第5章练习题(数学建模)
- 格式:ppt
- 大小:5.38 MB
- 文档页数:47
数学建模知到章节测试答案智慧树2023年最新山东师范大学第一章测试1.人类研究原型的目的主要有()。
参考答案:优化;预测;评价;控制2.概念模型指的是以图示、文字、符号等组成的流程图形式对事物的结构和机理进行描述的模型。
()参考答案:对3.数学建模的全过程包括()。
参考答案:模型应用;模型检验;模型求解;模型建立4.下面()不是按问题特性对模型的分类。
参考答案:交通模型5.椅子放稳问题中,如果椅子是长方形的,则不能在不平的地面上放稳。
()参考答案:错第二章测试1.山崖高度的估计模型中,测量时间中需要考虑的时间包括()。
参考答案:物体下落的时间;声音返回的时间;人体的反应时间2.落体运动模型当阻力趋于零时变为自由落体模型。
()参考答案:对3.安全行车距离与()有关。
参考答案:车辆速度;车辆品牌;驾驶员水平4.人体反应时间的确定一般使用测试估计法进行。
()参考答案:对5.当车速为80-120千米/小时时,简便的安全距离判断策略是()。
参考答案:等于车速1.存贮模型的建模关键是()。
参考答案:一个周期内存贮量的确定2.下面对简单的优化模型的描述()是正确的。
参考答案:没有约束条件的优化模型3.商品生产费用因为数值太小,所以不需要考虑。
()参考答案:错4.同等条件下,允许缺货时的生产周期比不允许缺货时的生产周期()。
参考答案:偏大5.开始灭火后,火灾蔓延的速度会()。
参考答案:变小1.如果工人工作每小时的影子价格是2元,则雇佣工人每小时的最高工资可以是3元。
()参考答案:错2.下面关于线性规划的描述正确的是()。
参考答案:可行域是凸多边形;最优解可以在可行域内部取得;目标函数是线性的;约束条件是线性的3.在牛奶加工模型中,牛奶资源约束是紧约束。
()参考答案:对4.在牛奶加工模型中,A1的价格由24元增长到25元,应该生产计划。
()参考答案:错5.求整数规划时,最优解应该采用()获得。
参考答案:使用整数规划求解方法重新求解1.人口过多会带来()。
数学书人教版练习题答案以下是数学书人教版练习题的答案:
1. 第一章:数与式
1.1 单项式
1.2 多项式
1.3 整式加减
1.4 整式乘法
1.5 整式除法
1.6 因式分解
1.7 指数与对数
2. 第二章:方程与不等式
2.1 一元一次方程
2.2 二元一次方程组
2.3 一元二次方程
2.4 分式方程
2.5 无理方程
2.6 一元一次不等式
2.7 一元二次不等式
3. 第三章:函数
3.1 函数的概念
3.2 函数的表示法
3.3 函数的单调性
3.4 函数的奇偶性
3.5 反函数
3.6 指数函数
3.8 幂函数
3.9 三角函数
4. 第四章:解析几何
4.1 直线
4.2 圆
4.3 椭圆
4.4 双曲线
4.5 抛物线
4.6 参数方程
4.7 极坐标方程
5. 第五章:概率与统计
5.1 随机事件
5.2 概率的计算
5.3 离散型随机变量
5.4 连续型随机变量
5.5 抽样方法
5.6 数据的描述性统计 5.7 概率分布
6. 第六章:向量与空间几何 6.1 向量的概念
6.2 向量的运算
6.3 空间直线
6.4 空间平面
6.5 空间多面体
6.6 空间曲线
7. 第七章:复数
7.2 复数的运算
7.3 复数的几何意义
8. 第八章:数学建模
8.1 数学建模的概念
8.2 数学建模的方法
8.3 数学建模的应用
以上是人教版数学书各章节练习题的答案概览。
每个章节下的具体题目答案需根据题目内容进行详细解答。
‘牡丹江师范学院期末考试试题库科目:数学模型与数学实验年级:2006 学期:2008-2009-2 考核方式:开卷命题教师:数学模型与数学实验课程组一、解答题:(每小题30分)x=[0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.2 0.21 0.23]';n=length(x)X=[ones(n,1) x];Y=[42 43.5 45 45.5 45 47.5 49 53 50 55 55 60]';[b,bint,r,rint,stats]=regress(Y,X);b,bint,stats% 预测y=b(1)+b(2)*x%E误差平方和E=sum((Y-y).^2)参考结果:回归直线:ˆ28.4928130.8348=+y x误差平方和:17.4096是否重点:重点难易程度:中知识点所在章节:第十六章第一节检查数据中有无异常点、由x的取值对y作出预测。
解:参考程序(t2.m):x=[0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.2 0.21 0.23]';Y=[42.0 41.5 45.0 45.0 45 47.5 49.0 55.0 50.0 55.0 55.5 60.5]'; scatter(x,Y);n=length(x)X=[ones(n,1) x];b,bint,stats %残差图 rcoplot(r,rint) % 预测y=b(1)+b(2)*x%剔除异常点重新建模 X(8,:)=[]; Y(8)=[];[b,bint,r,rint,stats]=regress(Y,X); b,bint,stats,rcoplot(r,rint) 结果和图:b =27.0269 140.6194 bint =22.3226 31.7313 111.7842 169.4546 stats =0.9219 118.0670 0.0000结果分析:由20.9226,119.2528,P =0.0000R F ==知,2R 接近1,10.5(1,10)F F ->,0.05P <,故x 对y 的影响显著,回归模型可用。
第六章军事模型§6.1 核武器竞赛问题:甲乙双方(两国),均将对方视为假想敌,在某种“国家安全”的定义下发展核武器,展开核军备竞赛。
问题:在这场核军备竞赛中,双方拥有的核武器会无限增长呢,还是存在某种平衡状态?一.模型假设1.分别以、表示甲乙双方拥有的核武器数目,这里视之为非负实数(即连续型变量),以、表示甲乙双方对对方施行一次致命性打击所需的核武器数目;2.甲乙双方的“国家安全”概念均采用保守定义:即在招到对方“倾泻性”核打击后,保证有足够的核武器被保存下来以给对方致命的还击;3.分别以、()表示甲乙双方,其一枚核弹头在遭受对方一枚核弹头袭击后有可能被保存下来的概率,这里假定不同核弹头在遭受对方一枚核弹头袭击后有可能被保存下来的机会是相对独立的。
二.模型建立定性分析模型:应当存在二函数、,分别表示当甲乙双方拥有的核武器数目为、时,对方在遵照模型假设中所给出的有关“国家安全”概念,乙方、甲方所应拥有最少的核武器数目。
即当甲方拥有的核武器数目为时,须有时,乙方才会确认自己是安全的。
显然,、均应当为单调增函数。
这里称为双方安全区,是核军备竞赛的稳定区域。
问:是否为空集?若为空集,即说明核军备竞赛是没有尽头的,其终究构成人类持久和平愿望的最大威胁。
所附四图仅仅是在双方安全曲线满足单调增函数的条件下给出的四种可能情形,有阴影存在的区域表示存在双方安全区。
但实际当中应当是哪一种呢?定量分析模型:在前述模型假设的基础上,不难得到:,即、分别为甲乙双方的安全曲线,而上面附图的后三幅给出的三种可能的典型情形,显然第四幅表示与两者至少有一个满足时方可出现。
在模型中涉及到的几个参数的取值,比如影响的主要因素可以考虑双方的国土、一枚核弹爆炸的破坏力,以及各自的防空能力。
三.模型分析通过定量分析模型得到的结果表明,核武器竞赛是不容乐观的,要么不存在稳定区域,要么稳定区域是一有界区域。
也即表明建立在本文“安全概念”基础上的核武器竞赛从根本上应当撇弃,因为即使在稳定区域非空,由于某一方(或双方)不克制的态度最终导致核武器竞赛的灾难性后果。
5.7 三角函数的应用必备知识基础练1.简谐运动y =4sin (5x -π3)的相位与初相是( ) A .5x -π3,π3 B .5x -π3,4C .5x -π3,-π3D .4,π32.如图,为一半径为3 m 的水轮,水轮圆心O 距离水面2 m ,已知水轮自点A 开始1 min 旋转4圈,水轮上的点P 到水面距离y (m)与时间x (s)满足函数关系y =A sin (ωx +φ)+2,则有( )A.ω=2π15,A =3 B .ω=152π,A =3C .ω=2π15,A =5D .ω=152π,A =53.电流I (A)随时间t (s)变化的关系式是I =5sin (100πt +π3),则当t =1200 s 时,电流I 为( )A .5 AB .2.5 AC .2 AD .-5 A4.音叉是呈“Y ”形的钢质或铝合金发声器(如图1),各种音叉可因其质量和叉臂长短、粗细不同而在振动时发出不同频率的纯音.敲击某个音叉时,在一定时间内,音叉上点P 离开平衡位置的位移y 与时间t 的函数关系为y =11 000sin ωt .图2是该函数在一个周期内的图象,根据图中数据可确定ω的值为( )A .200B .400C .200πD .400π5.(多选)如图所示的是一质点做简谐运动的图象,则下列结论正确的是( )A .该质点的运动周期为0.7 sB .该质点的振幅为5C .该质点在0.1 s 和0.5 s 时运动速度为零D .该质点的运动周期为0.8 s6.某港口在一天24小时内的潮水的高度近似满足关系式f (t )=2sin (5π12t -π6),其中f (t )的单位为m ,t 的单位是h ,则12点时潮水的高度是________m.7.如图,弹簧挂着的小球做上下振动,它在t 秒时相对于平衡位置(即静止时的位置)的高度h 厘米满足下列关系:h =2sin (t +π6),t ∈[0,+∞),则每秒钟小球能振动________次.关键能力综合练 1.如图,一个质点在半径为2的圆O 上以P 点为起始点,沿逆时针方向运动,每3s 转一圈.则该质点到x 轴的距离y 关于时间t 的函数解析式是( )A .y =⎪⎪⎪⎪⎪⎪2sin (2π3t -π4)B .y =2sin (2π3t -π4)C .y =2sin (2π3t +π4)D .y =⎪⎪⎪⎪⎪⎪2sin (2π3t +π4) 2.人的血压在不断地变化,血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数120/80 mmHg 为标准值.设甲某的血压满足函数式p (t )=102+24sin (160πt ),其中p (t )为血压(单位:mmHg),t 为时间(单位:min),对于甲某而言,下列说法正确的是( )A .收缩压和舒张压均高于相应的标准值B .收缩压和舒张压均低于相应的标准值C .收缩压高于标准值、舒张压低于标准值D .收缩压低于标准值、舒张压高于标准值3.福州新港江阴港区地处福建最大海湾兴化湾西北岸,全年全日船泊进出港不受航道及潮水的限制,是迄今为止“我国少有、福建最佳”的天然良港.如图,是港区某个泊位一天中6时到18时的水深变化曲线近似满足函数y =3sin (ωx +φ)+k ,据此可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .104.车流量被定义为单位时间内通过十字路口的车辆数,单位为辆/分,上班高峰期某十字路口的车流量由函数F (t )=50+4sin t2(0≤t ≤20) 给出,F (t )的单位是辆/分,t 的单位是分,则下列哪个时间段内车流量是增加的( )A .[0,5]B .[5,10]C .[10,15]D .[15,20]5.(多选)如图,一圆形摩天轮的直径为100米,圆心O 到水平地面的距离为60米,最上端的点记为Q ,现在摩天轮开始逆时针方向匀速转动,30分钟转一圈,以摩天轮的中心为原点建立平面直角坐标系,则下列说法正确的是( )A .点Q 距离水平地面的高度与时间的函数为h (t )=50sin (πt 15+π3)+10B .点Q 距离水平地面的高度与时间的函数的对称中心坐标为(15k ,60)(k ∈Z )C .经过10分钟点Q 距离地面35米D .摩天轮从开始转动一圈,点Q 距离水平地面的高度不超过85米的时间为20分钟 6.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos [π6(x -6)](A >0,x =1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28 ℃,12月份的月平均气温最低,为18 ℃,则10月份的平均气温值为________ ℃.7.潮汐是发生在沿海地区的一种自然现象,是指海水在天体(主要是月球和太阳)引潮力作用下所产生的周期性运动.习惯上把海面垂直方向涨落称为潮汐,而海水在水平方向的流动称为潮流.早先的人们为了表示生潮的时刻,把发生在早晨的高潮叫潮,发生在晚上的高潮叫汐,这是潮汐名称的由来.下表中给出了某市码头某一天水深与时间的关系(夜间零点开始计时).A -B =________.8.某一天6~14时某地的温度变化曲线近似满足函数y =10sin (π8x +3π4)+20(x ∈[6,14]),其中,x 表示时间,y 表示温度.求这一天中6~14时的最大温差,并指出何时达到最高气温.9.如图,某地夏天从8~14时用电量变化曲线近似满足函数y =A sin (ωx +φ)+b (A >0,ω>0,|φ|<π2).(1)求这一天的最大用电量及最小用电量;(2)写出这段曲线的函数解析式.核心素养升级练1.小明给学校设计数学文化长廊,计划将长廊的顶部遮雨棚设计成如图所示横截面为正弦曲线的形状(雨棚的厚度忽略不计),已知入口高度AB 和出口处高度CD 均为H ,为使参观者行走方便,要求雨棚的最低点到地面的距离不小于雨棚的最高点到地面距离的23,则雨棚横截面正弦曲线振幅的最大值为( )A .H 3B .H4C .H 5D .H62.[2022·福建厦门高一期末]在国际气象界,二十四节气被誉为“中国的第五大发明”.一个回归年定义为从某年春分到次年春分所经历的时间,也指太阳直射点回归运动的一个周期.某科技小组以某年春分为初始时间,统计了连续400天太阳直射点的纬度平均值(太阳直射北半球时取正值,直射南半球时取负值).设第x 天时太阳直射点的纬度平均值为y ,该小组通过对数据的整理和分析,得到y 与x 近似满足y =23.439 391 1·sin (0.017 202 5x ),则一个回归年对应的天数约为________(精确到0.01);已知某年的春分日是星期六,则4个回归年后的春分日应该是星期________.(π0.017 202 5≈182.624)3.“八月十八潮,壮观天下无.”——苏轼《观浙江涛》,该诗展现了湖水涨落的壮阔画面,某中学数学兴趣小组进行潮水涨落与时间的关系的数学建模活动,通过实地考察某港口水深y (米)与时间t (0≤t ≤24)(单位:小时)的关系,经过多次测量筛选,最后得到下表数据:曲线,经拟合,该曲线可近似地看成函数图象.(1)试根据数据表和曲线,求出近似函数的表达式;(2)一般情况下,船舶航行时船底与海底的距离不小于3.5米是安全的,如果某船舶公司的船的吃水度(船底与水面的距离)为8米,请你运用上面兴趣小组所得数据,结合所学知识,给该船舶公司提供安全进此港时间段的建议.5.7 三角函数的应用必备知识基础练1.答案:C解析:相位是5x -π3,当x =0时的相位为初相即-π3.2.答案:A解析:由题目可知最大值为5,∴ 5=A ×1+2⇒A =3.T =604=15,则ω=2πT =2π15. 3.答案:B解析:将t =1200代入I =5sin (100πt +π3)得I =2.5 A .4.答案:D解析:由图象可得,ω>0,T =4×1800=1200,即2πω=1200,则ω=400π.5.答案:BCD解析:由题图可知,质点的振动周期为2×(0.7-0.3)=0.8 s ,所以A 错,D 正确; 该质点的振幅为5,所以B 正确;由简谐运动的特点知,质点处于平衡位置时的速度最大,即在0.3 s 和0.7 s 时运动速度最大,在0.1 s 和0.5 s 时运动速度为零,故C 正确.综上,BCD 正确.6.答案:1解析:当t =12时,f (12)=2sin (5π-π6)=2sin 5π6=1,即12点时潮水的高度是1 m . 7.答案:12π解析:函数h =2sin (t +π6),t ∈[0,+∞)的周期T =2π,故频率为12π.所以每秒钟小球能振动12π次.关键能力综合练1.答案:A解析:由于y 表示距离,为非负数,所以BC 选项错误.P 点的初始位置为(2,-2),在第四象限,所以A 选项符合,D 选项不符合. 2.答案:C解析:∵p (t )=102+24sin (160πt ), ∴p (t )min =102-24=78,p (t )max =102+24=126.所以,甲某血压的收缩压为126 mmHg ,舒张压为78 mmHg. 因此,收缩压高于标准值、舒张压低于标准值. 3.答案:C解析:从图象可以看出,函数y =3sin (ωx +φ)+k 最小值为2,即当sin (ωx +φ)=-1时,函数取得最小值,即-3+k =2,解得k =5,所以y =3sin (ωx +φ)+5,当sin (ωx +φ)=1时,函数取得最大值,y max =3+5=8,这段时间水深(单位:m)的最大值为8.4.答案:C解析:由2k π-π2≤t 2≤2k π+π2(k ∈Z ),得4k π-π≤t ≤4k π+π(k ∈Z ),所以函数F (t )=50+4sin t2在[4k π-π,4k π+π](k ∈Z )上单调递增,当k =1时,t ∈[3π,5π]⊆[0,20],此时[10,15]⊆[3π,5π].故选C.5.答案:CD解析:由题意知∠xOQ =π2,OQ 在t 分钟转过的角为2π30t =π15t ,所以以OQ 为终边的角为π15t +π2,所以点Q 距离水平地面的高度与时间的关系为h (t )=50sin (πt 15+π2)+60=50cos πt15+60,故A 错误; 由πt 15=k π+π2,k ∈Z ,得t =15t +152,k ∈Z ,所以(15k ,60)(k ∈Z )不是对称中心,故B 错误;经过10分钟,h (10)=50cos 10π15+60=35,故C 正确;由50cos πt 15+60≤85,得cos πt 15≤12,得π3≤πt 15≤5π3,解得5≤t ≤25,共20分钟,故D 正确.6.答案:20.5解析:依题意知,a =28+182=23,A =28-182=5,所以y =23+5cos [π6(x -6)],当x =10时,y =23+5cos (π6×4)=20.5.7.答案:-4.2或写成-215解析:由表中某市码头某一天水深与时间的关系近似为函数y =A cos (ωx +φ)+B (A >0,x ∈[0,24]),从表中数据可知,函数的最大值为5.0,最小值为4.2,所以⎩⎪⎨⎪⎧A +B =5.0-A +B =4.2,解得A =0.4,B =4.6,故A -B =-4.2.8.解析:由x ∈[6,14],得3π2≤π8x +3π4≤5π2,所以当π8x +3π4=3π2,即x =6时,y 取得最小值10,当π8x +3π4=5π2,即x =14时,y 取得最大值30, 所以这一天中6~14时的最大温差为20,且14时达到最高气温. 9.解析:(1)最大用电量为50万kW ·h ,最小用电量为30万kW ·h.(2)由图象可知,8~14时的图象是y =A sin (wx +φ)+b 的半个周期的图象, ∴A =12×(50-30)=10,b =12×(50+30)=40.∵12×2πw =14-8, ∴w =π6.∴y =10sin (π6x +φ)+40.将x =8,y =30代入上式,解得φ=π6.∴所求解析式为y =10sin (π6x +π6)+40,x ∈[8,14].核心素养升级练1.答案:C解析:雨棚横截面正弦曲线振幅为A ,则雨棚的最低点到地面的距离为H -A ,雨棚的最高点到地面的距离为H +A ,由题意有H -A ≥23(H +A ),解得A ≤H5,所以横截面正弦曲线振幅的最大值为H5.2.答案:365.25 四解析:因为周期T =2πω=2π0.017 202 5≈182.624×2=365.248≈365.25,所以一个回归年对应的天数约为365.25;一个回归年对应的天数约为365.25,则4个回归年经过的天数为365.25×4=1 461. 因为1 461=208×7+5,且该年的春分日是星期六,所以4个回归年后的春分日应该是星期四.3.解析:(1)画出散点图,连线如下图所示:设y =A sin ωt +b ,根据最大值13,最小值9,可列方程为⎩⎪⎨⎪⎧A +b =13-A +b =7⇒⎩⎪⎨⎪⎧A =3b =10, 再由T =2πω=12,得ω=π6,y =3sin π6t +10(0≤t ≤24).(2)3sin π6t +10-8≥3.5⇒sin π6t ≥12.∵0≤t ≤24, ∴0≤π6t ≤4π,∴π6≤π6t ≤5π6,或π6+2π≤π6t ≤5π6+2π, 解得1≤t ≤5,或13≤t ≤17,所以请在1:00至5:00和13:00至17:00进港是安全的.。
第一章 课后习题6.利用1.5节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。
解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为:)()0(mg M x =由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程M x x dtdx=-=)0(,λ (1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。
由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程:0)0(,=-=y y x dtdyμλ (2) 方程(1)可转换为:tMe t x λ-=)(带入方程(2)可得:)()(t t e e M t y λμμλλ----=将01386=λ和1155.0=μ带入以上两方程,得:t Me t x 1386.0)(-= )(6)(13866.01155.0---=e e M t y t针对孩子求解,得:严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解:严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987=课后习题7.对于1.5节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。
解:已知血液透析法是自身排除率的6倍,所以639.06==μut e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ )(6600)(t t e e t y λμ---=1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dtdzt 解得:()2,274.112275693.01386.0≥+=--t e e t z t t用matlab 画图:图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。
数学建模综合练习第一章数学建模方法论1.举出两三个实例说明建立数学模型的必要性,包括实际问题的背景,建模目的,需要大体上什么样的模型以及怎样应用这种模型.2.怎样解决下面的实际问题.包括需要哪些数据资料,要作些什么观察、试验以及建立什么样的数学模型等.(1)估计一个人体内血液的总量.(2)为保险公司制定人寿保险计划(不同年龄的人应缴纳的金额和公司赔偿的金额).(3)估计一批日光灯管的寿命.(4)确定火箭发射至最高点所需的时间.(5)决定十字路口黄灯亮的时间长度.(6)为汽车租赁公司制订车辆维修、更新和出租计划.(7)一高层办公楼有4部电梯,早晨上班时间非常拥挤,试制订合理的运行计划3.下面是众所周知的智力游戏:人带猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米.试设计一个安全过河方案,并使渡河次数尽量地少.4.假定人口的增长服从这样的规律:时间t的人口为x (t),t到t+∆t时间内人口的增长与x m- x(t)成正比(其中x m为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.5.为了培养想象力、洞察力,考察对象时除了从正面分析外,还常常需要从侧面或反面思考,试尽可能迅速地回答下列的问题:(1)某甲早8:00从山下旅馆出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅馆.某乙说,甲必在2天中的同一时刻经过路径中的同一地点.为什么?(2)甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同,甲乙之间有一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站.问开往甲乙两站的电车经过丙站的时刻表是如何安排的?(3)某人住T市在他乡工作,每天下班后乘火车于6:00抵达T市车站,他的妻子驾车准时到车站接他回家.一日他提前下班搭乘早一班火车于5:30抵T市车站,随即步行回家,他的妻子像往常一样驾车前往,在半路上遇到他,即接他回家,此时发现比往常提前10分钟.问他步行了多长时间.6.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗?比如洁银牙膏50g装的每支1.50元,120g装的每支3.00元,二者单位重量的价格比是1.2:1.试用比例方法构造模型解释这个现象.(1)分析商品价格c与商品重量w的关系.价格由生产成本、包装成本和其它成本决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素.(2)给出单位重量价格c与w加c减小的程度变小.解释实际意义是什么?7.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角α应多大(如图1).若知道管道长度,需用多长布条(可考虑两端的影响).如果管道是其它形状呢?8.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,k >r .在每一生产周期T 内,开始的一段时间(0<t <T 0)一边生产一边销售,后来的一段时间(T 0<t <T )只销售不生产,画出贮存量)(t q 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期.讨论k 》r 和k ≈ r 的情况.第二章 初等数学模型1.在2.5节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.2.设某产品的售价为p ,成本为q ,售量为x (与产量相等),则总收入与总支出分别为px I =,qx C =.试在产销平衡的情况下建立最优价格模型.3.在最优价格模型中,如果考虑到成本q 随着产量x 的增加而降低,试做出合理的假设,重新求解模型.4.在考虑最优价格模型问题时,设销售期为T ,由于商品的损耗,成本q 随时间增长,设q =q 0 +βt ,β为增长率.又设单位时间的销售量为x = a – bp (p 为价格).今将销售期分为0< t <T /2和T /2< t <T 两段,每段的价格固定,记作p 1,p 2.求p 1,p 2的最优值,使销售期内的总利润最大.如果要求销售期T 内的总销售量为Q 0,再求p 1,p 2的最优值.第三章 微分方程模型1.对于技术革新的推广,在下列几种情况下分别建立模型.(1)推广工作通过已经采用新技术的人进行,推广速度与采用新技术的人数成正比,推广是无限的.(2)总人数有限,因而推广速度还会随着尚未采用新技术人数的减少而降低. (3)在(2)的前提下考虑广告等媒介的传播作用.2.建立铅球掷远模型.不考虑阻力,设铅球初速度为v ,出手高度为h ,出手角度为α(与地面夹角),建立投掷距离与v ,h ,α的关系式,并求v ,h 一定的条件下求最佳出手角度.3.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:xNrx t xln )(= ,其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为h =Ex .讨论渔场鱼量的平衡点及其稳定性,求最大持续产量h m 及获得最大产量的捕捞强度E m 和渔场鱼量水平x *0.4.在一种溶液中,化学物质A 分解而形成B ,其速度与未转换的A 的浓度成比例.转换A 的一半用了20分钟,把B 的浓度y 表示为时间的函数,并作出图象.第四章 运筹学模型1.一家保姆公司专门向顾主提供保姆服务.根据估计,下一年的需求是:春季6000人日,夏季7500人日,秋季5500人日,冬季9000人日.公司新招聘的保姆必须经过5天的培训才能上岗,每个保姆每季度工作(新保姆包括培训)65天,保姆从该公司而不从顾主那里得到报酬,每人每月工作800元.春季开始时公司拥有120名保姆,在每个季度结束后,将有15%的保姆自动离职. (1)如果公司不允许解雇保姆,请你为公司制定下一年的招聘计划.(建立数学模型) (2)如果在每个季度结束后允许解雇保姆,请为公司制定下一年的招聘计划.(建立数学模型)2.某工厂生产两种产品A、B分两班生产,每周生产总时间为80小时,两种产品的预测销售量、生产率和赢利如下表(1)充分利用现有能力,避免设备闲置;(2)周加班时间限制在10小时以内;(3)两种产品周生产品量应满足预测销售,满足程度的权重之比等于它们单位利润之比;(4)尽量减少加班时间.例3 医院为病人配制营养餐,要求每餐中含有铁不低于50单位,蛋白质不低于40单位,钙不低于42单位.假设仅有两种食品A和B可供配餐,相关数据见下表.试问,如何购买两种食品进行搭配,才能即使病人所需营养达到需求,又使总花费最低?第五章概率统计模型1.报童每天订购的报纸,每卖出一份赢利a元,如果卖不出去并将报纸退回发行单位,将赔本b元.每天买报人数不定,报童订报份数如超过实际需要,就要受到供过于求的损失;反之,要受到供不应求的损失.设P(m)是售出m份报纸的概率,试确定合理的订报份数,使报童的期望损失最小.2.血友病也是一种遗传疾病,得这种病的人由于体内没有能力生产血凝块因子而不能使出血停止.很有意思的是,虽然男人及女人都会得这种病,但只有女人才有通过遗传传递这种缺损的能力.若已知某时刻的男人和女人的比例为1:1.2,试建立一个预测这种遗传疾病逐代扩散的数学模型.3.假设有一笔1000万元的资金于依次三年年初分别用于工程A和B的投资.每年初如果投资工程A,则年末以0.4的概率回收本利2000万元或以0.6的概率分文不收;如果投资工程B,则年末以0.1的概率回收2000万元或以0.9的概率回收1000万元.假定每年只允许投资一次,每次只投1000万元;试确定第3年末期望资金总数为最大的投资策略.4.某石油公司必须就下一个打井位置作出决定.如果打出来的井什么也没有(既无油也无天然气),则投资费用(打井费用)全部赔掉.如果打出来的是气井,则可以说是部分成功,如果打出来的是油井,则是完全成功.由于结果的不确定性,更由于做某种测试(取样)只能得到不完全的信息,因而作出决定是困难的.试建立一个数学模型,使公司的预期收益最大参考答案第一章数学建模方法论1.解(略)2.解(1)注射一定量的葡萄糖,采集一定容量的血样,测量注射前后葡萄糖含量的变化,即可估计人体的血液总量.注意采集和测量的时间要选择恰当,使血液中的葡萄糖含量充分均匀,又基本上未被人体吸收.(2)调查不同年龄的人的死亡率,并估计其在未来一定时期的变化,还应考虑银行存款利率和物价指数,保险金与赔偿金之比大体上应略高于死亡率.(3)从一批灯管中取一定容量的样本,测得其平均寿命,可作为该批灯管寿命的估计值.为衡量估计的精度,需要从样本寿命确定该批灯管寿命的概率分布,即可得到估计值的置信区间.还可试验用提高电压的办法加速寿命测试,以缩短测量时间.(4)根据牛顿第二定律建立火箭向上发射后的运动方程,初速已知,若不考虑空气阻力,很容易算出到达最高点(即速度为零)时间;若考虑空气阻力,不妨设其与火箭速度(或速度的平方)成正比,并有试验及拟合方法确定阻力系数,再解方程得到结果.(5)司机看到黄灯后停车要有一定的刹车距离S 1,设通过十字路口的距离为S 2,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线S 1之内的汽车能通过路口,即t ≈(S 1+S 2)/v .S 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.(6)根据资料和经验确定维修费用随着车龄和行驶里程的增加而增加的关系,再考虑维修和更新费用,可以以一年为一个时段,结合租金决定应该维修或更新.(7)统计在各层上班的人数,通过数据或计算确定电梯运行时间,以等待的人数与时间乘积为目标,建立优化模型,确定每部电梯运行的楼层(有的从大厅直接运行到高层).3.解 人、猫、鸡、米分别记为i =1, 2, 3, 4,当i 在此岸时记x i =1,否则记x i =0,则此岸的状态可用s =(x 1, x 2, x 3, x 4)表示.记s 的反状态为s '=(1-x 1, 1-x 2, 1-x 3, 1-x 4),允许状态集合为S ={(1, 1, 1, 1),(1, 1, 1, 0),(1, 1, 0, 1),(1, 0, 1, 1)(1, 0, 1, 0)及它们的5个反状态}. 决策为乘船方案,记作d =(u 1, u 2, u 3, u 4),当i 在船上时记u i =1,否则记u i =0,允许决策集合为D ={(1, 1, 0, 0),(1, 0, 1, 0),(1, 0, 0, 1),(1, 0, 0, 0)}.记第k 次渡河前的状态为s k ,第k 次渡河的决策为d k ,则状态转移律为s k +1=s k +(-1)k d k ,设计安全过河方案归结为求决策序列d 1, d 2, …, d n ∈D ,使状态s n ∈S 按状态转移律由初始状态s 1=(1, 1, 1, 1)经n 步到达s n +1=(0, 0, 0, 0).一个可行方案如下:4.解 )(d d x x r txm -=,r 为比例系数,0)0(x x =,解为rtm m x x x t x ---=e )()(0,如图2中粗实线所示.当t 充分大时,它与Logistic 模型相近.5.解(1)设想有两个人一人上山,一人下山,同 一天同时出发,沿同一路径,必定相遇.(2)不妨设从甲站到乙站经过丙站的时刻表是: 8:00,8:10,8:20,…,那么从乙站到甲站经过丙 图2 站的时刻表应该是:8:09,8:19,8:29,….(3)步行了25分钟.设想他的妻子驾车遇到他后,先带他去车站,再回家,汽车多行驶了10分钟,于是带他去车站这段路程汽车跑了5分钟,而到车站的时间是6:00,所以妻子驾车遇到他的时刻是5:55.x x6.解 (1)生产成本主要与重量w 成正比,包装成本主要与表面积s 成正比,其它成本也包含与w 和s 成正比的部分,上述三种成本中都含有与w 和s 无关的成分.又因为形状一定时一般有s ∝w 2/3,故商品的价格可表为C = αw +β w 2/3+γ(α,β,γ为大 于0的常数).(2)单位重量价格131--++==w w wCc γβα,其简图 如图3所示.显然c 是w 的减函数,说明大包装商品比小包 装商品便宜;曲线是下凸的,说明单价的减少值随包装的变大是逐渐降低的,不要追求太大包装的商品. 图3 7.解 将管道展开如图4,可得απcos d w =,若d 一 定,0→w ,2πα→;d w π→,0→α.若管道长度为l ,不考虑两端的影响时布条长度显然为wdlπ,若考虑两端的影响,则应加上απsin dw.对于其它形状管道,只需将d π改为相应的周长即可. 图48.解 贮存量)(t q 的图形如图5.单位时间总费用KT r k r c T c T c 2)()(21-+=, 使)(T c 达到最小值的最优周期)(221r k r c kc T -=*.当k 》r 时,rc c T 212=*,相当 于不考虑生产的 图5 情况.当k ≈ r 时,∞→*T ,因为产量被销量抵消,无法形成贮存量.第二章 初等数学模型1.解 不妨设1)(+'=b b λλ,表示火势b 越大,灭火速度λ越小,分母b +1中的1是防止b →0x时λ→∞而加的.最优解为λβλβλ'++'+++'=)1()(21]()1(2[23221b c b b b c b c x . 2.解 因为售量x 依赖于价格p ,记作)(p f x =,称为需求函数,它是p 的减函数.由此可知收入I 和支出C 都是价格p 的函数,所以利润U 可以表示为)()()(p C p I p U -= (1)使利润U (p )达到最大的最优价格p *可以由0d d *==p p p U 得到,即**d d d d p p p p pC pI ===(2)其中p I d d 称为边际收入,pC d d 称为边际支出.(2)式表明最大利润在边际收入等于边际支出时达到. 假设需求函数是线性函数,即bp a p f -=)(,0,>b a (3)并且每件产品的成本q 与产量x 无关,将总收入函数、总支出函数、需求函数和(3)式代入(1)式可得))(()(bp a q p p U --=用微分法求出使U (p )达到最大的最优价格p *为baq p 22*+=(4) 在(3)式中a 可以理解为这种产品免费供应时(p = 0)社会的需求量,称为“绝对需求量”.pxb d d -=表示价格上涨一个单位时销售量下降的幅度.在实际工作中a ,b 可以由价格p 和售量x 的统计数据用最小二乘法拟合来确定.(4)式表明最优价格是两部分之和,一部分是成本q 的一半,另一部分与“绝对需求量”成正比,与市场需求对价格的敏感系数成反比. 3.不妨设kx q x q -=0)(,k 是产量增加一个单位时成本的降低.最优价格为bakb ka q p 2)1(20*+--=.4.总利润为 ⎰⎰--+--=TT T t bp a t q p t bp a t q p p p U 222201121d ))](([d ))](([),()]}43([)()]4([){(022011Tq p b bp a Tq p b bp a ββ+---++---= 由01=∂∂p U ,02=∂∂p U,可得最优价格 )]4([2101T q b a b p β++=,)]43([2102Tq b a b p β++= 设总销量为Q 0,)(2d )(d )(21222010p p bTaT t bp a t bp a Q T T T +-=-+-=⎰⎰在此约束条件下),(21p p U 的最大值点为8~01T bT Q b a p β--=,8~02T bT Q b a p β+-=第三章 微分方程模型1.解 设t 时刻采用新技术的人数为x (t ).(1)指数模型x t xλ=d d . (2)Logistic 模型)(d d x N ax tx-=,N 为总人数.(3)广告等媒介在早期作用较大,它对传播速度的影响与尚未采用新技术的人数成正比,在模型(2)的基础上,有))((d d x N b ax tx-+= (2)和(3)区别见图6.图6 2.解 在图7坐标下铅球运动方程为0=x,g y -= ,0)0(=x ,h y =)0(, αcos )0(v x= ,αsin )0(v y = . 解出)(t x ,)(t y 后,可以得铅球掷远为ααααcos )2sin (cos sin 212222v g hgv g v R ++=图7 这个关系还可表为 )tan (cos 2222ααR h v g R +=. 由此计算0d d =*ααR ,得最佳出手角度)(2sin 21gh v v +=-*α,和最佳成绩gh v gvR 22+=*.设h =1.5m ,v =10m/s ,则 4.41=*α,m 4.11=*R . 3.解 模型为Ex xNrx x F x-==ln )( ,如图8所rN/示,有2个平衡点:x = 0和x 0 =rE N -e.可证x = 0不稳定,x 0稳定(与E ,r 的大小无关).最大持续产量为h m = rN/e ,获得h m 的E m = r ,x *0 =e /N .4.解 记B 的浓度为时间t 的函数y (t ),A 的浓度为x (t ). 图8 一、假设1.1molA 分解后产生n molB . 2.容体的体积在反应过程中不变. 二、建立模型,求解有假设知,A 的消耗速度与A 的浓度成比例,故有下列方程成立kx tx-=d d 其中k 为比例系数.设反应开始时t = 0,A 的浓度为x 0,由题中条件知当t = 20(分)时,A 的浓度为021)20(x x =.解初值问题⎪⎩⎪⎨⎧==-)0(d d x x kx tx得 ktx t x -=e )(0它应满足020021e )20(x x x k ==⨯- 解得 2ln 201=k 所以得 )2ln 200e )((tx t x -=由于B 的浓度为x 浓度减少量的n 倍,故有)e1(]e[)(2ln 2002ln 2000ttnx x x n t y ---=-=三、作图(如图9) 图9第四章 运筹学模型1.解 (1)设4个季度开始时公司新招聘的保姆数量分别为x 1, x 2, x 3, x 4人,4个季度开始时nx保姆总数量分别为S 1, S 2, S 3, S 4人.以本年度付出的总报酬最少(即4个季度开始时保姆总数量之和最小)为目标,则模型为s .t .⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥+=+=+=+=+≥+≥+≥+≥+++=0,,,,,,,85.085.085.01205900065555006557500655600065min4321432143432321211443322114321S S S S x x x x x S S x S S xS S x S x S x S xS x S S S S S Z (2)设4个季度开始时公司新招聘的保姆数量分别为x 1, x 2, x 3, x 4人,4个季度结束时解雇的保姆数量分别为y 1, y 2, y 3, y 4人,4个季度开始时保姆总数量分别为S 1, S 2, S 3, S 4人.以本年度付出的总报酬最少(即4个季度开始时保姆总数量之和最小)为目标,则模型为s .t .⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥-+=-+=-+=+=+≥+≥+≥+≥+++=0,,,,,,,,,,85.085.085.01205900065555006557500655600065min4321321432134342323121211443322114321S S S S y y y x x x x y x S S y x S S yx S S x S x S x S xS x S S S S S Z 2.解 (1)建立模型设:①每班上班时间为8小时,在上班时间内只能生产一种产品; ②周末加班时间内生产哪种产品不限;③生产A 产品用x 班,生产B 产品用y 班,周加班时生产A 产品用x 1小时,生产B 产品用y 1小时.则有⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≤+=++≤+≤+=+且为整数0,,,101:2148:987084581011111111y x y x y x x x y y x x y y y x (2)求解现在求满足(1)中第2,3个方程可看出:8≤x ,5≥y ;将(1)中的第1个方程代入第4个方程得:1179720128y x y -+= 现在就是在满足5≤y ,1011≤+y x 条件下,使上式两端的取值尽量接近.显然5=y ,01=x ,101=y因此 5=x制定方案为,生产A ,B 两种产品所占总时间各一半,周加班10小时全用于生产产品B .3.解:设购买食品A 和B 依次为x 1和x 2(kg ),则有 营养最低要求满足:10x 1+5x 2≥50 (铁含量) 5x 1+8x 2≥40 (蛋白质含量)6x 1+5x 2≥42 (钙含量)总花费数记为Z ,则有数学模型2134min x x Z +=s .t .⎪⎪⎩⎪⎪⎨⎧≥≥+≥+≥+0,)3.3(,4256)2.3(,4085)1.3(,5051021212121x x x x x x x x 用图解法求解上述问题.首先以x 1,x 2为坐标轴,建立平面直角坐标系(如图3-10),由于x 1,x 2均非负,故只画出了第一象限.其次,将其余约束条件几何化.条件(3.1)表示的是一个半平面,先画出直线10x 1+5x 2=50,因为10x 1+5x 2≥50,故直线(3.1)的上方区域即条件(3.1)所满足的x 1,x 2的取值范围;同理将条件(3.2)、(4.3)也几何化,并注意到几个条件要同时满足,便求得一个以顶点A 、B 、C 、D 为顶点的右上方无界的五边形区域1x ABCD 2x .这个区域内的任一点(x 1,x 2)都是一个可行性配餐方案.图3—10图3—11最后,为了求出最优解,将目标函数也进行几何化,有11)4.3(33412Z x x +-=称为目标函数直线族,因为其中的Z 作为参数出现.易见,随着Z 的逐渐增大,目标函数直线(3.4)向右上方平行移动.也就是说,随着目标函数直线的逐渐往右上方平移,Z 的值越来越大,反之,Z 的值越来越小(如图3-11).又原问题是求函数Z 的最小值,故应令目标函数直线尽可能往左下方平移.但这种平移是有限制的,即点(x 1,x 2)必须在可行域内.于是两者的结合便可确定本例的最优解.通过上述斜率关系分析可知目标函数直线与直线(3.1)和直线(3.3)的交点(顶点C )相切,即直线(3.1)与直线(3.3)的交点即最优解点.于是问题就变成了求解方程组⎩⎨⎧=+=+.4256,505102121x x x x 易解得x 1=2,x 2=6为最优解,通常记作:Tx )6,2(62=⎪⎪⎭⎫⎝⎛=* 对应的目标函数值称为最优值,记作 Z *=26第五章 概率统计模型1.解 设报童每天订购Q 份报纸,则其收益函数为⎩⎨⎧>≤--=Q m am Qm b m Q am m y ,,)()( 利润的期望为∑∑∞+==+-+=1)()(])[()]([Q m Qm m aQP m P bQ m b a m y E比较各个m 的)]([m y E 值,使其最大者即为所求.若m 的取值过多,可将)]([m y E 当成m 的连续函数或借鉴连续函数求极值的方法令0d )]([d =mm y E .2.解 假设有α%的人患有血友病,并假设下一代与上一代虽人数可能不等,但所生男女比例一样.基于这样一个假设,不妨设下一代男女与上一代相同,设初始第一代男女分别占总人数的比例占总人数的比例为 a 0,b 0,由题设,a 0:b 0=1:1.2.注意到只有女人遗传血友病,由此,第一代将有%210αb 个女人及%210αb 个男人有血友病,血友病占总人数的百分比为 %2.22.1%0001αα=+=b a b c同理,第二代将有%21210αb ⋅个女人及%21210αb ⋅个男人有血友病,血友病占总人数的百分比为 %2.22.121%210002αα⋅=+=b a b c依次类推,第n 代将有%)21(0αb n个女人及%)21(0αb n个男人有血友病,血友病占总人数的百分比为%2.22.1)21(%)21(10001αα⋅=+=--n n n b a b c令∞→n ,则0→n c .3.解 建立决策树(如图13).图13在投资A 的决策树中,第一年投资A ,第二年投资B ,第三年投资B 的期望值最大. 在投资B 的决策树中(只在A 的决策树中②节点中的0.4,0.6分别换成0.1,0.9即可),可算得第一年投资B ,第二年投资B ,第三年投资B 的期望值是两个决策树中的最大者. 4.解 建立模型B 1——预测是油井,B 2——预测是气井,B 3——预测是无油气井.由于做取样只能得到不完全的信息,因此根据取样结果,计算出在B 1,B 2,B 3分别发生的条件下,B 1,B 2,B 3发生的概率.然后利用贝叶斯公式,计算出实际是油井、气井和废井情况下,而预测是B 1,B 2,B 3之一的概率值,若给出各种情况下的费用,计算出各个期望值即可.下面画出决策3000 0 20001000 2000 4000 4000 3000 1000 3000 3000 2000树(如图14).图14。
第一章测试
1
【单选题】(20分)
运筹学的基本特点不包括()。
A.
多学科交叉与综合
B.
模型方法的应用
C.
属于行为科学
D.
考虑系统的整体优化
2
【单选题】(20分)
下列有关运筹学的说法不正确的是()。
A.
利用科学的管理方法,为管理人员达到管理目标提供决策支持
B.
是管理学的简称
C.
采用数学建模、统计学和计算方法等来求解复杂问题,以达到最优和近似最优的解决方案
D.
涉及到应用数学、形式科学、经济学、管理学等学科
3
【判断题】(20分)
在国际上,通常认为“运筹学”与“管理科学”是具有相同或相近涵义。
A.
错
B.
对
4
【判断题】(20分)
运筹学是运用数学方法,对需要进行管理的问题统筹规划,为决策机构进行决策时提供以数量化为基础的科学方法。
A.
对
B.
错
5
【判断题】(20分)
运筹学可以只对过程中的某一个决策行为孤立进行评价,而不需要从整体出发。
A.
对
B.
错
第二章测试
1
【单选题】(20分)
A.
有无穷多最优解
B.
有无界解
C.
有唯一最优解
D.
无可行解
2
【单选题】(20分)
求目标函数最大值的线性规划问题,某一步迭代的单纯形表中出现基变量为0的情况,则该线性规划()。
A.
有无界解。
数学建模_北京理工大学中国大学mooc课后章节答案期末考试题库2023年1.在假设检验中,H0为原假设,H1为对立假设,则第二类错误指的是答案:H1真,接受H02.假设检验的显著水平为a,表示答案:犯第一类错误的概率不超过a3.在假设检验中,接受原假设H0时,可能犯下面哪种错误?答案:第二类错误4.如果变量x、y的Pearson相关系数为0,表示答案:二者没有线性相关关系5.度量两个变量之间相关关系的统计量是答案:相关系数6.列联分析的基本思想可以用下面哪种理论来解释?答案:小概率事件7.收集了n组数据(Xi,Yi),i=1,2,…,n,画出散布图,若n个点基本在——条直线附近时,称两个变量具有答案:线性相关关系8.线性回归分析是处理连续变量相关关系的一种统计技术。
下列不属于变量的是答案:工厂名字9.根据两个变量的18对观测数据建立一元线性回归方程。
在对回归方程作检验时,残差平方和的自由度为答案:1610.建立变量x、y间的直线回归方程,回归系数的绝对值|b|越大,说明答案:回归方程的斜率越大11.在贷款问题等额本息还款方式中,下列说法不正确的是:答案:每月还款额中的本金和利息数是不变的12.在贷款问题等额本息还款法数学模型中,用到了下述哪个数学知识:答案:等比数列求和13.在贷款问题的等额本息还款法数学模型中,设贷款总额、贷款月数、贷款月利率保持不变,那么下面哪种还款方法还的总利息最少:答案:每半月还款一次14.下面哪个算法不是启发式算法:答案:枚举算法15.关于启发式算法,下面描述不正确的是:答案:是近似算法,可以任意逼近最优解16.下面哪个MATLAB命令只能求解非线性一元函数极小值问题:答案:fminbnd()17.对LINGO语言的描述,下列哪个说法是不正确的:答案:集合语言适合求解小型优化问题18.关于常微分方程模型,哪种说法是错误的?答案:稳定性方法是一种求解常微分方程的方法19.父母基因决定了子代基因,假设某种动物从父代到子代基因的传递概率为长此以往,该种动物的基因会呈现何种特点?答案:AA越来越多20.假设一个生态系统中有蛇、鼠、草3种生物,蛇捕食鼠,鼠靠吃草根茎果实生存。
实验05 数学规划模型㈡(2学时)(第4章数学规划模型)1.(求解)汽车厂生产计划(LP,整数规划IP)p101~102(1) (LP)在模型窗口中输入以下线性规划模型max z = 2x1 + 3x2 + 4x3s.t. 1.5x1 + 3x2 + 5x3≤ 600280x1 + 250x2 + 400x3≤ 60000x1, x2, x3≥ 0并求解模型。
★(1) 给出输入模型和求解结果(见[101]):(2) (IP)在模型窗口中输入以下整数规划模型max z = 2x1 + 3x2 + 4x3s.t. 1.5x1 + 3x2 + 5x3≤ 600280x1 + 250x2 + 400x3≤ 60000x1, x2, x3均为非负整数并求解模型。
LINGO函数@gin见提示。
★(2) 给出输入模型和求解结果(见[102]模型、结果):2.(求解)原油采购与加工(非线性规划NLP ,LP 且IP )p104~107模型:已知 ⎪⎩⎪⎨⎧≤≤+≤≤+≤≤=)15001000(63000)1000500(81000)5000(10)(x x x x x xx c注:当500 ≤ x ≤ 1000时,c (x ) = 10 × 500 + 8( x – 500 ) = (10 – 8 ) × 500 + 8x112112221112212211112112122211122122max 4.8() 5.6()()500100015000.50.6,,,,0z x x x x c x x x x x x x x x x x x x x x x x x =+++-+≤++≤≤≥+≥+≥2.1解法1(NLP )p104~106将模型变换为以下的非线性规划模型:1121122212311122122111121121222123122312311122122max4.8()5.6()(1086)50010000.50.6(500)0(500)00,,500,,,,0z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =+++-+++≤++≤≥+≥+=++-=-=≤≤≥LINGO 软件设置:局部最优解,全局最优解,见提示。