.25kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×23.25×46.50=540.62kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.35kN/m 2)W k=0.8×1.62×1.95×1.2×0.35=1.06kN/m2q sk=1.2×1.06×0.35×2.00=0.89kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.89×46.50=41.46kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×41.46×46.50=963.93kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k=1639+0.9×(1400+540.62)=3385.55kN.m非工作状态下,标准组合的倾覆力矩标准值M k=1639+963.93=2602.93kN.m三. 桩竖向力计算非工作状态下:Q k=(F k+G k)/n=(1260+810.00)/4=517.50kNQ kmax=(F k+G k)/n+(M k+F vk×h)/L=(1260+810)/4+Abs(2602.93+41.46×1.60)/4.95=1056.85kNQ kmin=(F k+G k-F lk)/n-(M k+F vk×h)/L=(1260+810-0)/4-Abs(2602.93+41.46×1.60)/4.95=-21.85kN工作状态下:Q k=(F k+G k+F qk)/n=(1260+810.00+160)/4=557.50kNQ kmax=(F k+G k+F qk)/n+(M k+F vk×h)/L=(1260+810+160)/4+Abs(3385.55+23.25×1.60)/4.95=1249.11kNQ kmin=(F k+G k+F qk-F lk)/n-(M k+F vk×h)/L=(1260+810+160-0)/4-Abs(3385.55+23.25×1.60)/4.95=-134.11kN四. 承台受弯计算1. 荷载计算不计承台自重及其上土重,第i桩的竖向力反力设计值:工作状态下:最大压力 N i=1.35×(F k+F qk)/n+1.35×(M k+F vk×h)/L=1.35×(1260+160)/4+1.35×(3385.55+23.25×1.60)/4.95=1412.92kN 最大拔力 N i=1.35×(F k+F qk)/n-1.35×(M k+F vk×h)/L=1.35×(1260+160)/4-1.35×(3385.55+23.25×1.60)/4.95=-454.42kN 非工作状态下:最大压力 N i=1.35×F k/n+1.35×(M k+F vk×h)/L=1.35×1260/4+1.35×(2602.93+41.46×1.60)/4.95=1153.38kN最大拔力 N i=1.35×F k/n-1.35×(M k+F vk×h)/L=1.35×1260/4-1.35×(2602.93+41.46×1.60)/4.95=-302.88kN2. 弯矩的计算依据《塔式起重机混凝土基础工程技术规程》第6.4.2条其中 M x,M y1──计算截面处XY方向的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i──不计承台自重及其上土重,第i桩的竖向反力设计值(kN)。
桥台桩基础设计计算书是桥梁工程的关键文献之一。
它是工程设计阶段的基础,直接影响到桥梁工程的质量和安全性能。
设计计算书的编制应严谨、准确、可读性好,才能保证工程的顺利实施。
桥台桩基础是一种重要的桥梁基础形式,在桥梁工程中起到了至关重要的作用。
它不仅承载着桥梁的重量,还能在地震等自然灾害中发挥保护作用。
因此,设计计算书是该基础形式的核心部分,是判断该基础能否胜任工程任务的标准之一。
编制时,需要对各项参数进行详细的计算。
常规参数包括桥梁车道宽度、被动土压力、施工荷载、桥墩及承台尺寸、桥墩及承台周围土壤等。
针对这些参数,需要制定详尽的计算方法进行量化。
首先,对桥梁车道宽度进行考虑。
桥梁车道宽度是影响桥梁结构大小的主要因素之一。
当车道宽度越大,桥梁所需的承重能力也越大,桥台桩基础所要承受的荷载也越大。
因此,在设计计算书中,需要考虑车道宽度对桥梁结构和桥台桩基础的影响,确定桥梁车道的最佳宽度。
其次,需要考虑被动土压力。
被动土压力是桥梁结构设计中的一个很重要的参数。
它主要是指挡土墙身后的土壤对挡土墙及其背后深层土壤产生的单位长度侧向隔离力。
在桥梁工程中,被动土压力不仅是桥面结构的重要承重组成部分,还能有效保障桥墩结构的稳定性和整体性,因此,在设计计算书中,被动土压力的计算显得尤为重要。
然后,需要考虑施工荷载。
施工荷载是指施工期间桥梁结构所承受的荷载,包括施工机械的重量、施工人工的重量以及其他不可预估的荷载。
在中,需要针对这些荷载进行详细的计算,以确保桥梁工程施工期间的安全性。
此外,还需要考虑桥墩及承台尺寸的大小。
桥墩及承台是桥台桩基础的核心组成部分,在设计计算书中,需要准确计算出其尺寸大小,以保证桥梁结构的稳定性和整体性。
最后,需要对桥墩及承台周围的土壤进行考虑。
桥墩及承台周围的土壤是桥梁承重的主要状况之一。
需要在设计计算书中对其进行详细的计算,以便确保桥梁在使用过程中的稳定性和安全性。
综上所述,的编制是桥梁工程设计的重点部分。
塔吊四桩基础计算书品茗软件大厦工程;工程建设地点:长沙市芙蓉路新建西路口;属于*****结构;地上***层;地下***层;建筑高度:***m;标准层层高:***m ;总建筑面积:***平方米;总工期:***天。
本工程由*****房开公司投资建设,*****设计院设计,******勘察单位地质勘察,*****监理公司监理,****施工单位组织施工;由***担任项目经理,***担任技术负责人。
本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《地基基础设计规范》(GB50007-2002)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《混凝土结构设计规范》(GB50010-2002)、《建筑桩基技术规范》(JGJ94-2008)等。
一、塔吊的基本参数信息塔吊型号:QTZ63,塔吊起升高度H:101.000m,塔身宽度B:2.5m,基础埋深D:1.500m,自重F1:450.8kN,基础承台厚度Hc:1.000m,最大起重荷载F2:60kN,基础承台宽度Bc:5.000m,桩钢筋级别:HRB335,桩直径或者方桩边长:0.800m,桩间距a:4m,承台箍筋间距S:200.000mm,承台混凝土的保护层厚度:50mm,承台混凝土强度等级:C30;额定起重力矩是:630kN·m,基础所受的水平力:30kN,标准节长度:2.5m,主弦杆材料:角钢/方钢, 宽度/直径c:120mm,所处城市:湖南长沙市,基本风压ω0:0.35kN/m2,地面粗糙度类别为:C类有密集建筑群的城市郊区,风荷载高度变化系数μz:2.03 。
二、塔吊基础承台顶面的竖向力和弯矩计算塔吊自重(包括压重)F1=450.80kN;塔吊最大起重荷载F2=60.00kN;作用于桩基承台顶面的竖向力F k=F1+F2=510.80kN;1、塔吊风荷载计算依据《建筑结构荷载规范》(GB50009-2001)中风荷载体型系数:地处湖南长沙市,基本风压为ω0=0.35kN/m2;查表得:荷载高度变化系数μz=2.03;挡风系数计算:φ=[3B+2b+(4B2+b2)1/2]c/(Bb)=[(3×2.5+2×2.5+(4×2.52+2.52)0.5)×0.12]/(2.5×2.5)=0.347;因为是角钢/方钢,体型系数μs=2.305;高度z处的风振系数取:βz=1.0;所以风荷载设计值为:ω=0.7×βz×μs×μz×ω0=0.7×1.00×2.305×2.03×0.35=1.147kN/m2;2、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:Mω=ω×φ×B×H×H×0.5=1.147×0.347×2.5×101×101×0.5=5078.007kN·m;M kmax=Me+Mω+P×h c=630+5078.007+30×1=5738.01kN·m;三、承台弯矩及单桩桩顶竖向力的计算1. 桩顶竖向力的计算依据《建筑桩技术规范》(JGJ94-2008)的第5.1.1条,在实际情况中x、y轴是随机变化的,所以取最不利情况计算。
桩基础计算报告书计算人校对人:审核人:计算工具:PKPM软件开发单位:中国建筑科学研究院设计单位:灌注桩计算说明书1.支架计算组件钢结构支架要在37m/s(基本风压0.85KN/m2)的风载作用下正常使用,应使其主要构件满足强度要求、稳定性要求,即横梁、斜梁、斜撑、拉杆、立柱在风载作用下不失稳且立柱弯曲强度满足要求。
组件自重19.5kg。
支架计算最大柱底反力:Fx max=5.6KN,Fy max=0.9KN,Fz max=12.1KNFx min= -6.9KN, Fy min= -0.9KN,Fz min= -7.29KN2.灌注桩设计2.1基桩设计参数成桩工艺: 干作业钻孔桩承载力设计参数取值: 根据建筑桩基规范查表孔口标高0.00 m桩顶标高0.30 m桩身设计直径: d = 0.25m桩身长度: l = 1.60 m根据《建筑地基基础设计规范》GB50007-2011,设计使用年限不少于50年时,灌注桩的混凝土强度不应低于C25;所以本次设计中混凝土强度选用C25。
灌注桩纵向钢筋的配置为3跟根Ф6,箍筋采用Ф4钢筋,箍筋间距选择300~400。
2.2岩土设计参数2.3设计依据《建筑桩基技术规范》(JGJ 94-2008) 以下简称桩基规范 《建筑地基基础设计规范》GB50007-2011 《混凝土结构设计规范》GB50010-2010 《建筑结构载荷规范》GB50009-2012 《钢结构设计规范》GB50017-2003《混凝土结构工程施工质量验收规范》GB50204-2002(2011年版) 《钢结构工程施工质量验收规范》GB50205-2001 2.4单桩竖向承载力估算当根据土的物理指标与承载力参数之间的经验关系确定单桩竖向极限承载力标准值时,宜按下式估算:式中——桩侧第i 层土的极限阻力标准值,按JGJ94-2008中表5.3.5-1取值,吐鲁番当地土质为角砾,属中密-密实状土层,查表得出干作业钻孔桩的极限侧阻力标准值为135~150;——极限端阻力标准值,按JGJ94-2008中表5.3.5-2取值,吐鲁番当地土质为角砾,属中密-密实状土层,查表得出干作业钻孔桩的极限端阻力标准值为4000~5500;μ——桩身周长; ——桩周第i 层土的厚度; ——桩端面积。
基础工程桩基础设计计算书一 .设计任务1.1工程设计概况某城市新区拟建一栋15层框架结构的办公楼, 其场地位于临街地块居中部位, 无其它邻近建筑物, 地层层位稳定, 场地地质剖面及桩基计算指标见工程地质资料。
试设计柱下独立承台桩基础。
(1)地基基础设计等级为乙级;(3)柱的截面尺寸为: 450mm×600mm;(4)承台底面埋深: d=2.0m(也可自行按规范要求选定);(5)根据地质资料以及上部荷载情况, 自行选择桩型、桩径和桩长;(6)桩基沉降量容许值: [s]= 200mm或查相关规范确定;(7)桩的类型: 预制桩或者灌注桩(自行斟酌设定);(8)沉桩方式: 静压或者打入(自行斟酌设定)。
(9)方案要求尽量先选择以粉质粘土为持力层, 若不满足要求, 再行选择卵石或岩石层作为持力层, 并作简要对比说明。
1.2荷载情况已知上部框架结构由柱子传至承台顶面的荷载效应标准组合: 轴力F=7900kN, 弯矩Mx=160kN·m, My=710kN。
(其中, Mx、My分别为沿柱截面短边和长边方向作用)1.3工程地质资料建筑场地土层按其成因、土性特征和物理力学性质的不同, 自上而下划分为5层, 地质剖面与桩基计算指标见表1, 勘察期间测得地下水水位埋深为2.2m。
地下水水质分析结果表明, 本场地地下水无腐蚀性。
1.4设计内容及要求(1)确定单桩竖向承载力特征值;(2)确定桩数, 桩的平面布置, 承台平面尺寸, 单桩承载力验算;(3)若必要, 进行软弱下卧层承载力验算;(4)桩基沉降验算;(5)桩身结构设计及验算;(6)承台结构设计及验算;(7)桩及承台施工图设计: 包括桩平面布置图、桩身配筋图、承台配筋图、节点详图、钢筋图、钢筋表和必要的施工说明;表1 地质剖面与桩基计算指标1.5建议的设计步骤及涵盖内容(1)列出设计资料(包括上部结构资料、建筑场地资料);(2)选择桩型、桩端持力层和承台埋深;(3)确定单桩机选承载力标准值;(4)确定桩数和承载底面尺寸; (5)确定群桩竖向承载力设计值; (6)桩基中单桩荷载验算;(7)桩基软弱下卧层和沉降验算(若不须验算桩基软弱下卧层沉降, 建议另行设定条件自行练习);(8)承台设计(包括柱对承台以及角桩对承台的冲切计算、承台斜截面抗剪验算及承台配筋等)。
六安华邦·新华城一期 2#地块 1#塔吊专项施工方案目录第一章工程概况--------------------------------------------------- 2一、工程概况--------------------------------------------------- 2二、塔吊选型--------------------------------------------------- 2三、塔吊平面位置----------------------------------------------- 3四、地质条件--------------------------------------------------- 4第二章编制依据--------------------------------------------------- 4第三章施工计划--------------------------------------------------- 5一、材料与设备计划--------------------------------------------- 5第四章施工工艺技术----------------------------------------------- 5一、技术参数--------------------------------------------------- 5二、施工工艺流程----------------------------------------------- 6三、施工方法--------------------------------------------------- 6四、检查验收--------------------------------------------------- 6第五章计算书----------------------------------------------------- 8第六章相关图---------------------------------------------------- 151第一章工程概况一、工程概况1、工程基本情况工程名称六安华邦新华城一期2#地块1#楼工程地点六安市建筑面积(m2) 126000 建筑高度(m) 110总工期(天)520 主体结构框剪地上层数33 地下层数 1标准层层高(m)2.9 其它主要层高(m) 0建设单位六安华邦新华房地产有限公司设计单位深圳建筑设计研究院施工单位江苏省苏中建设集团股份有限公司监理单位安徽省志诚建设工程咨询有限公司有限公司项目经理黄金凤总监理工程师石尚铭技术负责人丁庆宏专业监理工程师徐启海二、塔吊选型本工程选用1台塔吊为浙江省建机集团生产的QTZ80(ZJ5710)塔机工作级别A4塔机利用等级U4塔机载荷状态Q2机构工作级别起升机构M5 回转机构M4 牵引机构M3起升高度m 倍率独立式附着式a=2 40.5 121.5 a=4 40.5 602最大起重量t 6工作幅度m 最小幅度 2.5 最大幅度57起升机构倍率 2 4起重量t 1.5 3 3 3 6 6 速度m/min 80 40 8.5 40 20 4.3 电机功率KW 24/24/5.4回转机构回转速度r/min 0.6 电机功率KW 2×2.2牵引机构牵引速度m/min 40/20 电机功率KW 3.3/2.2顶升机构顶升速度m/min 0.6电机功率KW 5.5工作压力MPa 20总功率KW 31.7(不含顶升机构电机)平衡重重量起重臂长m 57 55 52 50 47 45 重量t 13.32 12.52 12.3 11.5 11.02 10.22整机自重t 独立式32.52 32.31 32.14 31.96 31.78 31.6 附着式68.14 67.93 67.76 67.58 67.4 67.23工作温度°C -20~50°C设计风压Pa顶升工况工作状况非工作状况最高处100 最高处2500~20m 80020~100m 1100大于100m 1300塔机固定在基础上,在塔机未采用附着装置前,对基础产生的载荷值。
QTZ5013型塔吊桩基础计算书一. 参数信息塔吊型号QTZ63(5013)主要部件重量如下表:即塔吊自重(包括压重)F1=67221.2=.9659.22kN,最大起重荷载80665⨯1000÷F2=846=⨯kN.980665.58塔吊倾覆力距M=1832.01kN.m,塔吊起重高度H=117.00m,塔身宽度B=1.6m 混凝土强度:C35,钢筋级别:Ⅱ级,承台长度Lc或宽度Bc=5.00m桩直径d=0.80m,桩间距a=3.40m,承台厚度Hc=1.20m基础埋深D=0.00m,承台箍筋间距S=150mm,保护层厚度:50mm二. 塔吊基础承台顶面的竖向力与弯矩计算1. 塔吊自重(包括压重)F1=659.22KN2. 塔吊最大起重荷载F2=58.84kN作用于桩基承台顶面的竖向力F=1.2×(F1+F2)=863.06kN塔吊的倾覆力矩M=1.4×1832.01=2564.81kN.m三.矩形承台弯矩及单桩桩顶竖向力的计算A Axy图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算M ZF----基础顶面所受垂直力F h----基础顶面所受水平力M ----基础所受倾翻力矩M Z----基础所受扭矩塔吊基础受力示意图F hFM。
1. 桩顶竖向力的计算i依据《建筑桩技术规范》JGJ94-94的第5.1.1条。
其中 n ──单桩个数,n=4;F ──作用于桩基承台顶面的竖向力设计值,F=863.06kN ;G ──桩基承台的自重G=1.2×(25×Bc ×Bc ×Hc/4+20×Bc ×Bc ×D/4)= 1.2×(25×5.00×5.00×1.20+20×5.00×5.00×0.00)=900.00kN ;Mx,My ──承台底面的弯矩设计值,取2564.81kN.m ; xi,yi ──单桩相对承台中心轴的XY 方向距离a/2=1.90m ; Ni ──单桩桩顶竖向力设计值(kN); 经计算得到单桩桩顶竖向力设计值,最大压力:N=(863.06+900.00)/4+2564.81×1.90/(4× 1.902)=778.24kN 。
河北农业大学现代科技学院《基础工程》课程设计任务书学部:工程技术学部专业:土木工程班级:姓名:河北农业大学2017年6月12日一、设计目的《基础工程》课程设计是在学习《土力学与基础工程》和《混凝土结构原理》的基础上,应用所学的专业知识独立完成基础工程的设计任务。
其目的是培养学生综合应用基础理论和专业知识的能力,同时培养学生独立分析和解决基础工程实际设计问题的能力。
本次任务主要是通过课程设计,对建筑工程桩基础设计的步骤和具体内容有较全面的了解和掌握,熟悉桩基础的设计规范、规程、手册和工具书。
二、设计题目:某办公楼桩基础设计三、设计资料1、工程概况某办公楼,框架结构,柱下拟采用桩基础。
柱尺寸400mm×400mm,柱网平面布置如图1所示。
室外地坪标高同自然地面,室内外高差500mm。
上部结构传至柱底的荷载效应标准组合和基本组合值分别见表1、表2,表中弯矩、水平力的作用方向均为横轴方向。
各个班要求计算的柱号如表3所示。
每个班分成三个组,每个组同学根据本组柱号荷载值和学号计算自己的设计荷载值。
表1 柱底荷载效应标准组合值图1 柱网平面布置表3 土木1~4班计算的柱号分配表2、工程与水文地质条件建筑场地平整,地层及物理力学参数见表3。
场地抗震设防烈度为7度,场地内砂土不会发生液化现象。
拟建场区地下水位深度位于地表下3.5m,地下水对混凝土结构无腐蚀性。
表3 地基岩土物理力学参数3、其他本次设计规范采用《建筑桩基技术规范》JGJ94—2008,桩基础设计等级为乙级。
四、设计内容和成果1、设计计算书设计计算书包括以下内容:(1)确定桩的选型以及单桩竖向承载力特征值。
(2)确定桩的根数、布桩,确定承台平面尺寸。
(3)桩基础承载力。
(4)桩承台剖面尺寸以及抗冲切、抗剪和抗弯计算。
(5)桩身结构设计,包括混凝土强度等级、钢筋配置(钢筋型号、规格、数量、长度)、保护层厚度以及其他设计。
如设计为预制桩,还应进行吊装验算并满足构造配筋要求。
矩形板式桩基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规》GB50010-20103、《建筑桩基技术规》JGJ94-20084、《建筑地基基础设计规》GB50007-2011一、塔机属性二、塔机荷载1、塔机传递至基础荷载标准值2、塔机传递至基础荷载设计值三、桩顶作用效应计算承台混凝土保护层厚度δ(mm) 50 配置暗梁否承台底标高d1(m) -9.7基础布置图承台及其上土的自重荷载标准值:G k=bl(hγc+h'γ')=7.7×8.75×(1.5×25+0×19)=2526.562kN承台及其上土的自重荷载设计值:G=1.35G k=1.35×2526.562=3410.859kN 桩对角线距离:L=(a b2+a l2)0.5=(4.752+5.52)0.5=7.267m1、荷载效应标准组合轴心竖向力作用下:Q k=(F k'+G k)/n=(449+2526.562)/4=743.891kN荷载效应标准组合偏心竖向力作用下:Q kmax=(F k'+G k)/n+(M k'+F Vk'h)/L=(449+2526.562)/4+(1668+71×1.5)/7.267=988.069kN Q kmin=(F k'+G k)/n-(M k'+F Vk'h)/L=(449+2526.562)/4-(1668+71×1.5)/7.267=499.712kN2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F'+G)/n+(M'+F v'h)/L=(606.15+3410.859)/4+(2251.8+95.85×1.5)/7.267=1333.893kN Q min=(F'+G)/n-(M'+F v'h)/L=(606.15+3410.859)/4-(2251.8+95.85×1.5)/7.267=674.611kN 四、桩承载力验算1、桩基竖向抗压承载力计算桩身周长:u=πd=3.14×0.8=2.513m桩端面积:A p=πd2/4=3.14×0.82/4=0.503m2承载力计算深度:min(b/2,5)=min(7.7/2,5)=3.85mf ak=(3.85×50)/3.85=192.5/3.85=50kPa承台底净面积:A c=(bl-n-3A p)/n=(7.7×8.75-4-3×0.503)/4=15.466m2 复合桩基竖向承载力特征值:R a=ψuΣq sia·l i+q pa·A p+ηc f ak A c=0.8×2.513×(12.8×8+10.15×20+3.24×26+32.31×80)+900×0.503+0.1×50×15.466=6510.499kNQ k=743.891kN≤R a=6510.499kNQ kmax=988.069kN≤1.2R a=1.2×6510.499=7812.599kN满足要求!2、桩基竖向抗拔承载力计算Q kmin=499.712kN≥0不需要进行桩基竖向抗拔承载力计算!3、桩身承载力计算纵向普通钢筋截面面积:A s=nπd2/4=12×3.142×252/4=5890mm2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=1333.893kNψc f c A p+0.9f y'A s'=(0.75×16.7×0.503×106 + 0.9×(360×5890.486))×10-3=8208.593kNQ=1333.893kN≤ψc f c A p+0.9f y'A s'=8208.593kN满足要求!(2)、轴心受拔桩桩身承载力Q kmin=499.712kN≥0不需要进行轴心受拔桩桩身承载力计算!4、桩身构造配筋计算A s/A p×100%=(5890.486/(0.503×106))×100%=1.171%≥0.65%满足要求!5、裂缝控制计算Q kmin=499.712kN≥0不需要进行裂缝控制计算!五、承台计算1、荷载计算承台计算不计承台及上土自重:F max=F/n+M/L=606.15/4+2251.8/7.267=461.395kNF min=F/n-M/L=606.15/4-2251.8/7.267=-158.32kN承台底部所受最大弯矩:M x= F max (a b-B)/2=461.395×(4.75-1.6)/2=726.696kN.mM y= F max (a l-B)/2=461.395×(5.5-1.6)/2=899.719kN.m承台顶部所受最大弯矩:M'x= F min (a b-B)/2=-158.32×(4.75-1.6)/2=-249.353kN.mM'y= F min (a l-B)/2=-158.32×(5.5-1.6)/2=-308.723kN.m计算底部配筋时:承台有效高度:h0=1500-50-25/2=1438mm 计算顶部配筋时:承台有效高度:h0=1500-50-22/2=1439mm 2、受剪切计算V=F/n+M/L=606.15/4 + 2251.8/7.267=461.395kN受剪切承载力截面高度影响系数:βhs=(800/1438)1/4=0.864塔吊边缘至角桩边缘的水平距离:a1b=(a b-B-d)/2=(4.75-1.6-0.8)/2=1.175ma1l=(a l-B-d)/2=(5.5-1.6-0.8)/2=1.55m 剪跨比:λb'=a1b/h0=1175/1438=0.817,取λb=0.817;λl'= a1l/h0=1550/1438=1.078,取λl=1.078;承台剪切系数:αb=1.75/(λb+1)=1.75/(0.817+1)=0.963αl=1.75/(λl+1)=1.75/(1.078+1)=0.842βhsαb f t bh0=0.864×0.963×1.57×103×7.7×1.438=14459.043kNβhsαl f t lh0=0.864×0.842×1.57×103×8.75×1.438=14368.641kNV=461.395kN≤min(βhsαb f t bh0,βhsαl f t lh0)=14368.641kN满足要求!3、受冲切计算塔吊对承台底的冲切围:B+2h0=1.6+2×1.438=4.476ma b=4.75m>B+2h0=4.476m,a l=5.5m>B+2h0=4.476m角桩边缘至承台外边缘距离:c b=(b-a b+d)/2=(7.7-4.75+0.8)/2=1.875mc l=(l-a l+d)/2=(8.75-5.5+0.8)/2=2.025m角桩冲跨比::λb''=a1b/h0=1175/1438=0.817,取λb=0.817;λl''= a1l/h0=1550/1438=1.078,取λl=1;角桩冲切系数:β1b=0.56/(λb+0.2)=0.56/(0.817+0.2)=0.551β1l=0.56/(λl+0.2)=0.56/(1+0.2)=0.467[β1b(c b+a lb/2)+β1l(c l+a ll/2)]βhp·f t·h0=[0.551×(1.875+1.175/2)+0.467×(2.025+1.55/2)]×0.942×1570×1.438=5660.319kNN l=V=461.395kN≤[β1b(c b+a lb/2)+β1l(c l+a ll/2)]βhp·f t·h0=5660.319kN 满足要求!4、承台配筋计算(1)、承台底面长向配筋面积αS1= M y/(α1f c bh02)=899.719×106/(1×16.7×7700×14382)=0.003ζ1=1-(1-2αS1)0.5=1-(1-2×0.003)0.5=0.003γS1=1-ζ1/2=1-0.003/2=0.998A S1=M y/(γS1h0f y1)=899.719×106/(0.998×1438×360)=1741mm2最小配筋率:ρ=0.15%承台底需要配筋:A1=max(A S1, ρbh0)=max(1741,0.0015×7700×1438)=16609mm2承台底长向实际配筋:A S1'=25690mm2≥A1=16609mm2满足要求!(2)、承台底面短向配筋面积αS2= M x/(α2f c lh02)=726.696×106/(1×16.7×8750×14382)=0.002ζ2=1-(1-2αS2)0.5=1-(1-2×0.002)0.5=0.002γS2=1-ζ2/2=1-0.002/2=0.999A S2=M x/(γS2h0f y1)=726.696×106/(0.999×1438×360)=1406mm2最小配筋率:ρ=0.15%承台底需要配筋:A2=max(A S2, ρlh0)=max(1406,0.0015×8750×1438)=18874mm2承台底短向实际配筋:A S2'=29126mm2≥A2=18874mm2满足要求!(3)、承台顶面长向配筋面积αS1= M'y/(α1f c bh02)=308.723×106/(1×16.7×7700×14392)=0.001ζ1=1-(1-2αS1)0.5=1-(1-2×0.001)0.5=0.001γS1=1-ζ1/2=1-0.001/2=0.999A S3=M'y/(γS1h0f y1)=308.723×106/(0.999×1439×360)=597mm2最小配筋率:ρ=0.15%承台顶需要配筋:A3=max(A S3, ρbh0,0.5A S1')=max(597,0.0015×7700×1439,0.5×25690)=16621mm2承台顶长向实际配筋:A S3'=19894mm2≥A3=16621mm2满足要求!(4)、承台顶面短向配筋面积αS2= M'x/(α2f c lh02)=249.353×106/(1×16.7×8750×14392)=0.001ζ2=1-(1-2αS2)0.5=1-(1-2×0.001)0.5=0.001γS2=1-ζ2/2=1-0.001/2=1A S4=M'x/(γS2h0f y1)=249.353×106/(1×1439×360)=482mm2最小配筋率:ρ=0.15%承台顶需要配筋:A4=max(A S4, ρlh0,0.5A S2' )=max(482,0.0015×8750×1439,0.5 ×29126)=18887mm2承台顶面短向配筋:A S4'=22555mm2≥A4=18887mm2 满足要求!(5)、承台竖向连接筋配筋面积承台竖向连接筋为双向HRB400 12500。
矩形板式桩基础计算书计算依据:1、《塔式起重机混凝土基础工程技术标准》JGJ/T187-20192、《混凝土结构设计规范》GB50010-20103、《建筑桩基技术规范》JGJ94-20084、《建筑地基基础设计规范》GB50007-20115、《预应力混凝土管桩技术标准》JGJ/T406-2017一、塔机属性二、塔机荷载1、塔机传递至基础荷载标准值2、塔机传递至基础荷载设计值三、桩顶作用效应计算承台底标高d1(m) -6.85基础布置图承台及其上土的自重荷载标准值:G k=bl(hγc+h'γ')=5.8×5.8×(1.35×25+0×19)=1135.35kN承台及其上土的自重荷载设计值:G=1.35G k=1.35×1135.35=1532.722kN 桩对角线距离:L=(a b2+a l2)0.5=(4.52+4.52)0.5=6.364m1、荷载效应标准组合轴心竖向力作用下:Q k=(F k'+G k)/n=(790.9+1135.35)/4=481.562kN荷载效应标准组合偏心竖向力作用下:Q kmax=(F k'+G k)/n+(M k'+F Vk'h)/L=(790.9+1135.35)/4+(3036.8+110.5×1.35)/6.364=982.19kN Q kmin=(F k'+G k)/n-(M k'+F Vk'h)/L=(790.9+1135.35)/4-(3036.8+110.5×1.35)/6.364=-19.065kN2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F'+G)/n+(M'+F v'h)/L=(1067.715+1532.722)/4+(4099.68+149.175×1.35)/6.364=1325.957kN Q min=(F'+G)/n-(M'+F v'h)/L=(1067.715+1532.722)/4-(4099.68+149.175×1.35)/6.364=-25.738kN 四、桩承载力验算1、桩基竖向抗压承载力计算桩身周长:u=πd=3.14×0.5=1.571mh b/d=1×1000/500=2<5λp=0.16h b/d=0.16×2=0.32空心管桩桩端净面积:A j=π[d2-(d-2t)2]/4=3.14×[0.52-(0.5-2×0.11)2]/4=0.135m2 空心管桩敞口面积:A p1=π(d-2t)2/4=3.14×(0.5-2×0.11)2/4=0.062m2R a=ψuΣq sia·l i+q pa·(A j+λp A p1)=0.8×1.571×(3×15+7.95×24+4.7×60+2.35×100)+8000×(0.135+0.32×0.062)=2181.824k NQ k=481.562kN≤R a=2181.824kNQ kmax=982.19kN≤1.2R a=1.2×2181.824=2618.188kN满足要求!2、桩基竖向抗拔承载力计算Q kmin=-19.065kN<0按荷载效应标准组合计算的桩基拔力:Q k'=19.065kN桩身位于地下水位以下时,位于地下水位以下的桩自重按桩的浮重度计算,桩身的重力标准值:G p=l t(γz-10)A j=18×(25-10)×0.135=36.389kNR a'=ψuΣλi q sia l i+G p=0.8×1.571×(0.6×3×15+0.6×7.95×24+0.7×4.7×60+0.7×2.35×100)+36 .389=668.955kNQ k'=19.065kN≤R a'=668.955kN满足要求!3、桩身承载力计算纵向预应力钢筋截面面积:A ps=nπd2/4=15×3.142×10.72/4=1349mm2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=1325.957kN桩身结构竖向承载力设计值:R=1500kNQ=1325.957kN≤1500kN满足要求!(2)、轴心受拔桩桩身承载力荷载效应基本组合下的桩顶轴向拉力设计值:Q'=-Q min=25.738kNf py A ps=(650×1348.804)×10-3=876.722kNQ'=25.738kN≤f py A ps=876.722kN满足要求!4、裂缝控制计算裂缝控制按三级裂缝控制等级计算。
桩基础设计计算书柱下独立桩基,柱子的截面尺寸400600⨯()mm mm ⨯,该桩基的安全等级为二级,邻近较多的静载荷试验资料表明,单桩轴向受压承载力可以利用土性指标确定。
荷载效应基本组合情况下作用于承台顶面的竖向力设计值F=2480KN ,剪力设计值H=60KN ,力矩设计值M=350kN m •。
土层参数指标如下:○1填土,厚度1.5m ; ○2粉质粘土,厚度1.8m ,0.5,350,66L ck sk I q kPa q kPa ===; ○3-1粘土,厚度5.0m ,软塑,1121.0,0.8,36L sk I a MPa q kPa --===; ○3-2粘土,该土层为打穿,硬塑,0.25,82,2500L sk pk I q kPa q kPa ===。
试设计该桩基础。
(须考虑承台效应)需设计的主要参数指标:承台的埋置深度,桩端持力层,单桩承载力,承台下桩位布置及承台的平面尺寸,考虑承台效应的单桩承载力;须验算的指标:桩基竖向抗压承载力,承台的冲切、剪切、受弯和局部受压,单桩的水平承载力。
(1)承台埋深和桩端持力层的确定总和考虑土层资料及现场施工水平,拟选用混凝土预制桩,截面尺寸为300300mm mm ⨯,承台埋深1.5m ,即将其置于可塑状态的粉质粘土层上。
○3-1粘土呈软塑状态,且11120.80.5a MPa MPa ---=>,高压缩性土,不宜用作桩端持力层;○3-2粘土的厚度较大,呈硬塑状态,故以该土层作为桩端持力层。
桩端进入该层的深度取4 1.2d m =,这样承台底面以下桩长8l m =。
(2)估算所需桩数按估算,其中按式计算,先算出sk P 和pk P()40.366 1.836 5.082 1.2476.6sk ski iP U q l kN==⨯⨯+⨯+⨯=∑25000.30.3225.0pk pk p P q A kN ==⨯⨯=从《桩基规范》表5.2.2查得 1.63s p r r ==,故有476.6225.0425.21.65pk sk s p P P R kN r r +=+== 取 1.1,2480N kN μ==,则得24801.1 6.4425.2n =⨯= 取6n =,即采用6根桩。
目录一.作用效应组合 (2)(一)、恒载计算 (2)(二)、活载反力计算 (3)(三)、人群荷载 (3)(四)、汽车制动力计算 (4)(五)、支座摩阻力 (4)(六)、荷载组合计算 (4)二.确定桩长 (6)三.桩基强度验算 (7)(一)、桩的内力计算 (7)(二)桩身材料截面强度验算 (11)四.桩顶纵向水平位移验算 (13)五.横系梁设计 (14)六.桩柱配筋 (14)七.裂缝宽度验算 (14)桥墩桩基础设计计算书一. 作用效应组合(一)恒载计算1、盖梁自重 )1(G =25⨯0.5⨯0.33⨯1.4=5.775 KN)2(G =(0.9+1.5)⨯2.075/2⨯25⨯1.4=87.15 KN)3(G =(0.25+1.2+5.8+1.2+5.8+1.2+0.25)⨯25⨯1.5⨯1.4=824.25KN )4(G =0.33⨯0.5⨯25⨯1.4=5.775 KN)5(G =(0.9+1.5)⨯2.065/2⨯25⨯1.4=86.73 KN1G =)1(G +)2(G +)3(G +)4(G +)5(G =1009.68 KN2、桥墩自重:2G =)]633.6738.6843.6(412.1[252++⨯⨯⨯⨯π=KN 54.5713.系梁自重:3G =253145.128.01)215.08.5(252⨯⨯⨯⨯+⨯⨯⨯⨯-⨯π=KN 54.3524.上部恒载:各梁恒载反力表 表一边梁自重:)1(G =2⨯12.54⨯19.94=500.10KN 中辆自重:)2(G =10.28⨯19.94⨯15=3074.75KN 一孔上部铺装自重:)3(G =3.5⨯19.94⨯17.5=1221.33KN 一孔上部恒载:4G =)1(G +)2(G +)3(G =4796.18KN 综上可得恒载为:G=1G +2G +3G +4G =6729.94KN(二)支座活载反力计算 1. 汽车荷载(1)一跨活载反力查规范三车道横向折减系数取0.78,根据规范的跨径在五米和五十米之内均布荷载标准值应该采用直线内插法180360180--x 4515= 解得x =237.84 故P K=237.84KN在桥跨上的车道荷载布置如图排列,均布荷载q k =10.5KN/m 满跨布置,集中荷载P K=237.84KN 布置在最大影响线峰值处,反力影响线的纵距分别为: h 1=1.0, h 2=0.0hh 1支座反力: KN l q P N k k 61.79578.03)2205.1084.237(78.03)2(6=⨯⨯⨯+=⨯⨯⨯+= 支座反力作用点离基底形心轴的距离:e a =(20-19.46)/2=0.27m由1N 引起的弯矩:KN M 81.21427.061.7951=⨯=(1) 两跨活载反力 支座反力: KN lq P N k k 68.103478.03)46.195.1084.237(78.03)22(2=⨯⨯⨯+=⨯⨯⨯⨯+= 由2N 产生的弯矩:m KN M .36.27927.068.10342=⨯= 2.行人荷载布置在5.5米人行道上,产生竖直方向力。
(完整版)桩基础计算书桩基础计算报告书计算⼈校对⼈:审核⼈:计算⼯具:PKPM软件开发单位:中国建筑科学研究院设计单位:灌注桩计算说明书1.⽀架计算组件钢结构⽀架要在37m/s(基本风压0.85KN/m2)的风载作⽤下正常使⽤,应使其主要构件满⾜强度要求、稳定性要求,即横梁、斜梁、斜撑、拉杆、⽴柱在风载作⽤下不失稳且⽴柱弯曲强度满⾜要求。
组件⾃重19.5kg。
⽀架计算最⼤柱底反⼒:Fx max=5.6KN,Fy max=0.9KN,Fz max=12.1KNFx min= -6.9KN, Fy min= -0.9KN,Fz min= -7.29KN2.灌注桩设计2.1基桩设计参数成桩⼯艺: ⼲作业钻孔桩承载⼒设计参数取值: 根据建筑桩基规范查表孔⼝标⾼0.00 m桩顶标⾼0.30 m桩⾝设计直径: d = 0.25m桩⾝长度: l = 1.60 m根据《建筑地基基础设计规范》GB50007-2011,设计使⽤年限不少于50年时,灌注桩的混凝⼟强度不应低于C25;所以本次设计中混凝⼟强度选⽤C25。
灌注桩纵向钢筋的配置为3跟根Ф6,箍筋采⽤Ф4钢筋,箍筋间距选择300~400。
2.2岩⼟设计参数2.3设计依据《建筑桩基技术规范》(JGJ 94-2008) 以下简称桩基规范《建筑地基基础设计规范》GB50007-2011 《混凝⼟结构设计规范》GB50010-2010 《建筑结构载荷规范》GB50009-2012 《钢结构设计规范》GB50017-2003《混凝⼟结构⼯程施⼯质量验收规范》GB50204-2002(2011年版)《钢结构⼯程施⼯质量验收规范》GB50205-2001 2.4单桩竖向承载⼒估算当根据⼟的物理指标与承载⼒参数之间的经验关系确定单桩竖向极限承载⼒标准值时,宜按下式估算:式中——桩侧第i 层⼟的极限阻⼒标准值,按JGJ94-2008中表5.3.5-1取值,吐鲁番当地⼟质为⾓砾,属中密-密实状⼟层,查表得出⼲作业钻孔桩的极限侧阻⼒标准值为135~150;——极限端阻⼒标准值,按JGJ94-2008中表5.3.5-2取值,吐鲁番当地⼟质为⾓砾,属中密-密实状⼟层,查表得出⼲作业钻孔桩的极限端阻⼒标准值为4000~5500;µ——桩⾝周长; ——桩周第i 层⼟的厚度; ——桩端⾯积。
桩基础课程设计计算书
一、引言
桩基础是土木工程中常用的一种基础形式,用于承受建筑物或其他结构的重力和水平力。
本文旨在通过桩基础课程设计计算书,对桩基础的设计和计算过程进行详细介绍。
二、桩基础设计原则
1.选取合适的桩型:根据工程场地的地质条件和设计要求,选择适合的桩型,常见的桩型有钢筋混凝土灌注桩、预制桩和钢管桩等。
2.确定桩的数量和布置:根据建筑物或结构的荷载和地质条件,确定桩的数量和布置方式,以保证桩基础的稳定性和承载能力。
3.计算桩的承载力:根据桩的类型和地质条件,采用适当的计算方法计算桩的承载力,包括桩身承载力和桩端承载力。
4.考虑桩与土的相互作用:在桩基础设计中,需要考虑桩与土之间的相互作用,包括桩身的摩擦阻力和桩端的土的阻力等。
5.确定桩的长度和直径:根据桩的承载力和桩身的应力条件,确定桩的长度和直径,以满足设计要求。
三、桩基础设计计算书的内容
1.工程概况:包括工程名称、地理位置、建设单位、设计单位等基本信息。
2.设计依据:包括国家相关标准、规范和技术要求等。
3.地质勘察报告摘要:根据地质勘察报告的结果,对地质条件进行简要描述。
4.荷载计算:根据建筑物或结构的荷载标准,计算垂直和水平荷载,包括永久荷载、活荷载和地震荷载等。
5.桩的类型和布置:根据地质条件和设计要求,确定桩的类型和布置方式。
6.桩身承载力计算:根据所选桩的类型和地质条件,计算桩身的承载力,包括桩身的摩擦阻力和桩身的承载力等。
7.桩端承载力计算:根据所选桩的类型和地质条件,计算桩端的承载力,包括桩端的土的阻力和桩端的承载力等。
8.桩的长度和直径计算:根据桩的承载力和桩身的应力条件,计算桩的长度和直径。
9.桩基础的稳定性分析:对桩基础的稳定性进行分析,包括桩身的稳定性和桩端的稳定性等。
10.施工及验收规范:根据国家相关标准和规范,列出桩基础施工的要求和验收标准。
四、桩基础设计计算书的编写要点
1.准确性:设计计算书应准确描述桩基础的设计和计算过程,避免歧义或错误信息的出现。
2.规范性:设计计算书应符合国家相关标准和规范的要求,确保桩基础的设计和计算符合规范。
3.清晰性:设计计算书应使用清晰明确的语言表达桩基础的设计和计算过程,避免术语或公式的使用。
4.结构性:设计计算书应按照合理的结构编写,包括标题、段落和章节等,使文章结构清晰,易于阅读。
五、总结
桩基础课程设计计算书是桩基础设计的重要文件,通过该文档可以对桩基础的设计和计算过程进行详细描述。
设计计算书的编写要准确、规范、清晰和结构化,以确保桩基础的设计和计算符合要求。
希望本文对读者理解桩基础设计计算书的内容和编写要点有所帮助。