167;5马尔科夫预测技术
- 格式:ppt
- 大小:1.25 MB
- 文档页数:33
马尔可夫预测马尔可夫预测方法不需要大量历史资料,而只需对近期状况作详细分析。
它可用于产品的市场占有率预测、期望报酬预测、人力资源预测等等,还可用来分析系统的长期平衡条件,为决策提供有意义的参考。
6.1 马尔可夫预测的基本原理马尔可夫(A.A.Markov )是俄国数学家。
二十世纪初,他在研究中发现自然界中有一类事物的变化过程仅与事物的近期状态有关,而与事物的过去状态无关。
具有这种特性的随机过程称为马尔可夫过程。
设备维修和更新、人才结构变化、资金流向、市场需求变化等许多经济和社会行为都可用这一类过程来描述或近似,故其应用范围非常广泛。
6.1.1 马尔可夫链为了表征一个系统在变化过程中的特性(状态),可以用一组随时间进程而变化的变量来描述。
如果系统在任何时刻上的状态是随机的,则变化过程就是一个随机过程。
设有参数集(,)T ⊂-∞+∞,如果对任意的t T ∈,总有一随机变量t X 与之对应,则称{,}t X t T ∈为一随机过程。
如若T 为离散集(不妨设012{,,,...,,...}n T t t t t =),同时t X 的取值也是离散的,则称{,}t X t T ∈为离散型随机过程。
设有一离散型随机过程,它所有可能处于的状态的集合为{1,2,,}S N =,称其为状态空间。
系统只能在时刻012,,,...t t t 改变它的状态。
为简便计,以下将n t X 等简记为n X 。
一般地说,描述系统状态的随机变量序列不一定满足相互独立的条件,也就是说,系统将来的状态与过去时刻以及现在时刻的状态是有关系的。
在实际情况中,也有具有这样性质的随机系统:系统在每一时刻(或每一步)上的状态,仅仅取决于前一时刻(或前一步)的状态。
这个性质称为无后效性,即所谓马尔可夫假设。
具备这个性质的离散型随机过程,称为马尔可夫链。
用数学语言来描述就是:马尔可夫链 如果对任一1n >,任意的S j i i i n ∈-,,,,121 恒有{}{}11221111,,,n n n n n n P X j X i X i X i P X j X i ----======= (6.1.1)则称离散型随机过程{,}t X t T ∈为马尔可夫链。
马尔科夫预测法的原理
马尔科夫预测法是一种基于马尔科夫链的预测方法。
其原理是利用过去的一系列观测值,通过构建一个马尔科夫链模型来预测未来的观测值。
马尔科夫链是一种具有状态转移概率的数学模型,其特点是当前状态的转移只依赖于前一个状态,与其他历史状态无关。
马尔科夫预测法假设未来的观测值只与过去的观测值有关,而与其他因素无关。
具体实施马尔科夫预测法的步骤如下:
1. 收集并整理历史数据,将其分为一系列观测值的序列。
2. 根据历史数据计算每个状态之间的转移概率。
即计算每个观测值之间的转移概率,这可以通过统计历史数据中观测值之间的频率来进行估计。
3. 根据已知的初始状态分布,选择一个初始状态作为预测的起点。
4. 根据转移概率和初始状态,依次生成未来的观测值,直到达到所需的预测长度。
马尔科夫预测法的关键在于确定状态和计算状态之间的转移概率。
这可以通过统计方法、最大似然估计或其他相应的方法来实现。
然后,使用马尔科夫链的转移概率来模拟未来的状态转移,从而得到未来观测值的预测。
利用马尔可夫模型进行天气预测的方法天气对人们的生活有着重要的影响,准确的天气预测可以帮助人们做出合理的安排,从而减少灾害损失,提高生产效率。
目前,天气预测主要依靠气象卫星、气象雷达等技术手段进行数据收集和分析。
然而,这些方法受到观测精度、数据更新速度等因素的限制,难以做到完全准确的天气预测。
因此,利用数学模型进行天气预测成为了一种重要的手段。
本文将探讨利用马尔可夫模型进行天气预测的方法。
一、马尔可夫模型简介马尔可夫模型是一种用来描述随机变量序列的数学模型。
它具有“马尔可夫性质”,即在给定当前状态的情况下,未来状态的变化只依赖于当前状态,而与历史状态无关。
这种性质使得马尔可夫模型在描述具有一定规律的状态转移过程时具有很好的表达能力。
在天气预测中,我们可以将天气状态看作是一个随机变量序列,例如“晴天”、“多云”、“雨天”等。
当天的天气状态取决于前一天的天气状态,因此天气预测可以看作是一个具有马尔可夫性质的状态转移过程。
利用马尔可夫模型来描述这种状态转移过程,可以帮助我们更好地理解和预测天气的变化。
二、构建天气状态转移矩阵要利用马尔可夫模型进行天气预测,首先需要确定天气状态及其相互转移的概率。
假设我们将天气状态分为三种:晴天(S)、多云(C)和雨天(R)。
我们可以通过历史天气数据来统计各种天气状态之间的转移概率,从而构建天气状态转移矩阵。
以某地区为例,我们可以统计过去一段时间内,晴天的下一天是多云的概率、下一天是雨天的概率,以及类似地统计多云和雨天的状态转移概率。
这样就可以得到一个3×3的状态转移矩阵,其中每个元素表示了两种天气状态之间的转移概率。
三、预测未来天气状态有了天气状态转移矩阵,我们就可以利用马尔可夫模型来预测未来的天气状态。
假设当前的天气状态为某种状态,我们可以利用状态转移矩阵来计算出下一天各种天气状态的概率分布。
例如,如果当前的天气状态是晴天,我们可以通过状态转移矩阵计算出下一天是晴天、多云、雨天的概率分布。
预测⽅法——马尔可夫预测马尔可夫预测若某⼀系统在已知现在情况的条件下,系统未来情况只与现在有关,与历史⽆直接关系,则称描述这类随机现象的数学模型为马尔可夫模型(马⽒模型)。
时齐马尔可夫链:系统由状态i转移到状态j的转移概率只与时间间隔长短有关,与初始时刻⽆关。
状态转移概率矩阵及柯尔莫哥洛夫定理:概率矩阵:若系统在时刻 t0 处于状态 i,经过 n 步转移,在时刻 tn 处于状态 j 。
那么,对这种转移的可能性的数量描述称为 n 步转移概率。
记为:P(xn =j|x=i)=P(n)ij令P(n)=P11(n)P12(n)⋯P1N(n) P21(n)P22(n)⋯P2N(n)⋯⋯⋯P N1(n)P N2(n)⋯P NN(n)为n部转移概率矩阵。
(P0为初始分布⾏向量)性质:1. P(n)=P(n−1)P2. P(n)=P n转移概率的渐进性质——极限概率分布正则矩阵:若存在正整数k,使得p k的每⼀个元素都是正数,则称该马尔可夫链的转移矩阵P是正则的。
马克可夫链正则阵的性质:1. P有唯⼀的不动点向量W,W的每个分量为正,满⾜WP=W;2. P的n次幂P n随n的增加趋近于矩阵V, V的每⼀⾏向量均等于不动点向量W。
马尔可夫链预测法步骤:1. 划分预测对象可能出现的状态;2. 计算初始概率,由此计算⼀步状态转移概率;3. 计算多步状态转移概率;4. 根据状态转移概率进⾏预测。
()实例:eg:由于公路运输的发展,⼤量的短途客流由铁路转向公路。
历年市场调查结果显⽰,某铁路局发现今年⽐上年相⽐有如下规律:原铁路客流有85%仍由铁路运输,有15%转由公路运输,原公路运输的客流有95%仍由公路运输,有5%转由铁路运输。
已知去年公、铁客运量合计为12000万⼈,其中铁路10000万⼈,公路2000万⼈。
预测明年总客运量为18000万⼈。
运输市场符合马⽒链模型假定。
试预测明年铁、公路客运市场占有率各是多少?客运量是多少?最后发展趋势如何?解:1. 计算去年铁路、公路客运市场占有率将旅客由铁路运输视为状态1,由公路运输视作状态2,则铁、公占有率就是处于两种状态的概率,分别记作a1,a2.以去年作为初始状态,则初始状态概率向量:A(0)=(a1(0),a2(0))=(0.83,0.17)2. 建⽴状态转移矩阵PP=0.850.15 0.050.953. 预测明年铁路,公路客运市场占有率A(2)=(a1(2),a2(2))=A(0)P2=(0.83,0.17)0.850.150.050.952=(0.62,0.38)4. 进后发展趋势lim ()()Loading [MathJax]/jax/element/mml/optable/BasicLatin.js。
利用马尔可夫模型进行天气预测的方法随着气候变化的加剧,天气预测成为了如今人们生活中不可或缺的一部分。
而天气预测准确性的提高对于人们的生产生活有着重要的意义。
随着技术的发展,利用马尔可夫模型进行天气预测的方法逐渐受到了人们的关注。
一、马尔可夫模型简介马尔可夫模型是一种时间序列模型,其基本思想是假设未来的状态只与当前的状态有关,与过去的状态无关。
马尔可夫模型在天气预测中的运用,是基于天气的状态在短期内是相对稳定的这一特点。
通过建立天气状态之间的转移概率矩阵,可以实现对未来天气状态的预测。
二、数据收集在利用马尔可夫模型进行天气预测时,首先需要收集历史的天气数据。
这些数据包括温度、湿度、气压、风速等多种气象要素。
在收集完数据后,需要对数据进行预处理,包括去除异常值、填补缺失值等操作,以确保数据的准确性和完整性。
三、状态空间的确定在建立马尔可夫模型时,需要确定天气的状态空间。
通常情况下,可以将天气状态分为晴天、多云、阴天、小雨、中雨、大雨等几种状态。
根据实际情况和需求,也可以对状态空间进行扩展,例如考虑雾霾、大风等特殊天气情况。
四、转移概率矩阵的建立在确定了状态空间后,需要建立天气状态之间的转移概率矩阵。
这一矩阵反映了不同天气状态之间的转移概率,可以通过历史数据进行统计得到。
转移概率矩阵的建立是马尔可夫模型的核心,直接影响着模型的预测准确性。
五、模型的预测与评估建立好马尔可夫模型后,可以利用该模型对未来的天气状态进行预测。
预测的过程通常采用迭代算法,根据当前的天气状态和转移概率矩阵,计算出未来几天的天气状态。
预测结果可以与实际观测数据进行对比,评估模型的准确性和稳定性。
六、模型的改进与应用随着数据和算法的不断进步,马尔可夫模型在天气预测中也在不断改进和应用。
一些学者通过引入更多的气象要素、考虑气象要素之间的相互影响等方式,对传统的马尔可夫模型进行了改进,提高了模型的预测准确性。
此外,马尔可夫模型在气象灾害预警、农业生产等领域也有着广泛的应用。
马尔可夫预测法
马尔可夫预测法是一种基于马尔可夫过程的预测方法。
马尔可夫过程是指一个随机过程,在该过程中,下一个状态只取决于当前状态,而不受过去状态的影响。
因此,马尔可夫过程具有“无记忆”的特点。
马尔可夫预测法利用了这个特点,假设未来的状态只与当前状态有关,而与过去的状态无关。
在使用马尔可夫预测法时,需要确定一个状态集合和状态之间的转移概率。
这些概率可以由已有的数据来估计。
然后,通过计算当前状态与所有可能的未来状态的概率,来预测未来的状态。
这种方法适用于许多领域,例如股票价格预测、天气预测等。
需要注意的是,马尔可夫预测法是一种基于概率的预测方法,预测结果并不一定完全准确。
因此,在使用该方法时,需要根据实际情况和可靠的数据进行合理的预测,并结合其他方法进行综合分析和判断。
马尔可夫预测算法马尔可夫预测算法综述马尔可夫预测法以系统状态转移图为分析对象,对服从给定状态转移率、系统的离散稳定状态或连续时间变化状态进⾏分析马尔可夫预测技术是应⽤马尔可夫链的基本原理和⽅法研究分析时间序列的变化规律,并预测其未来变化趋势的⼀种技术。
⽅法由来马尔可夫是俄国的⼀位著名数学家 (1856—1922),20世纪初,他在研究中发现⾃然界中有⼀类事物的变化过程仅与事物的近期状况有关,⽽与事物的过去状态⽆关。
针对这种情况,他提出了马尔可夫预测⽅法,该⽅法具有较⾼的科学性,准确性和适应性,在现代预测⽅法中占有重要地位。
基础理论在⾃然界和⼈类社会中,事物的变化过程可分为两类:⼀类是确定性变化过程;另⼀类是不确定性变化过程。
确定性变化过程是指事物的变化是由时间唯⼀确定的,或者说,对给定的时间,⼈们事先能够确切地知道事物变化的结果。
因此,变化过程可⽤时间的函数来描述。
不确定性变化过程是指对给定的时间,事物变化的结果不⽌⼀个,事先⼈们不能肯定哪个结果⼀定发⽣,即事物的变化具有随机性。
这样的变化过程称为随机过程⼀个随机试验的结果有多种可能性,在数学上⽤⼀个随机变量(或随机向量)来描述。
在许多情况下,⼈们不仅需要对随机现象进⾏⼀次观测,⽽且要进⾏多次,甚⾄接连不断地观测它的变化过程。
这就要研究⽆限多个,即⼀族随机变量。
随机过程理论就是研究随机现象变化过程的概率规律性的。
客观事物的状态不是固定不变的,它可能处于这种状态,也可能处于那种状态,往往条件变化,状态也会发⽣变化状态即为客观事物可能出现或存在的状况,⽤状态变量表⽰状态:=???==,2,1,,2,1t N i i X t 它表⽰随机运动系统,在时刻),2,1( =t t 所处的状态为),2,1(N i i =。
状态转移:客观事物由⼀种状态到另⼀种状态的变化。
设客观事物有 N E E E E ...,,321共 N 种状态,其中每次只能处于⼀种状态,则每⼀状态都具有N 个转向(包括转向⾃⾝),即由于状态转移是随机的,因此,必须⽤概率来描述状态转移可能性的⼤⼩,将这种转移的可能性⽤概率描述,就是状态转移概率。
马尔可夫预测方法1马尔可夫预测的性质及运用对事件的全面预测,不仅要能够指出事件发生的各种可能结果,而且还必须给出每一种结果出现的概率,说明被预测的事件在预测期内出现每一种结果的可能性程度。
这就是关于事件发生的概率预测。
马尔可夫(Markov)预测法,就是一种关于事件发生的概率预测方法。
它是根据事件的目前状况来预测其将来各个时刻(或时期)变动状况的一种预测方法。
马尔可夫预测法是地理预测研究中重要的预测方法之一。
2基本概念(一)状态、状态转移过程与马尔可夫过程1.状态 在马尔可夫预测中,“状态”是一个重要的术语。
所谓状态,就是指某一事件在某个时刻(或时期)出现的某种结果。
一般而言,随着所研究的事件及其预测的目标不同,状态可以有不同的划分方式。
譬如,在商品销售预测中,有“畅销”、“一般”、“滞销”等状态;在农业收成预测中,有“丰收”、“平收”、“欠收”等状态;在人口构成预测中,有“婴儿”、“儿童”、“少年”、“青年”、“中年”、“老年”等状态;等等。
2.状态转移过程 在事件的发展过程中,从一种状态转变为另一种状态,就称为状态转移。
事件的发展,随着时间的变化而变化所作的状态转移,或者说状态转移与时间的关系,就称为状态转移过程,简称过程。
3.马尔可夫过程 若每次状态的转移都只仅与前一时刻的状态有关、而与过去的状态无关,或者说状态转移过程是无后效性的,则这样的状态转移过程就称为马尔可夫过程。
在区域开发活动中,许多事件发展过程中的状态转移都是具有无后效性的,对于这些事件的发展过程,都可以用马尔可夫过程来描述。
(二)状态转移概率与状态转移概率矩阵1.状态转移概率 在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。
根据条件概率的定义,由状态E i 转为状态E j 的状态转移概率P (E i →E j )就是条件概率P (E j /E i ),即 P(Ei Ej)=P(Ej/Ei)=Pij → (1)2.状态转移概率矩阵 假定某一种被预测的事件有E 1,E 2,…,E n ,共n 个可能的状态。